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1886. Proposed by Jodi Gubernat and Tom Beatty, Florida Gulf Coast University,
Fort Myers, FL.

For which positive integers n is the function value

f (n) =
n�

k=�n/2�

�
1 − 2k

n

�2 �
n
k

�

an integer?

1887. Proposed by Elias Lampakis, Kiparissia, Greece.

Given a circle C with center O and radius r , and a point H such that 0 < OH < r ,

(a) Show that there are an infinite number of triangles inscribed in C with orthocenter
H .

(b) Determine the set of points belonging to the interior of all triangles inscribed in C
with orthocenter H .
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1888. Proposed by Alex Aguado, Duke University, Durham, NC.

Let A ⊆ X be a subset of a topological space, and let N (A) denote the number of sets

obtained from A by alternately taking closures and complements (in any order). It is

well known that N (A) is at most 14. However, exactly for which r ≤ 14 is it possible

to find A and X such that N (A) = r?

1889. Proposed by Gary Gordon and Peter McGrath, Lafayette College, Easton, PA.

For every positive integer k, consider the series

Sk =
�

1 + 1

2
+ 1

3
+ · · · + 1

k

�
−

�
1

k + 1
+ 1

k + 2
+ · · · + 1

2k

�

+
�

1

2k + 1
+ 1

2k + 2
+ · · · + 1

3k

�
−

�
1

3k + 1
+ 1

3k + 2
+ · · · + 1

4k

�
+ · · · .

Thus S1 = log 2 and S2 = (π + 2 log 2)/4.

(a) Prove that Sk converges for all k.

(b) Prove that

Sk =
�

1

0

x
k − 1

(xk + 1)(x − 1)
dx .

(c) Prove that the sequence {Sk} is monotonically increasing and divergent.

1890. Proposed by Erwin Just (Emeritus), Bronx Community College of the City Uni-

versity of New York, Bronx, NY.

Let m and n be positive integers. Prove that there exist an integer k and a prime p such

that m ≡ k
2 + p (mod n).

Quickies

Answers to the Quickies are on page 68.

Q1017. Proposed by Allan Berele and Jeffery Bergen, Department of Mathematics,

DePaul University, Chicago, IL.

Find a monic polynomial f (x) with integer coefficients such that f (x) = 0 has no

integer solutions but f (x) ≡ 0 (mod p) has a solution for every prime p.

Q1018. Proposed by Finbarr Holland, School of Mathematical Sciences, University

College Cork, Cork, Ireland.

Suppose 0 < α ≤ 1. Prove that

e
x ≤ 1 + (1 − α)x

1 − αx

for all x ∈ [0, 1) if and only if α ≥ 1/2.
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Solutions

Permutations and their bounding squares February 2011

1861. Proposed by Emeric Deutsch, Polytechnic Institute of New York University,
Brooklyn, NY.

Let n ≥ 2 be an integer. A permutation σ : {1, 2, . . . , n} → {1, 2, . . . , n} can be rep-
resented in the plane by the set of n points Pσ = {(k, σ (k)) : 1 ≤ k ≤ n}. The smallest
square bounding Pσ , with sides parallel to the coordinate axis, has at least 2 and at
most 4 points of Pσ on its boundary. The figure below shows a permutation σ with 4
points on its bounding square. For every m ∈ {2, 3, 4}, determine the number of per-
mutations σ of {1, 2, . . . , n} having m points of Pσ on the boundary of their bounding
square.

(5, 7)

(7, 4)
(6, 2)

(4, 1)

(2, 3)

(1, 5) (3, 6)

Solution by Daniele Degiorgi, ETH Zurich, Zurich, Switzerland.

Let Nm be the number of permutations of {1, 2, 3, . . . , n} having m points of P on the
boundary of their bounding square. All the points on the bounding square have 1 or
n as x or y coordinate. There are only two points on the boundary if and only if Pσ

contains both (1, 1) and (n, n) or both (1, n) and (n, 1). Fixing the two points, none
of the (n − 2)! permutations of {2, 3, . . . , n − 1} will generate points on the boundary.
Thus N2 = 2(n − 2)!.

