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Abstract: When the edges in a tree or rooted tree fail with a certain ®xed
probability, the (greedoid) rank may drop. We compute the expected rank
as a polynomial in p and as a real number under the assumption of uniform
distribution. We obtain several different expressions for this expected rank
polynomial for both trees and rooted trees, one of which is especially
simple in each case. We also prove two extremal theorems that determine
both the largest and smallest values for the expected rank of a (rooted or
unrooted) tree, and precisely when these extreme bounds are achieved.
We conclude with directions for further study. ß 2001 John Wiley & Sons, Inc. J Graph

Theory 37: 79±99, 2001
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1. INTRODUCTION

No one seems to notice systems when they are operating normally, but when
something bad happens, everyone becomes interested. Suppose the edges in some
network are working, but a sudden power surge, or earthquake, or tornado, or
asteroid,. . . disables some of these edges. What is the expected size of the
surviving network?

This problem has been well studied in many different contexts within
combinatorics. Indeed, it is probably not an overstatement to say this problem has
ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ
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motivated much of reliability theory. For example, k-terminal reliability problems
seek to determine the probability that k-speci®ed terminals can communicate
after something bad has happened to the network. A standard source for
reliability theory is [7].

Traditional approaches to the problem concentrate on the number and size of
the connected components of the surviving graph. However, if the graph is rooted
at some distinguished vertex (a cable television network in which the root is the
cable provider, for example), then the most important information may not be the
size or number of components, but the size of the component containing the root.
We will see that this information can be obtained from the greedoid rank function
for the rooted graph. Thus, the setting for this paper is the crossroads of reliability
theory and the interpretation of trees as greedoids. Although we won't use
greedoids explicitly, they form the background for the results in this paper.

Although unrooted trees have probably been studied more extensively than
rooted trees, it is more dif®cult to motivate a reliability interpretation in the
unrooted case. We propose the following scenario as one possible application.
Suppose several remote sensors are gathering information (for a scienti®c survey
of Mars or a remote volcano or perhaps for a spying mission) and then relaying
that information to each other. Some sensors may not be able to communicate
with others directly (because of distances involved or other considerations), so a
network is constructed with the sensors as the vertices of a tree. Further, the most
remote sensors (i.e., the sensors corresponding to leaves in the tree) are the
sensors we will access periodically, as these sensors are most accessible. When
some of the communications (edges of the tree) break down, we are concerned
with how far the information can be passed along from the leaf-sensors to the
interior of the network, and vice versa. Our treatment of trees uses this
interpretation for the rank of a subset of edges of a tree. This notion of rank is
based on the complements of subtrees. (This is the rank function of the pruning
greedoid associated with the tree.)

Generating statistics for trees and rooted trees has been done in a somewhat
different context by Jamison. In a series of four papers [15, 16, 17, 18], Jamison
computes several means of interest and proves some extremal results as well.
While our approach is through probability, many of our results have a similar
¯avor to this interesting work.

Since rooted trees are easier to deal with than unrooted trees, we concentrate
on them ®rst. The polynomials we consider, R�T� and �R�T ; p�, give the expected
rank of a tree or rooted tree. �In R�T�, each edge e is assumed to have a pro-
bability pe of succeeding, while �R�T ; p� is a standard evaluation of R�T� formed
by assuming pe � p for all edges e.) When the tree is rooted, these polynomials
have very simple combinatorial interpretations. In particular, Theorem 2.4 gives
the following formula:

R�T� �
X
v2V

Y
e2P�v�

pe;
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where P�v� is the unique path from the root to the vertex v. Thus, this expected-
value polynomial is simply a generating function for paths from the root to the
other vertices of T . Using this result, we show how to reconstruct the rooted tree
T from this polynomial. Amin, Siegrist, and Slater [3] prove a similar result for
the pair-connected reliability of a tree.

Section 3 is concerned with unrooted trees. Compared with the previous
section, the results and their proofs are a bit more complicated. The main
theorem, Theorem 3.3, again gives a rather simple form for the expected value
polynomial R�T�. This form, which has (essentially) two terms for each edge of
T , also has some interesting corollaries. It is again true (although somewhat more
dif®cult to prove) that the polynomial R�T� determines the tree T (Corollary 3.5).
Our proof gives a recursive algorithm for reconstructing T from R�T�.

We use standard probabilistic interpretations in Sec. 4 to get numerical values
for the expected rank of a tree or rooted tree. To do this, we assume p is a
uniformly distributed random variable. The main results in this section are
extremal theorems (Propositions 4.2 and 4.3). These results give upper and lower
bounds for the expected value and determine precisely when these bounds can be
achieved. Similar results hold for pair-connected reliability in rooted trees
(Theorems 3 and 4 of [3]).

We conclude with several directions for further study in Sec. 5. Some of the
suggested areas of research may have more immediate application than this work,
which is more concerned with the combinatorial structure of the polynomial
invariants associated with reliability.

2. ROOTED TREES

Let T be a rooted tree, rooted at *, with edge set E. Let F denote the subsets of E

which are rooted subtrees of T . (These are the feasible sets of the associated
rooted branching greedoid.) The rank of a subset S � E is given by

r�s� � max
A�S
fjAj : A 2 Fg:

Note that r�E� � jEj. We also remark that the maximum-size subtree A of a
subset S is uniqueÐthis will be important in simplifying some of our formulas.
(This is true because the union of feasible sets is always feasibleÐthis property
characterizes antimatroids.)

