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Abstract—Building upon work which illustrated families of 

chaotic functions with planar symmetries, we explore evolving 

attractors from one symmetry type to another.  We observe 

different ways the symmetries evolve and pay attention to 

those which exhibit degenerate behavior.  Visually attractive 

images with low symmetry can be created in this way. 

     

1. INTRODUCTION 

Chaos has been the subject of much recent study.  Remarkably, symmetry may 

appear even in the presence of chaos.  Field and Golubitsky [3] have examined families 

of functions which can be used to generate chaotic attractors with cyclic, dihedral and 

some of the planar crystallographic symmetries.  Carter et al. [1] have illustrated chaotic 

attractors with symmetries from each of the frieze and planar crystallographic groups.  

Polar variants [2] of that work and extensions to some point groups in higher dimensions 
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have also appeared [6,7].  Readers can find illustrations of these symmetries in [1], an 

introduction in [4], and can use the International Tables for Crystallography [5] for 

further reference.    

This paper examines families of functions as we shift the symmetry from one 

planar type to another.  Using a fourier series in one coordinate and a power series in the 

other, the attractors with frieze symmetry in [1] were generated by function classes with 

many parameters.  The functions for the frieze groups split into two types.  One involves 

the addition of an identity function, which is used for the frieze groups that contain glide 

reflections; the other type does not.  Otherwise, the functions differ by which parameters 

have to be zero.  Our experiments involve gradually shifting the parameters so that  

initially they have the required zeros for one symmetry, but then they evolve so that they 

have the zeros required for another symmetry.  The situation for the planar 

crystallographic groups is more complicated, but roughly similar, as we will see. 

We observe that sometimes one symmetry occurs only at the initial or terminal 

endpoint of our evolution and at intermediate times the other symmetry prevails.  In other 

cases the symmetry drops to a lower type at intermediate times.  The classical bifurcation 

diagram for the logistic map illustrates that families of chaotic attractors may exhibit 

simpler, degenerate, behavior in certain parameter windows.  Since we are investigating 

attractors in higher dimensional space, we see such behavior, but with greater diversity.  

Moreover, when the symmetry type drops during intermediate times, we find the 

resulting attractors to be more interesting than those found by direct Monte-Carlo 

searches.  Thus, our experiments illustrate effective techniques for finding visually 

interesting attractors with low symmetry type. 

 

2. Frieze Groups 
We begin by investigating families of chaotic attractors with the symmetries of 

some frieze groups.  Our first example looks at a family of chaotic attractors whose 

symmetry shifts from the group pma2 to the group p1a1. The symmetry group p1a1 

contains a glide reflection which is a combination of a half-period translation followed by 

a reflection across the center line parallel to the translation.  An example appears in the 
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final frame of Figure 1.   The symmetry group pma2 also contains a glide reflection but 

has a reflection perpendicular to the axis of the glide reflection.  An example appears in 

the first frame of Figure 1.  

 
Table I  Array Masks for p1a1 and pma2 

 
m1 : p1a1 m2 : pma2 

1      0      1 0      0      0 
0      1      0 0      1      0 

 
0      1      0 0      0      0 
1      0      1 1      0      1 

 
1      0      1 0      0      0 
0      1      0 0      1      0 

 
0      1      0 0      1      0 
1      0      1 0      0      0 

 
1     0      1 1      0      1 
0     1      0 0      0      0 

 
 

In [1] it was seen that to create a chaotic attractor with p1a1 symmetry, we can use a 

function g A:ℜ → ℜ2 2  of the form 

g x y x x x x x A y yA , , ,cos( ),cos( ),sin( ),sin( ) , , mod ,= + • • ∞0 1 2 2 1 22 π  

where A is a 5 by 2 by 3 array and1 the symbol •  stands for the generalized matrix 

product which takes dot products of the last axis of its left argument with the first axis of 

its right argument in all possible ways.  In order to obtain the p1a1 symmetry, we need 

certain entries of A to be zero.  Namely, those positions indicated by a zero in the mask 

m1  need to be zero; m1  appears in Table I.  If we let P be a 5 by 2 by 3 array of numbers, 

then we will denote by m P1 *  the elementwise product which has the required zeros.  By 

elementwise, we mean that each entry in P is multiplied by the corresponding entry in m1.  

Thus, the function gm P1*  will have the symmetries of p1a1.   Likewise, gm P2 *  will have 

the symmetries of pma2.  

 Our approach to the creation of these images follows [1].  Once we obtain the 

correct mask for our symmetry, we create our matrix P as an array of random numbers.  
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We multiply P by the mask to obtain our matrix of coefficients A, as described above.  