There are four points on the boundary if Pσ does not contain any of the four points
cited above (1, 1), (1, n), (n, 1), and (n, n). To ensure this, we can select any of the
n − 2 values in {2, 3, . . . , n − 1} for σ (1), any of the n − 3 values in {2, 3, . . . , n − 1}
excluding σ (1) for σ (n), and any of the (n − 2)! possibilities for the other values of
of σ . Thus N4 = (n − 2)(n − 3)(n − 2)!.

Finally, N3 = n! − N2 − N4 = (4n − 8)(n − 2)!.
Also solved by Michael Andreoli, Michel Bataille (France), Berry College Dead Poets Society, Jany C. Binz

(Switzerland), Elton Bojaxhiu (Germany) and Enkel Hysnelaj (Australia), Mark Bowron, Robert Calcaterra, Cal
State LA Math Problem Solving Group, John Christopher, CMC 328, Con Amore Problem Group (Denmark),
Calvin A. Curtindolph, Patrick Devlin, Daniel Dominik, Gregory Dresden, Dave Feil, Dmitry Fleischman, Nat-
acha Fontes-Merz, David Getling (Germany), Arup Guha, Joshua Ide, Lucyna Kabza, Omran Kouba (Syria), Vic-
tor Y. Kutsenok, Elias Lampakis (Greece), László Lipták, Peter McPolin (Northern Ireland), David Nacin, Rituraj
Nandan, Northwestern University Math Problem Solving Group, Rob Pratt, Joel Schlosberg, Thomas Q. Sibley,
Skidmore College Problem Group, John H. Smith, Philip Straffin, Marian Tetiva (Romania), R. S. Tiberio, Texas
State University Problem Solving Group, Dennis Walsh, Michael Woltermann, and the proposer.

Majorization: sum implies product February 2011

1862. Proposed by H. A. ShahAli, Tehran, Iran.

Let n be a positive integer. Suppose that the nonnegative real numbers a1, b1, a2,
b2, . . . , an, bn satisfy that a1 ≤ a2 ≤ · · · ≤ an and

�k
i=1 ai ≥ �k

i=1 bi for all 1 ≤ k ≤
n. Prove that

�k
i=1 ai ≥ �k

i=1 bi for all 1 ≤ k ≤ n.
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Solution by Omran Kouba, Higher Institute for Applied Sciences and Technology,
Damascus, Syria.

The desired inequalities are trivially true if a1 = 0, because a1 = 0 implies b1 = 0, so

let us suppose that a1 > 0.

For every nonnegative real numbers λ1, λ2, . . . , λn , we have that

n�

k=1

λk

�
k�

i=1

bi

�

≤
n�

k=1

λk

�
k�

i=1

ai

�

.

This is equivalent to

n�

i=1

�i bi ≤
n�

i=1

�i ai ,

where �i = λi + λi+1 + · · · + λn .

Now consider k ∈ {1, 2, . . . , n} and suppose that �k > 0. By the previous inequal-

ity and the Arithmetic Mean–Geometric Mean Inequality, it follows that

�
k�

i=1

bi

�1/k

= 1

k
√

�1 · · · �k

�
k�

i=1

�i bi

�1/k

≤ 1

k
√

�1 · · · �k
· 1

k
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�i bi

≤ 1

k
√

�1 · · · �k
· 1

k

k�

i=1

�i ai .

Choose the λi as follows:

λi =






0 if k < i ≤ n,

1/ak if i = k,

1/ai − 1/ai+1 if 1 ≤ i < k.

Note that λ1, λ2, . . . , λn are nonnegative because a1 ≤ a2 ≤ · · · ≤ ak and moreover

�i = 1/ai for 1 ≤ i ≤ k, and �i = 0 for k < i ≤ n. Thus

�
k�

i=1

bi

�1/k

≤ 1

k
�

1

a1

· · · 1

ak

· 1

k

k�

i=1

1 =
�

k�

i=1

ai

�1/k

,

which is the desired inequality for k.