Our probabilistic interpretation is straightforward. Assume each edge e
succeeds with probability pe (and fails with probability (1ÿ pe)). This expected
rank of T is then a polynomial in the edge probabilities:

De®nition 2.1. The expected-rank polynomial R�T� of the rooted tree T is given by

R�T� �
X
S�E

r�S�
Y
e2S

pe

Y
e62S

�1ÿ pe�:
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Let M�F� � fe 2 T ÿ F : F [ feg is a subtree of Tg, i.e., M�F� are the edges
which can be added to the subtree F. The next proposition gives a simpler
expression for the expected rank polynomial R�T�.
Proposition 2.2.

R�T� �
X
F2F
jFj
Y
e2F

pe

Y
e2M�F�

�1ÿ pe�:

Proof. To simplify notation, let a�S� denote the contribution the subset of
edges S makes to R�T� in the de®nition:

a�S� � r�S�
Y
e2S

pe

Y
e62S

�1ÿ pe�:

In this same spirit, let b�F� represent the contribution the subtree F makes to the
sum on the right-hand side in the statement of the proposition:

b�F� � jFj
Y
e2F

pe

Y
e2M�F�

�1ÿ pe�:

We also let T�S� be the unique maximum-size subtree of S.
Now let F be a rooted subtree of T and note that the proposition would follow

from showing
P

S:T�S��F a�S� � b�F�. ButX
S:T�S��F

a�S� � jFj
Y
e2F

pe

Y
e2M�F�

�1ÿ pe�
Y

e 62F[M�F�
�pe � �1ÿ pe��

� jFj
Y
e2F

pe

Y
e2M�F�

�1ÿ pe�

� b�F�

since any edge e 62 F [M�F� contributes both pe and 1ÿ pe to each subset S
having T�S� � F. This completes the proof. &

We assume E � fe1; . . . ; eng and write pi for p�ei�. When pi � p for all edges
ei, R�T� becomes polynomial in p which we denote �R�T ; p�:

�R�T; p� �
X
S�E

r�S�pr�S��1ÿ p�jEjÿr�S�:

Then Proposition 2.2 immediately yields a simpler expression for �R�T ; p�, too.

Corollary 2.3.

�R�T; p� �
X
F2F
jFjpjFj�1ÿ p�jM�F�j:
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The polynomial �R�T; p� has been studied before for ordinary graphs. In Sec. 2
of [4], a deletion±contraction recursion is established and the coef®cient of the
leading term of the polynomial is shown to be equal to ���G�. We remark that
this recursion remains valid for rooted graphs as well.

As an example, we compute R�T� and �R�T ; p� for the rooted tree shown in
Fig. 1. Using the de®nition or Proposition 2.2 and its corollary, we have
R�T� � p1 � p3 � p1p2 � p3p4 � p3p5 � p3p6 and �R�T; p� � 2p� 4p2.

The simple form for these polynomials suggests that a simpler expansion
underlies the formulas given in 2.2 and 2.3. The next result shows that this is true.
Recall that each vertex in a rooted tree is joined by a unique path to the root. Let
P�v� denote this path. We now prove the theorem.

Theorem 2.4. Let T be a rooted tree. Then

R�T� �
X
v2V

Y
e2P�v�

pe:

Proof. For each nonroot vertex v 2 V , we let I�v� be an indicator function
for whether v is reachable from the root using the surviving edges. This I�v� � 0
if there is no path connecting v to the root and I�v� � 1 if there is such a path. Let
Pr�v� denote the probability that v is reachable from the root. It is immediate that
E�I�v�� � Pr�v�, where E is the expected-value operator. Furthermore, it is clear
that Pr�v� �Qe2P�v� pe. Then

R�T� � E
X
�6�v2V

I�v�
 !

�
X
�6�v2V

E�I�v�� �
X
�6�v2V

Pr�v� �
X
v2V

Y
e2P�v�

pe: &

The proof we have given for Theorem 2.4 is essentially due to Amin, Siegrist,
and Slater [3]. Their work assumes each edge has the same probability p of
succeeding, as in Corollary 2.6. We remark that a combinatorial proof is also
straightforward.

Recall that the de®nition of R�T� involved an expansion via subsets of EÐa
calculation involving 2jEj terms. Proposition 2.2 offers an improvementÐthe
calculation uses the subtrees instead of the subsets. Unfortunately, this calculation

FIGURE 1. A rooted tree.
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will (in general) also be exponential in jEj. Theorem 2.4 gives a much more
ef®cient way to compute R�T� since we can determine all the paths in T in
polynomial time.

Corollary 2.5. Let T1 and T2 be rooted trees. Then R�T1� � R�T2� if and only if
T1 and T2 are isomorphic as labeled trees.

Proof. We show that T can be reconstructed from R�T�. By Theorem 2.4,
R�T� gives a list of all the paths of T adjacent to *. Then all edges ei adjacent to *
are paths of length 1 (and hence appear as degree 1 monomials pi in R�T��, and so
these edges can be reconstructed, with labels. All edges ej adjacent to these edges
appear in R�T� as degree 2 monomials pipj where ei is adjacent to *. Thus, the
labeled paths of length 2 can be reconstructed. This process can be continued
until all edges are labeled and uniquely placed in T , and this completes the proof.

