This brief reference gives informal descriptions of most of the J primitives. Not every primitive is included and some phrases, examples and other resources have been added when that seemed appropriate. Since the presentation is so brief and informal, it is not suitable as an introduction to the language and it is not a replacement for the main J references: the J Introduction and Dictionary, the J User manual and the J Primer. Nor is it a replacement for introductions such as Henry Rich's J for the C programmer, Roger Stokes' Learning J, and Norman Thomson's J: the Natural Language for Analytic Computing. However, since the material given here is informally organized by topic, this reference may be useful for brainstorming when considering which J features might be relevant to a given problem. Some users may also find it helps locate gaps in knowledge that can then be filled in by turning to the main references.

Table of Contents

1. Basic Arithmetic 1
2. Circular and Numeric Functions ... 2
3. Boolean and Relational Functions. 3
4. Assignment of Names 3
5. Array Information and Building.... 4
6. Array Selection......................... 4
7. Data Amalgamation..................... 5
8. Explicit Definition..................... 5
9. Program Flow Control in J......... 6
10. Reading and Writing Files.......... 7
11. Scripts.................................... 8
12. Front End Short Cut Keys 8
13. Boxed Arrays........................... 9
14. Noun Atoms 9
15. Conversion: String, Numeric, Base, Binary 9
16. Sorting and Searching.............. 10
17. Matrix Arithmetic.................... 10
18. Rank 11
19. Constant and Identity Functions. 11
20. Function Composition Calculus, Roots and Polynomials......... 12
21. More Functions from Functions. 13
22. Gerunds and Controlled Application of Functions......... 13
23. Recursion.................................. 13
24. Efficiency, Error Trapping, and Debugging 14
25. Randomization and Simulation .. 14
26. Complex Numbers. 15
27. Number Theory, Combinatorics and Permutations 15
28. Exact Integers and Rationals 16
29. Calculus, Roots, Polynomials.... 16
30. Addons 16
31. Graphics 17
32. Parts of Speech and Grammar ... 17
33. Glossary.................................. 18

1. Basic Arithmetic

\[x + y \] \text{ plus } y
\[+ y \] \text{ that is, for real } y \text{ this is the identity function}
\[x - y \] \text{ minus } y
\[- y \] \text{ negate } y
\[x * y \] \text{ times } y
signum of \(y \) is \(-1, 0 \) or \(1 \) depending on the sign of \(y \) (for real \(y \))

\(\times \ % \ y \) \(\times \) divided by \(y \)
\(\% \ y \) \(\% \) reciprocal of \(y \)
\(+: \ y \) \(+ \) double \(y \)
\(-: \ y \) \(- \) halve \(y \)
\(\times ^ {\%} \ y \) \(\times \) \(\% \) root of \(y \)
\(\%: \ y \) \(\% \) square root of \(y \)
\(\times ^ {^\wedge} \ y \) \(\times \) to the power \(y \)
\(^ {\wedge} y \) \(^ {\wedge} \) exponential base \(e \)
\(\times ^ {^\wedge.} \ y \) \(\times \) base \(\times \) logarithm of \(y \)
\(^ {^\wedge.} y \) \(^ {^\wedge.} \) natural logarithm (base \(e \))
\(\times \ | \ y \) \(\times \) residue of \(y \) mod \(x \)
\(\ | y \) \(\ | \) absolute value of \(y \)
\(\times <. \ y \) minimum of \(x \) and \(y \); \((\smaller \ if, \ lesser \ of) \)
\(<. \ y \) \(<. \) greatest integer less than or equal to \(y \); called the floor
\(\times >. \ y \) \(>. \) maximum of \(x \) and \(y \); \((\larger \ if, \ greater \ of) \)
\(>. \ y \) \(>. \) least integer greater than or equal to \(y \); called the ceiling
\(<: \ y \) \(<: \) predecessor of \(y \); that is, \(y-1 \) \((\text{decrement of}) \)
\(>: \ y \) \(>: \) successor of \(y \); that is, \(y+1 \) \((\text{increment of}) \)

2. Circular and Numeric Functions

Many trigonometric functions and other functions associated with circles are obtained using \(\circ \) with various numeric left arguments.