Editor’s Note. Several solvers pointed out that the inequality is a special case of Kara-

mata’s Inequality and involves the idea of majorization. A non-increasing n-tuple

a = (a1, a2, . . . , an) majorizes another non-increasing n-tuple b = (b1, b2, . . . , bn)

if
�k

i=1
ai ≥ �k

i=1
bi for k = 1, 2, . . . , n − 1, and

�n
i=1

ai = �n
i=1

bi . One form of

Karamata’s Inequality states that if φ(t) is a continuous, convex function, and a ma-

jorizes b, then

n�

i=1

φ(ai ) ≥
n�

i=1

φ(bi ).

By choosing φ(t) = log(t) and rearranging the sequences, the solution is a special

case of Karamata’s Inequality.
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Also solved by Elton Bojaxhiu (Germany) and Enkel Hysnelaj( Australia); Robert Calcaterra; Marian Dinc̆a

(Romania); Robert L. Doucette; John N. Fitch; Vikram Govindan; Lixing Han; Peter W. Lindstrom; László Lipták;

Larry A. Lucas, Faryal Bokhari, and Touissant Towa; Peter McPolin (Northern Ireland); Paolo Perfetti (Italy);

Joel Schlosberg; Marian Tetiva (Romania); and the proposer.

Moments, || f �||∞, and Newton–Cotes formulae February 2011

1863. Proposed by Duong Viet Thong, Department of Economics and Mathematics,

National Economics University, Hanoi, Vietnam.

Let f be a continuously differentiable function on [a, b] such that
�

b

a
f (x) dx = 0.

Prove that

����

�
b

a

x f (x) dx

���� ≤ (b − a)3

12
max{| f

�(x)| : x ∈ [a, b]}.

Solution by Sanghun Song, Seoul Science High School, Jongro-ku, Seoul, Korea.

Let M = max{| f
�(x)| : x ∈ [a, b]}, c the midpoint of the interval [a, b], and � its

semi-length, i.e., c = 1

2
(a + b) and � = 1

2
(b − a). Since

�
b

a
f (x)dx = 0, we have that

�
b

a

x f (x) dx =
�

b

a

(x − c) f (x) dx =
�

c

a

(x − c) f (x) dx +
�

b

c

(x − c) f (x) dx .

Using the change of variable t = |x − c| gives

�
b

a

x f (x) dx = −
� �

0

t f (c − t) dt +
� �

0

t f (c + t) dt

=
� �

0

t ( f (c + t) − f (c − t)) dt.

Now, the Mean Value Theorem implies that for every t ∈ [0, �] there is ξt ∈
(c − t, c + t) such that | f (c + t) − f (c − t)| = |(c + t) − (c − t)|| f

�(ξt)| ≤ 2t M .

Hence, putting these two facts together we obtain

����

�
b

a

x f (x) dx

���� ≤
� �

0

t | f (c + t) − f (c − t)| dt ≤ 2M

� �

0

t
2

dt = 2�3

3
M,

which is exactly the required inequality.

Editor’s Note. Many solutions were based, more or less, on variations of the above ar-

gument. Some solvers used a different idea, starting with the twice differentiable func-

tion F(x) =
�

x

a
f (t) dt , x ∈ [a, b], they observed that

�
b

a
x f (x) dx = −

�
b

a
F(x) dx ,

and then used the local error for the trapezoid rule also known as one of the Newton–

Cotes formulae,

�
b

a

F(x) dx = (F(a) + F(b))� − 2�3

3
F

��(c) for some c ∈ (a, b).

Another idea used by R. Calcaterra and D. Dominik was to show that the func-

tional f →
�

b

a
x f (x) dx attains its extreme values on the convex set { f ∈ C

1[a, b] :�
b

a
f (x) dx = 0, and || f

�||∞ ≤ 1} only for the linear cases, i.e., f (x) = ±(x − c)
with c ∈ [a, b]. Finally it was brought to our attention by P. Perfetti that one can use
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Problem E2155 in American Mathematical Monthly (December 1969, pp. 1142–1143)

to prove the following generalization:

����

� b

a
xn f (x) dx

���� ≤ (n!)2(b − a)2n+1

(2n!)(2n + 1)! M,

for all f such that
� b

a xk f (x) dx = 0 for k = 0, 1, 2, . . . , n − 1.
Other connections with the proposed problem can be found in Ch. XV of the

book Inequalities involving functions and their integrals and derivatives written by

D. S. Mitrinović, J. E. Pec̆aric, and A. M. Fink and printed by Kluwer Academic

Publishers, 1991.