&

Let d��; v� be the distance from the root * to the vertex v.

Corollary 2.6. �R�T; p� �Pv2V pd��;v�.

If T has n edges, then (from the corollary) �R�1� � n. This corresponds to the
trivial case in which every edge survives, so the expected rank equals n. We can
also use the last result to create nonisomorphic trees with the same rank
polynomial. For example, let T1 and T2 be the trees in Fig. 2. Then �R�T1� �
�R��T2� � 2p� 2p2.

The direct sum T1 � T2 of two rooted trees T1 and T2 is formed by identifying
the two roots �1 and �2 of the respective trees. The next result follows
immediately from the theorem.

Corollary 2.7. R�T1 � T2� � R�T1� � R�T2�.
Another proof of Corollary 2.7 can be formulated as follows. Let

F�T� �
X
S�E

Pr�S�xr�S�;

where

Pr�S� �
Y
e2S

pe

Y
e62S

�1ÿ pe�:

FIGURE 2. RÅ (T1)�RÅ (T2)� 2p� 2p2.
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Then it is clear from the de®nition of rank that F�T1 � T2� � F�T1� � F�T2�.
The proof follows by differentiating this equation with respect to x and then
evaluating at x � 1.

3. UNROOTED TREES

We now turn our attention to unrooted trees. Trees are among the most studied
classes of graphs, in part because they are among the simplest graphs that exhibit
deep and interesting behavior. They are also extremely useful in modeling all
sorts of systems, when there is no distinguished vertex. To apply the tools
developed for rooted trees to unrooted trees, we need a good de®nition of rank for
subsets of edges. As we did with rooted trees, we use a greedoid rank function.

Let T be the collection of subtrees of T and let F be the collection of all
subtree complements of T . (The subtree complements are the feasible sets of the
pruning greedoid associated with T .) Then the rank of a subset S � E is given by

r�S� � max
A�S
fjAj : A 2 Fg:

It is still true r�E� � jEj and the maximum-size subtree complement A of the
subset S is unique. (We use complements of subtrees instead of the subtrees
themselves to preserve the antimatroid property. The union of subtree
complements is a subtree complement.)

We can now de®ne the polynomials R�T� and �R�T ; p� exactly as before;

�1� R�T� �
X
S�E

r�S�
Y
e2S

pe

Y
e62S

�1ÿ pe�

�2� �R�T ; p� �
X
S�E

r�S�pr�S��1ÿ p�jEjÿr�S�:

Proposition 2.2 and Corollary 2.3 have analogs in the unrooted case. We state
these results without proof; the proof of Proposition 3.1 is similar to the proof of
Proposition 13(b) of [6].

Proposition 3.1. Let T be a tree, L�F� be the set of edges which are leaves of

the subtree F, and let T be the collection of all subtrees of T. Then

R�T� �
X
F2T
jE ÿ Fj

Y
e2EÿF

pe

Y
e2L�F�

�1ÿ pe�:

Corollary 3.2. �R�T ; p� �PF2T jE ÿ FjpjEÿFj�1ÿ p�jL�F�j:
Our main theorem for trees gives a much simpler expression for R�T�. As in

Theorem 2.4, the new representation of R�T� is linear in the number of edges of T
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(instead of the exponential number of terms in the de®nition (1) or Proposition
3.1). The theorem will also allow us to prove that R�T� is a complete invariant,
i.e., nonisomorphic trees have different R�T� polynomials (Corollary 3.5).

When an edge e that is incident to vertices v and w is deleted from a tree T , the
tree is separated into two components. Call these components Ce�v� and Ce�w�
and note that one of these components will have no edges when e is a leaf of T .

Theorem 3.3. Let T be an unrooted tree with n edges and l leaves and leaf set
L�T�. Write pS �

Q
e2S pe. Then

R�T� �
X

e62L�T�
pe� pCe�v� � pCe�w�� �

X
e2L�T�

pe

0@ 1Aÿ �nÿ l�pT

�
X

e2E�T�
pe� pCe�v� � pCe�w��

0@ 1Aÿ npT :

Proof. The second equality follows from the ®rst since, if e is a leaf and v is
the vertex of degree 1 incident to e, Ce�v� � ;, and Ce�w� � T ÿ feg. The proof
of the ®rst equality is similar to a combinatorial proof of Theorem 2.4 in that the
key step is reversing the sum in the expansion for R�T� given in Proposition 3.1.

R�T� �
X
F2T
jE ÿ FjpEÿF

Y
e2L�F�

�1ÿ pe�

�
X
F2T
jE ÿ Fj

X
S�L�F�

�ÿ1�jSjpEÿ�FÿS�

�
X
;6�F2T

pEÿF

X
S�M�F�

�ÿ1�jSjjE ÿ �F [ S�j � h�T�

�
X
;6�F2T

pEÿF

Xm

k�0

�ÿ1�k m

k

� �
�nÿ f ÿ k� � h�T�;

where f � jFj, m � jM�F�j and h�T� is the contribution to the sum made when F
is empty. The last equality follows from a result in lattice theory; the lattice of all
subtrees of a tree is meet-distributive (so the interval [F;F [M�F�] is boolean),
and adding an edge in M�F� and deleting an edge in L�F� are inverse operations.