The resulting function gm P1*  is a map of the plane with the desired symmetry.  We iterate 

the function many times, ignoring initial iterates to avoid transient behavior.  We test the 

function to make sure it is not periodic, does not give collinear points, and that the 

Ljapunov exponent is within bounds indicative of chaos and associated with interesting 

images [8].  In our situation we demand that these conditions hold for several frames of 

the evolutions we will describe below.  Once we find a set of visually pleasing frames, 

we iterate the functions many more times to create a high-resolution image.  Points that 

are hit with a different frequency are colored differently, and colors that appear less often 

tend to indicate high frequency regions.  We then choose color palettes for each attractor 

purely by aesthetic considerations.  The background color, white, represents areas not hit 

by the attractor. 

In order to evolve from one symmetry type to another, we consider a smooth 

transition from one mask to the other using  mλ = m2λ + (1-λ)m1 for 0 λ 1.  Note that 

when λ=0, the mask is m1, and when λ=1, the mask is m2.  The values of λ between 0 and 

1 give our intermediate steps between the symmetries p1a1 and pma2.  Figure 1 shows 

the attractors generated by mλ*P for λ=0.00, λ=0.25, λ=0.5, λ=0.75, and λ=1.00, 

respectively; P is given in the Appendix. The first frame of Figure 1 has both vertical 

mirrors and a glide reflection.  As we increase λ, the glide reflections remain but the 

vertical mirrors disappear.   One can verify that this follows from the overlapping zeros 

in the masks.  An animated version of the evolution appearing in Figure 1 can be found 

on a link from the gallery on the webpage http://www.lafayette.edu/~reiterc.  While the 

animation appears fairly smooth, the change from a round mirrored pma2 attractor to a 

sharp p1a1 is dramatic.  Note that some intermediate frames degenerate and are skipped 

in the animation.  This behavior will be discussed further in the next section.  The 

webpage also provides an animation of a family of chaotic attractors whose frieze pattern 

pm11 changes to one with frieze pattern p1m1.  Note that pm11 is a symmetry group 

which contains reflections perpendicular to translations while p1m1 is a group that has a 

line of reflection parallel to translations.  However, here the intermediate steps all have 
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only translational symmetry.  It can be shown that this follows from the non-overlapping 

nature of the masks.  These masks can be found in [1]. 

 

3. Planar Crystallographic Groups 
 Our first illustration of evolution between planar crystallographic groups is 

between the two symmetry groups cm and cmm.  The group cm has a mirror and a glide 

reflection in only one direction, as seen in the first frame of Figure 2.  On the other hand, 

the group cmm contains two perpendicular lines of reflection as well as glide reflections 

parallel to those mirrors, as seen in the fourth frame of Figure 2.  Attractors with 

symmetries of both of these groups are obtained by using a truncated fourier series 

extending in orthogonal directions.  The same masking technique is used for this family 

of chaotic attractors as was used for the frieze groups with the exception that A is now a 5 

by 2 by 5 array of parameters. Both cm and cmm use an identity function in x and y as in 

[1]; but because cm and cmm both require the same identity function, it is again possible 

to create a smooth transition from one symmetry mask to the other.  Here we use the 

function   g A:ℜ → ℜ2 2  which is of the form  

g x y x y x x x x A y y y yA , , , cos( ), cos( ), sin( ), sin( ) , cos( ), cos( ), sin( ), sin( ) mod ,= + • •1 2 2 1 2 2 2 2π π
  

Table II gives the masks required to obtain cm and cmm symmetries.   
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Table II  Array Masks for cm and cmm

cm cmm
1    0    1    0    0 0    0    0    0    0
0    0    0    0    1   0    0    0    0    1

0    1    0    0    0 0    0    0    0    0
0    0    0    1    0 0    0    0    1    0

1    0    1    0    0 0    0    0    0    0
0    0    0    0    1 0    0    0    0    1

0    1    0    0    0 0    1    0    0    0
0    0    0    1    0 0    0    0    0    0

1    0    1    0    0 1    0    1    0    0
0    0    0    0    1 0    0    0    0    0

 
In this evolution we move from a simple to a more complicated symmetry.  Thus, as we 

move closer to cmm, we add a reflection perpendicular to the original reflection.  The 

evolving perpendicular mirrors start to become noticeable in the third frame of Figure 2.  

During the transition, the attractor retains cm symmetry, while moving closer and closer 

to cmm symmetry, which is only achieved at the end.  Again, this behavior follows from 

the overlapping nature of the masks.  An animation can be found from the previously 

mentioned webpage. 

 The next pair of planar crystallographic groups that we consider is  p2 and pm.  