Also solved by Armstrong Problem Solvers; Cody M. Allen and William R. Green; Michel Bataille (France);
Dionne Bailey, Elsie Campbell, and Charles Diminnie; Elton Bojaxhiu (Germany) and Enkel Hysnelaj (Aus-
tralia); Michael W. Botsko; Robert Calcaterra; Hongwei Chen; M. Benito, Ó. Ciaurri, E. Fernández, and L. Ron-
cal (Spain); Daniel Dominik; Robert L. Doucette; Josh Eyler; Omran Kouba; Charles Lindsay; Peter W. Lind-
strom; Rick Mabry; Raymond Mortini (France); Scott Pauley, Andrew Welter, and Natalya Weir; Paolo Perfetti
(Italy); Ángel Plaza (Spain); Rob Pratt; Henry Ricardo; Joel Schlosberg; Allen Stenger; Richard Stephens; Xiao
Tingben (China); Texas State University Problem Solving Group; Haohao Wang, Jerzy Wojdyło, and Yanping Xia;
Luyuan Yu (China); and the proposer. There were three incorrect submissions.

Isogonal conjugate concurrent cevians February 2011

1864. Proposed by Cosmin Pohoata, Princeton University, Princeton, NJ.

Let ABC be a scalene triangle, I its incenter, and X , Y , and Z the tangency points of

its incircle C with the sides BC, CA, and AB, respectively. Denote by X � �= X , Y � �= Y ,

and Z � �= Z the intersections of C with the circumcircles of triangles AIX, BIY, and

CIZ, respectively. Prove that the lines AX�
, BY �

, and CZ�
are concurrent.

Y

Z �

X �

I

Y �

A

Z

CXB

Solution by Elton Bojaxhiu, Kriftel, Germany, and Enkel Hysnelaj, University of Tech-
nology, Sydney, Australia.

Because IX = IX�
and A, X �

, I , and X are cyclic, it follows that∠XAI = ∠IAX�
. And

since AI is the bisector of ∠BAC, we conclude that the lines AX and AX�
are symmet-

rical with respect to this bisector line. Similarly the lines BY �
and BY are symmetrical

with respect to the line BI, and the lines CZ�
and CZ are symmetrical with respect to

the line CI.
It is a well-known direct application of Ceva’s Theorem that AX, BY, and CZ are

concurrent. Since the lines AX�
, BY �

, and CZ�
are the symmetrical of AX, BY, and CZ

with respect to the bisectors AI, BI, and CI, respectively, this implies that the lines AX�
,

BY �
, and CZ�

are concurrent. This fact also follows directly from Ceva’s Theorem.
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Editor’s Note. The intersection of the lines AX, BY, and CZ is called the Gergonne
point of �ABC. Joel Schlosberg points out that the intersection of the lines AX�, BY �,
and CZ� is the isogonal conjugate of the Gergonne point, and is referred to as the In-
similicenter of the Circumcircle and the Incircle (point X(55)) in Clark Kimberling’s
Encyclopedia of Triangle Centers available at http://faculty.evansville.edu/
ck6/encyclopedia/ETC.html. Omran Kouba notes that the required point of con-
currency lies on the Euler line of �XYZ. Finally, the details of the last part of the proof
can be obtained from the trigonometric version of Ceva’s Theorem, i.e., AX�, BY �, and
CZ� are concurrent if and only if

sin∠BAX� · sin∠CBY � · sin∠ACZ�

sin∠X �AC · sin∠Y �BA · sin∠Z �CB
= 1.

Also solved by Michel Bataille (France), John G. Heuver (Canada), Omran Kouba (Syria), Joel Schlosberg,
Ercole Suppa (Italy), and the proposer.

Reducing representations of a ring February 2011

1865. Proposed by Erwin Just (Emeritus), Bronx Community College of the City Uni-
versity of New York, Bronx, NY.

In the solution to Problem 1790 (this Magazine 82 (2009) 67–68), it was proved that
if R is a ring such that for each element x ∈ R,

x + x2 + x3 + x4 = x11 + x12 + x13 + x28,

then for each element x ∈ R, x = x127. Under the same hypothesis, prove that for each
element x ∈ R, 6x = 0 and x = x7.