To complete the proof, we need to compute Z �Pm
k�0�ÿ1�k m

k

� �
�nÿ f ÿ k�

as well as h�T�. But Z � 0 unless m � 1. It is a routine exercise to see that
jM�F�j � 1 iff F � Ce�v� for some edge e. When e (with vertices v and w) is not
a leaf of T , there are two subtrees F with M�F� � feg : F � Ce�v� or F � Ce�w�.
When e is a leaf, M�F� � feg can only occur when F � T ÿ feg.

It remains to be proved that h�T� � ÿ�nÿ l�pT . We ®rst note that a subtree F

will contribute to the coef®cient of the term pT in R�T� iff F is empty or every
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edge of F is a leaf of F, i.e., iff F � D�v� for some vertex v, where D�v� is the
subtree consisting of all edges incident to the vertex v. Summing over all subsets
of D�v� for all vertices v will include all these contributions, but it will count each
edge (when F � feg) twice (once for each vertex of e) and ; will be counted
n� 1 times (once for each vertex). The contribution of a single edge is �ÿ1�
�nÿ 1� and ; contributes n. Thus

h�T� � pT �nÿ 1�nÿ n2 �
X
v2V

X
F�D�v�

�ÿ1�jFj�nÿ jFj�
0@ 1A

� pT ÿn�
X
v2V

Xd�v�
k�0

�ÿ1�k d�v�
k

� �
�nÿ k�

 !
;

where d�v� is the degree of the vertex v. As before,
Pd�v�

k�0�ÿ1�k d�v�
k

� �
�nÿ k� � 0 unless d�v� � 1, in which case the sum equals 1. Thus, this sum
contributes 1 if e is a leaf and 0 otherwise. This gives h�T� � �lÿ n�pT and
completes the proof. &

The invariant lÿ n which appears as the coef®cient of pT in R�T� is the �
invariant of the tree. This invariant is associated with the number of `̀ internal
elements'' of the combinatorial object under consideration. See [1, 8] for a
relationship with ®nite subsets of Rn and [11, 14] for the connection with trees.

We also remark that it is possible to formulate a probabilistic proof of Theorem
3.3, as was given for Theorem 2.4. To do so, de®ne an indicator function on edges
(instead of vertices) and note that (under the suitable assumptions) Pr�e� �
pCe�v� � pCe�w� ÿ pT .

As in the rooted case, the formula of Theorem 3.3 has several corollaries. We
®rst prove that R�T� uniquely determines the labeled tree. Before providing this
result, we need a simple lemma. A star is a tree in which every edge is a leaf, i.e.,
all the edges are incident to one vertex.

Lemma 3.4. Let T be a tree which is not a star. Then there is a vertex v and a

collection of edges e1; . . . em, f which are all incident to v such that ei is a leaf for
1 � i � m and one of the components of T ÿ f fg is ei; . . . ; em.

Proof. Remove all of the leaves from T and let v be any vertex of degree one
in T ÿ L�T�. Then there is an edge f that is not a leaf of T that is incident to v.
Thus, in T , the vertices incident to v are e1; . . . ; em, f and clearly one of the
components of T ÿ ffg is e1; . . . ; em. &

Corollary 3.5. Let T1 and T2 be unrooted trees. Then R�T1� � R�T2� if and only
if T1 and T2 are isomorphic as labeled trees.

Proof. As in Corollary 2.5, we show that T can be reconstructed from R�T�.
By Theorem 3.3, the monomials of R�T� give a list of all the labeled subtree
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complements having jM�F�j � 1. In particular, we can uniquely recover all the
labeled leaves of T . If T is a star, then every edge is a leaf and we are done.
Otherwise, by Lemma 3.4, there is a vertex v, a collection of leaves e1; . . . ; em,
and an edge f such that Cf �v� � fe1; . . . ; emg. Then the product pe1

� � � pem
pf

appears as a monomial term in R�T� (where e1; . . . ; em have already been
identi®ed as leaves of T).

We now show how R�T ÿ fe1; . . . ; emg� can be obtained from R�T�. The result
then follows by induction. First remove all the terms of the form pei

(for
1 � i � m) from R�T� ± there will be one such term for each ei since each leaf
of T so appears in R�T�. Now Theorem 3.3 implies each remaining monomial of
R�T� either contains the entire product pe1

� � � pem
as a factor or contains none of

the pei
as factor. For each monomial of R�T� containing pe1

� � � pem
as a factor, we

delete pe1
� � � pem

from the monomial, and we leave unchanged the monomials that
do not have any pei

as a factor (for 1 � i � m). Call the new polynomial that
results from this process S�T�.

We claim that S�T� � R�T ÿ fe1; . . . ; emg�. The result then follows from the
claim since we can inductively reconstruct the labeled tree T ÿ fe1; . . . ; emg and
then reattach e1; . . . ; em to f . To verify the claim, consider Ce�u� computed in T

and in T ÿ fe1; . . . ; emg. Either these sets are identical �if none of the ei are in
Ce�u�� or they differ precisely by the set fe1; . . . ; emg. But S�T� was created so
that the corresponding terms match Ce�u� exactly in T ÿ fe1; . . . ; emg. Further, the
term corresponding to all of T ÿ fe1; . . . emg in S�T� will have the correct
coef®cient; the number of internal edges of T ÿ fe1; . . . ; emg is 1 less than the
number of internal edges of T (since f is no longer internal), and the construction
of S�T� adjusts the coef®cient of PTÿfe1;...;emg accordingly. This completes the
proof. &

We can use the inductive proof to obtain a recursive procedure for
reconstructing T from R�T�. As in the proof, ®rst identify all leaves of T from
R�T�, then ®nd a monomial having form pe1

� � � pem
pf , where e1; . . . ; em are leaves

(and f is not a leaf). (If all the edges of T are leaves, then T is a star and the
reconstruction is trivial.) Now modify the polynomial as in the proof and iterate
the process. We demonstrate the procedure with an example.

