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Abstract 

We give an elementary procedure based on simple generating functions for constructing n (for 
any n >/2) pairwise non-isomorphic trees, all of which have the same degree sequence and the 
same number  of paths of length k for all k >t 1. The construction can also be used to give 
a sufficient condition for isomorphism of caterpillars. 

In [2], a 2-variable polynomial that is closely related to the familiar Tutte poly- 
nomial of a graph or matroid is introduced and considered for trees. Two tree 
invariants are of special interest here. In particular, it is shown that for a given tree T, 
the polynomial f (T;  t, z) determines the degree sequence of T as well as the number of 
paths of length k for all values of k t> 1. Thus, if f(T1) = f(T2), then the trees T1 and 
T2 must share the same degree sequence and the same number of paths of length k for 
all k (see Proposition 18 of [2]). In this context, it is natural to ask whether these two 
invariants uniquely determine the tree. We answer this question in the negative here, 
giving a procedure for constructing an infinite family of pairs of non-isomorphic trees, 
each pair of which has the same degree sequence and the same number of paths of 
length k for all k >~ 1. In fact, the construction can be used to create an arbitrarily large 
family of trees, all of which share the same degree sequence and same path numbers. 
This construction is completely elementary and also gives a sufficient condition for 
isomorphism of caterpillars. 

We assume the reader is familiar with graph theory; a standard reference is [1]. 
A caterpillar is a tree for which the set of vertices that are not leaves forms a path, 
called the spine. (See Fig. 1 for an example.) Let T be a caterpillar and let Uo,..., u, 
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Fig .  1 

denote the vertices along its spine, where u~ is adjacent to u~+ 1 for 0 ~< i < n. Then 
define #(T;x) to be the following generating function associated with T; 

9(T;x) = eo + e lx  + e2 X2 + "'" + e,x" 

where e~ = deg(u~)-  1 for 0 ~<i~< n. Evidently, there are two possible generating 
functions which can be associated to T depending on whether the sequence 
eo,el,  ..., e, or its reverse e,, e,_ ~ . . . . .  eo is used. To distinguish between these two 
choices, choose the lexicographically smaller of the two possible sequences to define 
g(T; x). The generating function g(T; x) obviously determines the caterpillar uniquely. 

For  a caterpillar T with e; defined as above, let Pk denote the number of paths of 
length k, 1 ~< k ~< n + 2. It is easy to determine the Pk in terms of the e~. 

Lemma 1. Let T be a caterpillar with Pk paths of length k for 3 <~ k <~ n + 2 and with e~ 
~.,n-k+2 n 

sequence defined above. Then Pk = ~i=0 eiei+k- 2. Furthermore, P1 = 1 + Zi=o ei and 

i = 0  2 " 

Proof. The result is trivial for paths of length 1 and 2. For paths of length k for k >/3, 
note that such a path can only be formed by selecting two vertices ui and Ui+k-2 along 
the spine of T to be the second and penultimate vertices (respectively) of the path. The 
number of paths which use ul and U~+k-2 in this way is just eie~+k-2, since there are 
ei choices for the initial vertex of the path and e~+k-2 choices for the terminal vertex. 
Summing over all such choices gives the formula. [] 

We can now make a connection between the path numbers Pk and the generating 
function g(T; x). For a polynomial p(x) with integer coefficients, let R(p(x)) be the 
polynomial obtained from p(x) by reversing the coefficient sequence. Thus, if the 
degree ofp(x) is n, then R(p(x)) = x"p(x-  1). We omit the straightforward proof of the 
next lemma. 

Lemma 2. Let T be a caterpillar and let h(T; x):= #(T; x)R(g(T;x)).  Then 

h(T;x) = P,+2 + P,+lx  + PnX 2 + "'" + P3 Xn-1 + Z e 2 x  n 

+ Pax ~+1 + P4x ~+2 + ... + P,,+zx 2". 
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We now show how to use the polynomial h(T;x) to produce non-isomorphic 
caterpillars with the same degree sequence and path numbers. 

Example 3. Let T~ be a caterpillar with 

g(T~;x) = (2x + 3)(4x 2 -t- 1) = 8x 3 + 12x 2 + 2x + 3. 

Then 
h(Tt;x)  = (8x 3 + 12x 2 + 2x + 3)(3x 3 + 2x 2 + 12x +.8) 

= (2x + 3)(4x z + 1)(3x + 2)(x 2 + 4) 

Thus, if we let T2 be the caterpillar with 

g(T2;x) = (3x + 2)(4x 2 + 1) = 12x 3 + 8x 2 + 3x + 2, 

then 
h(Tz;x) = (12x 3 + 8x 2 + 3x + 2)(2x 3 + 3x 2 + 8x + 12) 

= (3x + 2)(4x 2 + 1)(2x + 3)(x a + 4) 

= h(T,;x)  

Hence Ta and T2 have the same degree sequence and the same number of paths of 
length k for all k >~ 1. (Obviously two caterpillars with the same unordered e~ sequence 
as defined above will have the same degree sequence. See Fig. 1.) 

The technique used in Example 3 can be used to generate infinitely many such pairs 
of caterpillars. We formalize this in the next theorem. 

Theorem 4. Let T~ be a caterpillar with 

g ( T 1 ; x )  = f i  (aix2' + bi) 
i=o  

for positive inteyers ai and bl for 0 <~ i <~ m. Let T2 be a caterpillar with #(T2; x) formed 
by reversing some of the factors of #(T2;x). Then TI and T2 have the same degree 
sequence and the same number of paths of length k for all k >t 1. 

Proof. The uniqueness of the binary representation of the integers insures that each 
coefficient in g(T1; x) appears as a coefficient in g(T2; x), so T~ and T2 have the same 
(unordered) ei sequence, hence they have the same degree sequence. This also implies 
(by Lemma 1) that they have the same number of paths of length 1 and 2. To show that 

T1 and T2 have the same number of paths of length k t> 3, note that h(Tl; x) = h(T2; x) 
since the reversing operation has the multiplicative homomorphism property in the 
polynomial ring Z[x]  (so R(p(x)q(x))  = R(p(x))R(q(x)))  and factorization in Z[x]  is 
unique. Thus, by Lemmas 1 and 2, we see that T~ and T2 have the same number of 
paths of length k for all k >~ 3. This completes the proof. [] 
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Corollary 5. For any positive integer M, there are M pairwise non-isomorphic 
caterpillars, all sharing the same degree sequence and the same number of paths of 
length k for all k >i 1. 

Proof. Let Tt be a caterpillar with g(T~;x) = lqi~ o (ai x2' + hi), as in Theorem 4, with 
a~ # bi for all i. Of the 2 "+1 possible polynomials g(T2; x) formed by reversing some 
of the factors of g(T~;x), note that every such caterpillar T2 appears twice, since 
reversing a set of factors and reversing the complement of that set produce isomorphic 
caterpillars. Since a~ # b~ for all i, uniqueness of binary representation implies the 
collection of 2" caterpillars are pairwise non-isomorphic. [] 

We can also use these ideas to produce a sufficient condition for two caterpillars to 
be isomorphic. 

Corollary 6. Let TI and I"2 be two caterpillars with the same degree sequence and the 
same number of paths of length k for all k >1 1. I f  g(T1; x) is irreducible over Z[x] ,  then 
Tt and 1"2 are isomorphic. 

Proof. By Lemma 2, we have h(T1;x) = h(T2; x). By the homomorphism property of 
R(p(x)), g(Tt;x)  is irreducible iff R(g(T1; x))is irreducible. Thus g(T2; x) = g(Tl;x),  so 
7"1 and /'2 are isomorphic. [] 
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