Solution by Robert Calcaterra, University of Wisconsin–Platteville, Platteville, WI.

Let f (x) = x28 + x13 + x12 + x11 − x4 − x3 − x2 − x . Fix c ∈ R \ {0}. Since the zero
element obviously satisfies the required conclusions, the proof will be complete if we
show that 6c = 0 and c7 = c.

Let T be the set of all polynomial expressions in c with integer coefficients and
constant term 0, i.e., T = cZ[c]. Observe that T is a commutative ring. Moreover, if
e = c27 + c12 + c11 + c10 − c3 − c2 − c, then ce = c and so the ring T has unity e.
Let g(x) ∈ xZ[x]. If we divide g(x) by f (x) using the division algorithm, then the re-
minder r(x) will have the property that g(c) = r(c) because f (c) = 0. Consequently,
every element of T is an integer combination of {c, c2, c3, . . . , c27}.

Let n be the order of e in the additive group of T . Assume n is infinite. Then
S := {ke : k ∈ Z} is a subring of T that is isomorphic to the ring of integers. Since
S can be embedded in a field, the number of roots of f in S cannot exceed 28. This
contradiction forces us to conclude that n is finite. This conclusion further implies that
the order of every element in the group (T, +) is a divisor of n. Therefore, the number
of distinct elements of T is at most n27. In particular T is a finite ring.

If b ∈ R and b2 = 0, then f (b) = 0 implies that

b = b2(b26 + b11 + b10 + b9 − b2 − b) − b2 = 0.

Hence, zero is the only element of R whose square is zero. Therefore, by the
Wedderburn–Artin Theorem, T is isomorphic to a finite direct sum of full matrix
rings over division rings. Moreover, since T is commutative, these matrices must
be 1 by 1 and the components must come from a field. In other words, T must be
isomorphic to a direct sum of finite fields.
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Let F be a subfield of T that has q elements (q is a power of a prime). Lagrange’s

Theorem implies that every element of F is a root of xq − x . All the roots of this poly-

nomial are simple and so xq − x must be a divisor of f (x) in the ring F[x]. Therefore,

we may use routine computation to show that q is 2, 3, or 4. Hence the characteristic

of F is either 2 or 3 and thus 6x = 0 for all x ∈ F. In addition, the order of an element

of (F \ {0}, ·) must be either 1, 2, or 3 and so x7 = x for all x ∈ F. Since T is a direct

sum of such fields, it follows that 6c = 0 and c7 = c. This completes the proof.

Note. If G F(q) denotes the field with q elements, then the ring G F(3) ⊕ G F(4) meets

the hypothesis of the problem and the equation xk = x is not satisfied by at least one

element of this ring when k < 7 is a positive integer. Hence 7 is the least positive

integer for which the conclusion of this problem is true.

Also solved by John Riegsecker and the proposer.

Answers

Solutions to the Quickies from page 62.

A1017. In Z∗
p, the multiplicative group of non-zero elements of Zp, the squares form

a subgroup of index 2 and so the product of any two non-squares is a square. Hence,

at least one of −1, 2 or −2 will be a square. Thus one polynomial that satisfies the

requirements is

f (x) = (x2 + 1)(x2 − 2)(x2 + 2).

A1018. If the inequality is true, then so is the following statement:

ex − x − 1

x(ex − 1)
≤ α

for all x ∈ (0, 1). But applying L’Hôpital’s rule twice gives

α ≥ lim
x→0+

ex − x − 1

x(ex − 1)
= lim

x→0+

ex − 1

xex + ex − 1
= lim

x→0+

ex

ex(x + 2)
= 1

2
.

Thus, the condition on α is necessary. Conversely, if α ≥ 1/2, then 1/n! ≤ 1/2
n−1 ≤

αn−1
for every positive integer n, and so, if 0 ≤ x < 1, then

ex = 1 +
∞�

n=1

xn

n! ≤ 1 +
∞�

n=1

αn−1xn = 1 + (1 − α)x
1 − αx

,

as required, with equality if and only if x = 0.