\(\circ \ y \) \(\circ \) \(\pi \) \(y \) \((\pi \times) \)
\(0 \circ \ y \) \(0 \circ \) \(\sqrt{1-y^2} \) \((\text{circle functions}) \)
\(1 \circ \ y \) \(1 \circ \) \(\sin (y) \)
\(2 \circ \ y \) \(2 \circ \) \(\cos (y) \)
\(3 \circ \ y \) \(3 \circ \) \(\tan (y) \)
\(4 \circ \ y \) \(4 \circ \) \(\sqrt{1+y^2} \)
\(5 \circ \ y \) \(5 \circ \) \(\sinh (y) \)
\(6 \circ \ y \) \(6 \circ \) \(\cosh (y) \)
\(7 \circ \ y \) \(7 \circ \) \(\tanh (y) \)
\(8 \circ \ y \) \(8 \circ \) \(\sqrt{-(1+y^2)} \)
\(9 \circ \ y \) \(9 \circ \) \(\Re (y) \)
\(10 \circ \ y \) \(10 \circ \) \(\arg (y) \)
\(11 \circ \ y \) \(11 \circ \) \(\Im (y) \)
\(12 \circ \ y \) \(12 \circ \) \(\text{abs(y which is } |y| \text{)} \)
\(m \ H. n \ y \) \(m; n \) hypergeometric function; sometimes denoted \(F(m;n;y) \)
\(\times m \ H. n \ y \) \(\times \) \(m; n \) hypergeometric function using \(\times \) terms in the series
3. Boolean and Relational Functions

Result of tests are 0 if false or 1 if true.
- \(x < y \) test if \(x \) is less than \(y \)
- \(x <: y \) test if \(x \) is less than or equal to \(y \)
- \(x = y \) test if \(x \) is equal to \(y \)
- \(x >: y \) test if \(x \) greater than or equal to \(y \) (larger than or equal)
- \(x > y \) test if \(x \) is greater than \(y \) (larger than)
- \(x ~: y \) test if \(x \) is not equal to \(y \)
- \(x -: y \) test if \(x \) is identically same as \(y \) (match)
- \(-. y \) not \(y \); generalizes to \(1 - y \) for numeric \(y \).
- \(x +. y \) \(x \) or \(y \); generalizes to the greatest common divisor (gcd) of \(x \) and \(y \)
- \(x *. y \) \(x \) and \(y \); generalizes to the least common multiple (lcm) of \(x \) and \(y \)
- \(x +: y \) \(x \) nor \(y \) (not-or)
- \(x *: y \) \(x \) nand \(y \) (not-and)
- \(x \ e. y \) test if \(x \) is an item in \(y \) (member of)
- \(e. y \) test if the raze is in each open; compare to \((; e. &>"_0 1) y \)
- \(x E. y \) mark beginnings of list \(x \) as a sublist in \(y \) (pattern occurrence); see cut in Section 7 and the regex laboratories for matching more complex patterns than those handled by \(E.. \).

The Boolean tests are subject to a default comparison tolerance of \(t = 2^{44} \). For example, \(x = y \) is 1 if the magnitude of the difference between \(x \) and \(y \) is less than \(t \) times the larger of the absolute values of \(x \) and \(y \). The comparison tolerance may be modified with the fit conjunction, ", as in \(x =!.0 y \), tests if \(x \) and \(y \) are the same to the last bit.

4. Assignment of Names

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(abc := 1 2 3)</td>
<td>global assignment of 1 2 3 to the name "abc" (is)</td>
</tr>
<tr>
<td>(abc =. 1 2 3)</td>
<td>local assignment of 1 2 3 to the name "abc"; that is, the value is only available inside the function where it is used</td>
</tr>
<tr>
<td>'abc' =: 1 2 3</td>
<td>indirect assignment of 1 2 3 to the name "abc"</td>
</tr>
<tr>
<td>'a b c' =: 1 2 3</td>
<td>parallel assignment of 1 to "a", 2 to "b" and 3 to "c".</td>
</tr>
<tr>
<td>'a b' =: 1 2;3</td>
<td>parallel unboxed assignment of 1 2 to "a" and 3 to "b"</td>
</tr>
<tr>
<td>(exp) =: 1 2 3</td>
<td>the result of the expression exp is assigned the values currently defined names in base locale; loaded by default configuration</td>
</tr>
</tbody>
</table>
| names '"' | erases the three objects "a", "b", and "c"
| (4!:5)1 | turns on data collection and yields names changed since last execution of (4!:5)1 |

Several foreign conjunctions of the form \(4!:n \) deal with names. See the locales lab to learn about using locales to create different locations for global names. Other \(4!:n \) functions give the type of the name and deal with script names.
5. Array Information and Building