Suppose

R�T� �
X6

i�1

pi � p4p5p7 � p4p5p6p7p8 � p1p2p3p8 � p1p2p3p6p7p8 ÿ 2
Y8

i�1

pi:

Then there are 8 edges and ei is a leaf for 1 � i � 6. Now the term p1p2p3p8 gives
a vertex in T which is adjacent to just e1; e2; e3 and e8. We form the derived
polynomial S�T� as in the proof:

S�T� � p4 � p5 � p6 � p8 � p4p5p7 � p6p7p8 ÿ
Y8

i�4

pi:
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(Note that the coef®cient of
Q8

i�4 pi changes from ÿ2 to ÿ1 in this process.) Now
repeat the procedure using the term p4p5p7 : S�S�T�� � p6 � p7 � p8. At this
point the tree is a star and the process terminates. See Fig. 3 for the recon-
struction.

Corollary 3.6. Let T be an unrooted tree with n edges, l leaves and let I�T�
denote the interior (nonleaf) edges. Then

�R�T ; p� � lp�
X

e2I�T�
�pjCe�v�j�1 � pjCe�w�j�1 ÿ pn�

�
X

e2E�T�
�pjCe�v�j�1 � pjCe�w�j�1�

0@ 1Aÿ npn:

As was the case with rooted trees the corollary gives �R�1� � n. This again
corresponds to the trivial case in which every edge survives. We can also
construct examples that show it is impossible, in general, to reconstruct a tree T

from �R�T ; p�. In Fig. 4, the two trees T1 and T2 share the same �R polynomial:

�R�T1; p� � �R�T2; p� � 4p� p2 � p3 � p4 � p5 ÿ 2p6:

Thus, as in the rooted case, R�T; p� does not uniquely determine T . (Note that this
invariant does not even determine the degree sequence of T .)

We can modify this example to produce more pairs of trees with the same �R:
Let T1 be a tree with three interior vertices of degrees a, b, and c (with a, b, and
c > 1 and a < c), as in Fig. 5. (A tree in which all of the nonleaf vertices are
arranged on a single path is called a caterpillar.) Now let T2 be another tree with

FIGURE 3. Reconstructing T from R(T ).

FIGURE 4. Two trees with RÅ (T1)�RÅ (T2).
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three interior vertices of degrees a, cÿ a� 1, and a� bÿ 1, where the central
vertex has degree a� bÿ 1. (Each tree has n � a� b� cÿ 2 edges.) Then

�R�T1� � �R�T2� � �nÿ 2�p� pa � pc � pa�bÿ1 � pb�cÿ1 ÿ 2pn:

4. EXPECTED VALUES FOR ROOTED AND UNROOTED TREES

Given a rooted or unrooted tree T , we can use the tools developed in Secs. 2 and 3
to associate an expected value for the rank of T . When pi � p and we assume p is
uniformly distributed, the expected value EV�T� of the rank polynomial �R�T ; p�
is obtained from an integral:

EV�T� �
Z 1

0

�R�T ; p�dp:

This de®nition is valid for both rooted and unrooted trees and is consistent with
the usual interpretation of expected value in probability.

Which rooted trees have the highest and lowest expected values under these
assumptions? When do two nonisomorphic rooted trees T1 and T2 have the same
expected value? What about unrooted trees? We explore these questions here,
blending the discrete analysis of �R�T; p� with continuous probability.

If T is a rooted tree, recall M�F� is the set of edges that can be adjoined to a
rooted subtree F. The formulas in the next proposition for EV�T� when T is
rooted follow from Corollaries 2.3 and 2.6, while the formulas in the unrooted
case follow from Corollaries 3.2 and 3.6.

Proposition 4.1. Let T be a rooted tree.

�1� EV�T� �
X
F2F
jFj jFj!jM�F�j!
�jFj � jM�F�j � 1�! ;

�2� EV�T� �
X

v2V;v 6��

1

d��; v� � 1:

FIGURE 5. A caterpillar with three interior vertices.
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Let T be an unrooted tree with n edges.

�3� EV�T� �
X
F2T

�nÿ jFj� �nÿ jFj�!jL�F�j!
�nÿ jFj � jL�F�j � 1�! ;

�4� EV�T� �
X
e2E

1

jCe�v�j � 2
� 1

jCe�w�j � 2

� �
ÿ n

n� 1

As an application of formulas (2) and (4) of the proposition, we prove two
extremal results. Proposition 4.2 is analogous to Theorems 3 and 4 of [3]. A
rooted path is a rooted tree in which every nonleaf vertex has degree 2. A rooted

star is a rooted tree in which every vertex is adjacent to the root.

