

Discrete Mathematics 147 (1995) 297-300

DISCRETE MATHEMATICS

Note

Trees with the same degree sequence and path numbers^{π}

Gary Gordon^{a, *}, Eleanor McDonnell^b

^a Department of Mathematics, Lafayette College, Easton, PA 18042, USA ^b Systems Research and Application Corp., 2000 15th Street North, Arlington, VA 22201, USA

Received 27 September 1993; revised 14 June 1994

Abstract

We give an elementary procedure based on simple generating functions for constructing n (for any $n \ge 2$) pairwise non-isomorphic trees, all of which have the same degree sequence and the same number of paths of length k for all $k \ge 1$. The construction can also be used to give a sufficient condition for isomorphism of caterpillars.

In [2], a 2-variable polynomial that is closely related to the familiar Tutte polynomial of a graph or matroid is introduced and considered for trees. Two tree invariants are of special interest here. In particular, it is shown that for a given tree T, the polynomial f(T; t, z) determines the degree sequence of T as well as the number of paths of length k for all values of $k \ge 1$. Thus, if $f(T_1) = f(T_2)$, then the trees T_1 and T_2 must share the same degree sequence and the same number of paths of length k for all k (see Proposition 18 of [2]). In this context, it is natural to ask whether these two invariants uniquely determine the tree. We answer this question in the negative here, giving a procedure for constructing an infinite family of pairs of non-isomorphic trees, each pair of which has the same degree sequence and the same number of paths of length k for all $k \ge 1$. In fact, the construction can be used to create an arbitrarily large family of trees, all of which share the same degree sequence and also gives a sufficient condition for isomorphism of caterpillars.

We assume the reader is familiar with graph theory; a standard reference is [1]. A *caterpillar* is a tree for which the set of vertices that are not leaves forms a path, called the spine. (See Fig. 1 for an example.) Let T be a caterpillar and let u_0, \ldots, u_n

^{*} This work was supported by an NSF REU grant at Lafayette College.

^{*} Corresponding author.

⁰⁰¹²⁻³⁶⁵X/95/\$09.50 © 1995—Elsevier Science B.V. All rights reserved SSDI 0012-365X(94)00278-9

denote the vertices along its spine, where u_i is adjacent to u_{i+1} for $0 \le i < n$. Then define g(T;x) to be the following generating function associated with T;

$$g(T; x) = e_0 + e_1 x + e_2 x^2 + \dots + e_n x^n$$

where $e_i = \deg(u_i) - 1$ for $0 \le i \le n$. Evidently, there are two possible generating functions which can be associated to T depending on whether the sequence e_0, e_1, \ldots, e_n or its reverse $e_n, e_{n-1}, \ldots, e_0$ is used. To distinguish between these two choices, choose the lexicographically smaller of the two possible sequences to define g(T; x). The generating function g(T; x) obviously determines the caterpillar uniquely.

For a caterpillar T with e_i defined as above, let P_k denote the number of paths of length $k, 1 \le k \le n+2$. It is easy to determine the P_k in terms of the e_i .

Lemma 1. Let T be a caterpillar with P_k paths of length k for $3 \le k \le n+2$ and with e_i sequence defined above. Then $P_k = \sum_{i=0}^{n-k+2} e_i e_{i+k-2}$. Furthermore, $P_1 = 1 + \sum_{i=0}^{n} e_i$ and

$$P_2 = \sum_{i=0}^n \binom{e_i+1}{2}.$$

Proof. The result is trivial for paths of length 1 and 2. For paths of length k for $k \ge 3$, note that such a path can only be formed by selecting two vertices u_i and u_{i+k-2} along the spine of T to be the second and penultimate vertices (respectively) of the path. The number of paths which use u_i and u_{i+k-2} in this way is just $e_i e_{i+k-2}$, since there are e_i choices for the initial vertex of the path and e_{i+k-2} choices for the terminal vertex. Summing over all such choices gives the formula.

We can now make a connection between the path numbers P_k and the generating function g(T; x). For a polynomial p(x) with integer coefficients, let R(p(x)) be the polynomial obtained from p(x) by reversing the coefficient sequence. Thus, if the degree of p(x) is *n*, then $R(p(x)) = x^n p(x^{-1})$. We omit the straightforward proof of the next lemma.