- `# y` number of items in `y` (tally)
- `$ y` shape of array `y`
- `x $ y` shape × reshape of `y` (cyclically using/reusing items)
- `i. y` list of indices filling an array of shape `y` (integer); negative reverses axis
- `i: y` symmetric arithmetic sequence; try `i:5` and `i:5j4`
- `x F/ y` table of values of `F` with arguments from `x` and `y` (outer product)
- `x , y` append `x` to `y` where axis 0 is lengthened (catenate)
- `x ,. y` stitch `x` beside `y` (append items) where axis 1 is lengthened;
- `x ,: y` x laminated to `y` giving an array with 2 items
- `, y` ravel (string out) elements of `y`
- `, y` ravel items of `y` (changes a vector into a 1-column matrix)
- `,: y` itemize, make `y` into a single item by adding a new length one leading axis
- `$. y` sparse matrix representation of `y`

See Section 16 for information about location of items within an array.

6. Array Selection

- `x # y` replicate or copy items in `y` the number of times indicated by `x`; the imaginary part of `x` is used to specify the size of expansion with fill elements
- `(G #]) y` selects elements of `y` according to Boolean test `G`; thus, `(2&< #]) y` gives the elements of `y` greater than 2.
- `I { y` item at position `I` in `y` (index or from); arrays `I` give corresponding arrays of items; boxed arrays `I` give all possible combinations of indices along leading axes (empty box gives all possibilities along that axis); boxed boxed arrays randomly access positions.
- `x I} y` y amended at positions in `I` by data `x`.
- `x {. y` shape × take of `y`; negative entries cause take from end of axes; entries larger than axis length cause padding with fill elements.
- `{. y` the item in 1 {. y for non-empty arrays; in general 0{y (called head)
- `{: y` the item in _1{ . y or _1{y (called tail)
- `x }. y` drop shape × part of `y`; negative entries cause drop from end of axes.
- `}. y` 1 } . y (one drop) or behead
- `}: y` _1 } . y (negative one drop) or curtail
7. Data Amalgamation

The important role that data amalgamation facilities play in organizing computations and analyses makes the study of them worthwhile. Because they are powerful, patience, persistence and restudy are recommended.

\[
\begin{align*}
F/ y & \quad \text{insert verb } F \text{ between items of } y; \text{ also called } F\text{-reduction; thus } +/2 \ 3 \ 4 \text{ is } 2+3+4 \\
G\ y & \quad \text{apply } G \text{ to } \text{prefixes of } y, \text{ generalized scan} \\
F/\ y & \quad \text{scan of } y \\
\times G\ y & \quad \text{apply } G \text{ to lists of length } \times \text{ in } y \; (\text{the lists are } \text{infixes}); \text{ negative } \times \text{ gives non-overlapping sublists.} \\
\times \text{avg}\ y & \quad \text{gives length } \times \text{ moving averages of data in } y \; (\text{here avg}=:+/ \ % \ #) \\
G\ .\ y & \quad \text{apply } G \text{ to } \text{suffixes of } y \; (\text{order of execution makes this fast!}) \\
\times G\ .\ y & \quad \text{apply } G \text{ to lists where sublists of length } \times \text{ in } y \text{ are excluded} \; (\text{the sublists are } \text{outfixes}) \\
\times G;._3\ y & \quad \text{cut: apply } G \text{ to shape } \times \text{ tessellations of } y. \text{ In general, the rows of } \times \text{ give the shape and offset used for the tessellation. Include shards by specifying } 3 \text{ instead of } _3. \\
G;._3\ y & \quad \text{cut: generalized suffix; try } <; .3 \ i. \ 4 \ 4 \\
G;._2\ y & \quad \text{cut: apply } G \text{ to sublists marked by ending with the last item in } y. \text{ So } } \} :<@) ;._2\ y, \text{CRLF gives the boxed lines of CRLF delimited text } y. G; .2 \ y \text{ includes marked positions in sublists. } G; .1 \ y \text{ and } G; .1 \ y \text{ use first item to mark beginnings of sublists. } G; .0 \ y \text{ and dyads and gerunds } G \text{ are also defined.} \\
\times F/.\ y & \quad \text{function } F \text{ is applied to parts of } \times \text{ selected by distinct items (keys) in } y. \\
#/._\ y & \quad \text{frequency of occurrence of items (given by nub) in } y \\
F/_.\ y & \quad \text{apply } F \text{ to oblique lists from } y. \text{ Try } <_/ .i.4 \ 6
\end{align*}
\]