Proposition 4.2. Let T be any rooted tree with n edges. Then

Xn�1

k�2

1

k
� EV�T� � n

2
:

Furthermore, equality holds for the lower bound iff T is a rooted path and

equality holds for the upper bound iff T is a rooted star.

Proof. Let A be the rooted path with n edges and let B be the rooted star. For
the lower bound, we ®nd a common labeling of the vertices of T and the vertices
of A, showing that dT��; v� � dA��; v� for all v. The result then follows from
applying the formula (2) of Proposition 4.1 to T and A. To obtain a common
labeling, assume that the vertices of T are already labeled v1; . . . ; vn and note that
there is a natural partial order on the vertices of T : v1 � v2 if the unique path
from * to v2 passes through v1. Then label the vertices of A with the labels
v1; . . . ; vn so that this property is preserved: v1 � v2 in T implies v1 is closer to *
than v2 in A. (This can always be doneÐwe are just extending the partial order
from T to a total order.) Then it is clear that dT��; vi� � dA��; vi� for all i and the
lower bound is established.

For the case of equality in the lower bound, note that we get equality in the
preceding argument iff dT��; vi� � dA��; vi� for all i. It is now easy to show
inductively that T must be isomorphic to A in this case.

For the upper bound, we again ®nd a common labeling of the vertices of T and
the vertices of B, showing that dB��; v� � dT��; v� for all v. But dB��; v� � 1 for
all v, so any labeling of B will do. The result follows as above, including the case
of equality. &

Proposition 4.3. Let T be any unrooted tree with n edges. Then

Xn�1

k�2

2

k
ÿ n

n� 1
� EV�T� � n

2
:
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Furthermore, equality holds for the lower bound iff T is a path and equality holds
for the upper bound iff T is a star.

Proof. Let A be the path with n edges and let B be the star. If e is any edge in
a tree T with vertices v and w, let

hT�e� � 1

jCe�v�j � 2
� 1

jCe�w�j � 2
ÿ 1

n� 1

be the contribution e makes to EV�T� in formula (4) of Proposition 4.1, so
EV�T� �Pe2E�T� hT�e�.

We ®rst establish the upper bound. Let g : E�T� ! E�B� be any bijection
between the edge sets of T and B. Note that hT�e� � 1

2
iff e is a leaf of T . Then

hT�e� � 1

jCe�v�j � 2
� 1

jCe�w�j � 2
ÿ 1

n� 1
� 1

2
� hB�g�e��

for all edges e 2 E�T�. (The inequality is easily established by noting the
maximum value of the function F�x� � �x� 2�ÿ1 � �n� 1ÿ x�ÿ1 ÿ �n� 1�ÿ1

on the interval [0, nÿ 1] occurs at x � 0 or x � nÿ 1.) The result now follows
immediately from formula (4) of Proposition 4.1. Note that equality holds iff
hT�e� � 1

2
for all edges e, i.e., iff T is a star.

For the lower bound, we ®rst ®nd a vertex u of degree d � 2 in T so that each
subtree Ti (for 1 � i � d) that is adjacent to u has at most [n

2
] edges. (It is easy to

see that this is always possible.) Now let T 0 be the tree obtained from T by
straightening each subtree Ti, i.e., T 0 is a tree in which every vertex, except
possibily u, has degree at most 2 and the d subtrees adjacent to u are simply paths
P1; . . . ;Pd of lengths jE�T1�j; . . . ; jE�Td�j. See Fig. 6 for an example.

Claim 1. EV�T 0� � EV�T�. To prove the claim, ®rst consider the subtree T1.
De®ne a partial order on the edges of T1 as follows: x � y iff the unique path from
u to the edge y passes through the edge x. Thus, edges `̀ close to'' the vertex u are
less than edges farther awayÐthis is equivalent to the partial order used in the
proof of the lower bound in Proposition 4.2, using u as the root. This partial order

FIGURE 6. Constructing T 0 from T.
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is well-de®ned for P1 tooÐit yields a total order. Now let g : E�T1� ! E�P1� be
any order-preserving bijection. Thus, for example, x is adjacent to u in T1 iff g�x�
is adjacent to u in P1, and the leaf of P1 corresponds to some leaf of T1.

To complete the proof of the claim, we show that hT 0 �g�e�� � hT�e� for all
e 2 T1. The full claim then follows by applying the same argument to Ti and Pi

for all i > 1 and the fact that EV�T� �Pe2E�T� hT�e�. Let e 2 E�T1� and let v and
w be the two vertices adjacent to e. Assume w is closer to u than v is and also
assume (to simplify notation) that v and w label the vertices adjacent to g�x� in P1,
with w closer to u again. Then jCe�v�j � jCe�w�j in T1 and jCg�e��v�j � jCg�e��w�j
in P1 because jE�T1�j � jE�P1�j � dn2e. However, as in the proof of Proposition
4.2, jCe�v�j � jCg�e��v�j because g preserves order. Then the pair fjCe�v�j,
jCe�w�jg in T is more imbalanced than the pair fjCg�e��v�j; jCg�e��w�jg in T 0.
Since F�x� � �x� 2�ÿ1 � �n� 1ÿ x�ÿ1 ÿ �r � 1�ÿ1

is monotone decreasing on
the interval �0; nÿ1

2
�, we have hT 0 �g�e�� � hT�e� and the claim is established.

To ®nish the proof, we need one more claim.