The symmetry group p2 has orthogonal translations as well as a rotation of 180° and the 

group pm has perpendicular translations and a reflection.  Similar to the technique used to 

create the functions with cm and cmm symmetry, truncated fourier series are used to 

produce those with p2 and pm symmetry.  However, they do not incorporate the addition 

of the term x y, .  Table III contains the masks required to produce attractors with p2 

and pm symmetry.      
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Table III  Array of Masks for p2 and pm

p2 pm
0    0    0    1    1 1    1    1    0    0
0    0    0    1    1 0    0    0    1    1

0    0    0    1    1 1    1    1    0    0
0    0    0    1    1 0    0    0    1    1

0    0    0    1    1 1    1    1    0    0 
0    0    0    1    1 0    0    0    1    1

1    1    1    0    0 1    1    1    0    0
 1    1    1    0    0 0    0    0    1    1

1    1    1    0    0 1    1    1    0    0
1    1    1    0    0 0    0    0    1    1

 
We notice that the family of chaotic attractors associated with this evolution contain 

intermediate frames with p1 symmetry, which contains no symmetry except for 

translations.  These p1 symmetric attractors appear to be more striking visually than  

those generated with Monte Carlo searches.  Thus, our evolution technique illustrates that 

searching parameter space for a symmetry group near a more complex symmetry group 

can lead to more dramatic images. 

Our illustration of this evolution is found in Figure 3.  Note that the fourth frame 

contains a degenerate chaotic attractor.  Degenerate behavior is commonly found among 

families of chaotic functions.  The bifurcation diagram for the classical logistic function 

λ x x( )1− , shown in Figure 4, illustrates this.  The right portion of this diagram contains 

apparent gaps in the chaotic regime.  All of these are regions where the logistic attractor 

is simpler.  Nonetheless, the form of the chaotic attractor on one side appears to persist 

across the gap.  Such gaps appear in our experiments.  For example, in Figure 3, the 

fourth frame shows a degenerate localized curve-like attractor near the high-frequency 

areas found in frames 3 and 5.  The animation corresponding to this figure shows this 

behavior as a temporal gap, and moreover, the forms of the images within this gap 
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change from curve-like, as seen in the figure, to isolated periodic attractors.  Since these 

evolutions are one embedding dimension above the logistic diagram, it is not surprising 

that these gaps are more diverse.  While we highlight the degenerate images found in this 

family of attractors, we suppress them in the other animations for aesthetic purposes.  

 Our final illustration of evolution of symmetry groups involves three 

crystallographic groups containing third turns.  These three groups are p3, in which none 

of the third turns contain mirrors; p31m, which contains mirrors along some of the third 

turns; and p3m1, in which mirrors are found at every center of rotation.  As in [1], we use 

the symmetry σ x x y x y( , ) ( , )= −  to generate p31m; the symmetry σ y x y x y( , ) ( , )= −  is 

used to generate p3m1.  To create the family that shifts between these two symmetries, 

we use the function 

( )σ πλ πλ πλ πλλ ( , ) (sin cos ) ,(sin cos )x y x y= + − ,  

where λ  moves from 0 to 1.  In general, as symmetry evolves from p31m to p3m1 there 

is no symmetry other than the translations.  However, we come to a point where p3 

symmetry appears since 1/2 (x,y) = (x,y) is the identity function.  Figure 5 presents an 

example of this evolution showing λ=0.00, λ=0.31, λ=0.50, λ=1.00.  An animation 

exhibiting this behavior can be found from the previously mentioned webpage.  In 

addition to the evolution from the frieze group pm11 to p1m1 found in this link, there are 

other animations not discussed in this paper, including evolutions from the 

crystallographic groups pgg to cm, and pgg to cmm. 
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APPENDIX 
 

Parameters used for Figure 1: 
 
_0.518925  0.431771  0.774487 
 0.799078 0.0989788 _0.463648 
 
_0.532977   0.25242   0.43118 
 0.838754  0.946274 0.0303457 
 
0.0208725  0.803783 _0.813807 
 0.350003  0.503396  0.573136 
 
 0.705091  0.463458 _0.668884 
0.0599967  0.364246 _0.111526 
 
_0.416306 _0.860983 _0.537901 
_0.505831  0.502622 _0.430047 
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Fig. 1. A family of chaotic attractors evolving from pma2 to p1a1 symmetry. 
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Fig. 2. A family of chaotic attractors evolving from cm to cmm crystallographic symmetry. 
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Fig. 3. A family of chaotic attractors evolving from p2 to pm crystallographic symmetry. 
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Fig. 4. The bifurcation diagram for the classical logistic function )1( xx −λ . 
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Fig. 5. A family of chaotic attractors evolving from p31m to p3 to p3m1 crystallographic symmetry. 
 