Lemma 2. Let T be a caterpillar and let h(T; x) := g(T; x)R(g(T; x)). Then

$$h(T; x) = P_{n+2} + P_{n+1}x + P_n x^2 + \dots + P_3 x^{n-1} + \sum e_i^2 x^n + P_3 x^{n+1} + P_4 x^{n+2} + \dots + P_{n+2} x^{2n}.$$

We now show how to use the polynomial h(T;x) to produce non-isomorphic caterpillars with the same degree sequence and path numbers.

Example 3. Let T_1 be a caterpillar with

$$g(T_1; x) = (2x + 3)(4x^2 + 1) = 8x^3 + 12x^2 + 2x + 3$$

Then

$$h(T_1; x) = (8x^3 + 12x^2 + 2x + 3)(3x^3 + 2x^2 + 12x + .8)$$
$$= (2x + 3)(4x^2 + 1)(3x + 2)(x^2 + 4)$$

Thus, if we let T_2 be the caterpillar with

then

$$g(T_2; x) = (3x + 2)(4x^2 + 1) = 12x^3 + 8x^2 + 3x + 2,$$

$$h(T_2; x) = (12x^3 + 8x^2 + 3x + 2)(2x^3 + 3x^2 + 8x + 12)$$

$$= (3x + 2)(4x^2 + 1)(2x + 3)(x^2 + 4)$$

$$= h(T_1; x)$$

Hence T_1 and T_2 have the same degree sequence and the same number of paths of length k for all $k \ge 1$. (Obviously two caterpillars with the same unordered e_i sequence as defined above will have the same degree sequence. See Fig. 1.)

The technique used in Example 3 can be used to generate infinitely many such pairs of caterpillars. We formalize this in the next theorem.

Theorem 4. Let T_1 be a caterpillar with

$$g(T_1; x) = \prod_{i=0}^{m} (a_i x^{2^i} + b_i)$$

for positive integers a_i and b_i for $0 \le i \le m$. Let T_2 be a caterpillar with $g(T_2; x)$ formed by reversing some of the factors of $g(T_2; x)$. Then T_1 and T_2 have the same degree sequence and the same number of paths of length k for all $k \ge 1$.

Proof. The uniqueness of the binary representation of the integers insures that each coefficient in $g(T_1; x)$ appears as a coefficient in $g(T_2; x)$, so T_1 and T_2 have the same (unordered) e_i sequence, hence they have the same degree sequence. This also implies (by Lemma 1) that they have the same number of paths of length 1 and 2. To show that T_1 and T_2 have the same number of paths of length 1 and 2. To show that T_1 and T_2 have the same number of paths of length $k \ge 3$, note that $h(T_1; x) = h(T_2; x)$ since the reversing operation has the multiplicative homomorphism property in the polynomial ring Z[x] (so R(p(x)q(x)) = R(p(x))R(q(x))) and factorization in Z[x] is unique. Thus, by Lemmas 1 and 2, we see that T_1 and T_2 have the same number of paths of length $k \ge 3$. This completes the proof. \Box

Corollary 5. For any positive integer M, there are M pairwise non-isomorphic caterpillars, all sharing the same degree sequence and the same number of paths of length k for all $k \ge 1$.

Proof. Let T_1 be a caterpillar with $g(T_1; x) = \prod_{i=0}^m (a_i x^{2^i} + b_i)$, as in Theorem 4, with $a_i \neq b_i$ for all *i*. Of the 2^{m+1} possible polynomials $g(T_2; x)$ formed by reversing some of the factors of $g(T_1; x)$, note that every such caterpillar T_2 appears twice, since reversing a set of factors and reversing the complement of that set produce isomorphic caterpillars. Since $a_i \neq b_i$ for all *i*, uniqueness of binary representation implies the collection of 2^m caterpillars are pairwise non-isomorphic.

We can also use these ideas to produce a sufficient condition for two caterpillars to be isomorphic.

Corollary 6. Let T_1 and T_2 be two caterpillars with the same degree sequence and the same number of paths of length k for all $k \ge 1$. If $g(T_1; x)$ is irreducible over Z[x], then T_1 and T_2 are isomorphic.

Proof. By Lemma 2, we have $h(T_1; x) = h(T_2; x)$. By the homomorphism property of $R(p(x)), g(T_1; x)$ is irreducible iff $R(g(T_1; x))$ is irreducible. Thus $g(T_2; x) = g(T_1; x)$, so T_1 and T_2 are isomorphic. \Box

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland, Amsterdam, 1976).

[2] S. Chaudhary and G. Gordon, Tutte polynomials for trees, J. Graph Th. 15 (1991) 317-331.