Claim 2. EV�A� � EV�T 0�. To prove this claim, we ®rst let m�e� be the smaller
of the two numbers jCe�v�j and jCe�w�j and then label each edge e by m�e�. Note
that hT�e� is completely determined by the label m�e� : hT�e� � 1

m�e��2
�

1
n�1ÿm�e� ÿ 1

n�1
. Further, m�e1� < m�e2� iff hT�e1� > hT�e2�. It is now easy to

construct a bijection g : E�T 0� ! E�A� with the property that m�e� � m�g�e�� for
all e 2 E�T 0�. (In particular, note that the labels m�e� along the arm Pi are just
intervals �0; jTij� of consecutive integers.) See Fig. 7 for a labeling of T 0 and A.
This ®nishes the proof of the claim.

Finally, if equality holds in the ®rst claim, then the partial order in Ti is a total
order for all i, i.e., Ti is a path for all i. If equality holds in the second claim, then
d � 2 and T 0 is also a path. Putting all the pieces together gives the result. &

FIGURE 7. Using m(e) to label A and T 0.
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It would be of interest to ®nd a simpler proof for the lower bound above. In
general, the proofs for unrooted trees tend to be more complicated than the
corresponding proofs for rooted trees since the existence of the root allows easier
inductive arguments.

Since integration is a linear operator, we also get the following:

Corollary 4.4. Let T1 and T2 be rooted trees. Then EV�T1 � T2� � EV�T1��
EV�T2�.

In light of Corollary 2.6, it is easy to construct nonisomorphic rooted trees
having the same expected value. Let T1 and T2 be the trees of Fig. 2. Then
EV�T1� � EV�T2� � 5

3
. In fact, it is possible for EV�T1� � EV�T2� even when T1

and T2 are not the same size. The two rooted trees of Fig. 8 both have EV � 4
3
.

In the unrooted case, it is generally true that trees having more leaves have
higher expected values since leaves contribute more �1

2
� to formula (4) of

Proposition 4.1 than any other edges. This is true for all trees having 7 or fewer
edges: If T1 and T2 each have n � 7 edges and T1 has more leaves than T2, then
EV�T1� > EV�T2�. This fails for the two trees of Fig. 9, however. T1 has 4 leaves
and T2 has 3 leaves, but EV�T1� � 1937

630
� 3:0746 . . . and EV�T2� � 1565

504
�

3:1051 . . .
What is the probability that the rank of T equals a given target rank k after

some edges fail? What is the probability that the rank never falls below some
threshold value? These questions are frequently studied in many applications
within reliability theory. We let �Rk�T; p� �

P
r�S��k pjSj�1ÿ p�nÿjSj and compute

the probability in the following way:

FIGURE 8. EV (T1)�EV (T2)� 4
3
.

FIGURE 9. EV (T1)<EV (T2) despite T1 having more leaves.
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De®nition 4.5. Let T be a (rooted or unrooted) tree with n edges with k � n.
Then the probability that the rank of T equals k is given by

PrT�rank � k� �
Z 1

0

�Rk�T ; p�dp:

From this de®nition, we immediately get the following:

Proposition 4.6. Let T be a (rooted or unrooted) tree with n edges. Then

(1) �R�T; p� �Pn
k�0 k�Rk�T; p�:

(2) EV�T� �Pn
k�0 kPrT�rank � k�:

We now give two examples, one rooted and one unrooted. For the rooted case,
we again consider the trees T1 and T2 of Fig. 2. The computations of �Rk�T ; p� and
PrT�rank � k� are given in Table I. In the table, we write Pr1�k� and Pr2�k� for
rooted trees T1 and T2, resp. Note that

P4
k�0 k�Rk�Ti; p� � 2p2 � 2p andP4

k�0 kPri�k� � 5
3

for i � 1; 2 as required by Proposition 4.6. As a check, also
note that

P4
k�0

�Rk�Ti; p� � 1 as polynomials, for i � 1; 2:

For the unrooted case, consider the trees T1 and T2 of Fig. 4. In Table II, we list
all computations of �Rk�T ; p� and PrT�rank � k�. We note that EV�Ti� �
373
140
�2:6642857 . . . ;

P6
k�0 k�Rk�Ti; p�� 4p� p2� p3� p4� p5ÿ 2p6, and

P4
k�0

�Rk�Ti; p� � 1 for i � 1; 2.
Is there an easier formula for computing �Rk�T ; p� and PrT�rank � k� in either

the rooted or unrooted case? The formula given in De®nition 4.5 is a sum over all
subsets of rank k. We can collect terms to sum over all subtrees in a manner
completely analogous to that given in Corollary 2.3 (in the rooted case) or
Corollary 3.2 (in the unrooted case) by concentrating solely on subtrees of size k

in the ®rst formula of Proposition 4.1. We omit the straightforward proof of the
next proposition.

TABLE I.

k �Rk�T1;p� Pr1�k� �Rk�T2;p� Pr2�k�
0 p2 ÿ 2p � 1 1

3 p2 ÿ 2p � 1 1
3

1 ÿp4 � 3p3 ÿ 4p2 � 2p 13
60 2p3 ÿ 4p2 � 2p 1

6

2 3p4 ÿ 6p3 � 3p2 1
10 p4 ÿ 4p3 � 3p2 1

5

3 ÿ3p4 � 3p3 3
20 ÿ2p4 � 2p3 1

10

4 p4 1
5 p4 1

5
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Proposition 4.7. Let T be a rooted tree.

�1� �Rk�T ; p� �
X

F2F ;jFj�k

pk�1ÿ p�jM�F�j:

�2� PrT�rank � k� �
X

F2F ;jFj�k

k!jM�F�j!
�k � jM�F�j � 1�! :

Let T be an unrooted tree.

�3� �Rk�T ; p� �
X

F2T ;jFj�k

pnÿk�1ÿ p�jL�F�j:

�4� PrT�rank � k� �
X

F2T ;jFj�k

�nÿ k�!jL�F�j!
�nÿ k � jL�F�j � 1�! :

Unfortunately, we do not have a formula for PrT �rank � k� that is analogous
to that given in Corollary 2.6 or 3.6. We mention some interesting questions
concerning the sequence fPrT �rank � k�gn

k�0 in Sec. 5.

5. DIRECTIONS FOR FUTURE RESEARCH

5.1. Other Distributions

The expected value calculations in Sec. 4 assume the random variable p is
uniformly distributed. There is no physical reason to believe this is the most
appropriate distribution for p. In particular, if g�p� is any density function for p
de®ned on [0,1], then we could de®ne the expected value with respect to this

TABLE II.

k �Rk�T1;p� Pr1�k� �Rk�T2;p� Pr2�k�
0 �1ÿ p�4 1

5 �1ÿ p�4 1
5

1 4p ÿ 13p2 � 15p3 ÿ 7p4 � p5 11
60 4p ÿ 13p2 � 15p3 ÿ 7p4 � p5 11

60

2 7p2 ÿ 19p3 � 18p4 ÿ 7p5 � p6 67
420 7p2 ÿ 19p3 � 17p4 ÿ 5p5 3

20

3 8p3 ÿ 20p4 � 16p5 ÿ 4p6 2
21 8p3 ÿ 18p4 � 12p5 ÿ 2p6 4

35

4 8p4�1ÿ p�2 8
105 7p4�1ÿ p�2 1

15

5 6p5�1ÿ p� 1
7 6p5�1ÿ p� 1

7

6 p6 1
7 p6 1

7
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distribution as follows:

EVg�T� �
Z 1

0

�R�T ; p�g�p�dp:

The methods developed in Sec. 4, applied to other distributions, could have
more direct applications to real networking problems. In particular, the beta
distribution g�p� � ÿ�����

ÿ���ÿ��� p
�ÿ1�1ÿ p��ÿ1

can be used to model situations when
p is more likely to be in a speci®ed range. For example, if the characteristics of
our network imply a probable range of say [0.85, 0.95] for p, then choose � � 9�.
(Different choices of � and � with the same ratio will give different distributions,
all having the same expected value, but differing variances. This distribution is
treated in most standard texts on statistics; see [5] for example)

5.2. Applications to Other Graphs

It is possible to use greedoid rank functions to apply the techniques here to rooted
graphs and digraphs. Some work in this direction appears in [2]; in particular,
rooted fans, rooted wheels, and rooted complete graphs generate natural
questions. How fast does EV�G� grow for the these graphs? Do the polynomials
R�G� and �R�G� have simpler expressions?

The novelty of using the techniques developed here for rooted graphs and
digraphs derives from using the greedoid rank function for these graphs.
Extensive analysis of the case when G is not rooted appears in [7], where the rank
function is matroidal. Rooted graphs and digraphs do not have matroidal rank
functions; hence they are treated differently in reliability theory.

5.3. Random Trees

If T is a tree with n edges (rooted or not), then Propositions 4.2 and 4.3 show
EV�T� is bounded below by log nÿ 1 and bounded above by n=2. What is the
most likely value of EV�T� for a random tree? Is there a bound on EV�T� that
depends on the length of the longest path in T? the maximum degree occurring in
T? the number of leaves of T? Answers to these questions should give natural
generalizations of Propositions 4.2 and 4.3.

5.4. Probability Sequences

The sequences of Sec. 4 deserve more complete study. We conjecture the
following:

Conjecture 5.1.

(1) Let T be a rooted tree. Then the sequence fPrT�rank � k�gn
k�0 uniquely

determines the rooted tree.
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(2) Let T be an unrooted tree. Then the sequence fPrT�rank � k�gn
k�0 uniquely

determines the unrooted tree.

This conjecture is true for all trees and rooted trees having eight or fewer
edges. A weaker conjecture is the following:

Conjecture 5.2.

(1) Let T be a rooted tree. Then the sequence fPrT�rank � k�gn
k�0, together

with the polynomial �R�T ; p�, uniquely determines the rooted tree.
(2) Let T be an unrooted tree. Then the sequence fPrT�rank � k�gn

k�0,

together with the polynomial �R�T ; p�, uniquely determines the unrooted
tree.

5.5. Applications to Other Antimatroids and Greedoids

There has been a sustained program organized to extend the Tutte polynomial to
nonmatroidal structures; see [6, 11, 12, 13, 14] for a sample of this work. The
probabilistic approach taken here should be applicable to many of the combi-
natorial structures considered here. This could include a reliability theory for:

* Partially ordered sets [9, 10]
* Rooted directed graphs [20]
* Convex point sets [1, 8]
* Simplicial shelling in a chordal graph [11]

See [19] for more examples of greedoids.
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