8. Explicit Definition

Explicit definitions can be made with \(m : n \) where \(m \) is a number that specifies whether the result is a noun, verb, adverb or conjunction. When \(n = 0 \), successive lines of input give the defining steps until an isolated, closing right parenthesis is reached. Noun arguments to adverbs and conjunctions may be specified by \(m \). on the left and \(n \). on the right. Verb arguments are \(u \). and \(v \). and the derived functions use \(x \). and \(y \). to denote their arguments.

\[
\begin{align*}
4 : 0 & \quad \text{input mode for a dyadic verb (function)} \\
3 : 0 & \quad \text{input mode for general verb; monadic definition followed by an isolated colon, followed by the dyadic definition.} \\
2 : 0 & \quad \text{input mode for conjunction} \\
1 : 0 & \quad \text{input mode for an adverb} \\
0 : 0 & \quad \text{input mode for a noun}
\end{align*}
\]

The right argument \(n \) as in \(m : n \) may alternatively be a string, a CRLF delimited string, a matrix, or a boxed list of strings that give the "program".

\[
13 : n \quad \text{convert to tacit form of a verb if possible}
\]
9. Program Flow Control in J

Control structures offer facilities for organizing the order of execution of J expressions. See the "control structures" reference from the Vocabulary (see the on line help) for details. Also consider the following illustrations and comments. First consider the if control structure. Note that elseif. is also available.

\[
\text{signum}=: 3 : 0 "0 \quad \text{NB. note the use of rank 0}
\]
\[
\text{if. } y. < 0 \text{ do. } _1 \text{ else.}
\]
\[
\text{if. } y.=0 \text{ do. } 0 \text{ else. } 1 \text{ end.}
\]
\[
\text{end.}
\]

\[
\begin{array}{c}
\text{signum _5 7 8 0} \\
_1 1 1 0 \\
* _5 7 8 0 \\
_1 1 1 0
\end{array}
\]

Consider the while control structure. The control word whilst. is the same as while. except the steps of the loop are executed once before the control condition must hold.

\[
\text{sumint=: 3 : 0"0}
\]
\[
k=.0 \\
s=.0 \\
\text{while. } k<:y. \text{ do.}
\]
\[
\text{\quad s=.s+k} \\
\text{\quad k=.k+1} \\
\text{end.}
\]
\[
s
\]

\[
\begin{array}{c}
\text{sumint 10} \\
55 \\
+/@i.@>: 10 \\
55
\end{array}
\]

Consider the for control structure.

\[
\text{sumintb=: 3 : 0"0}
\]
\[
s=.0 \\
\text{for_k. 1+i.y.}
\]
\[
\text{\quad do. } s=.s+k \\
\text{end.}
\]
\[
s
\]

\[
\begin{array}{c}
\text{sumintb 10} \\
55
\end{array}
\]
The control word `break` is used to step out of a `while`, `whilst`, or `for` loop, and `continue` returns to the top of the loop. The control word `return` can be used to halt function execution.

The `select` control word allows the execution of an expression (or expressions) when a prototype object matches those in a given case or cases.

```julia
atype=: 3 : 0
select. 3<.#$y.
case. 0 do. 'scalar'
case. 1 do. 'vector'
case. 2 do. 'matrix'
case. 3 do. 'array of dimension greater than 2'
end.
)
atype 'abc'
vector
atype i.3 3
matrix
atype <i.3 3
scalar
atype i.3 3 3 3 3
array of dimension greater than 2
```

The following line runs `expression2` if running `expression1` causes an error.

```julia
try. expression1 catch. expression2 end.
```

There are also control words for labeling lines and going to those lines: `label_name.` and `goto_name.`.

In all cases, the result of the last expression executed (that was not a test) is returned as the function result.

10. Reading and Writing Files

These are all based on the foreign conjunctions of the form `1!:n`. These provide for file reading/writing including indexed reads and writes and creating directories, reading and setting attributes and permissions. Convenient utilities are defined in `files.ijs`. Chopping file data in appropriate places can be accomplished with `_2 cut; see Sections 7 and 23. Simple substitution (e.g., "_" for ") may be accomplished with `charsub` from `strings.ijs`. See `regex.ijs` for more complex processing. Memory mapped files should be considered for huge data sets.

```julia
1!:0 y  directory information matching path and pattern in y (see `fdir`)
1!:1 y  read file y specified by a boxed name (see `fread`)
x 1!:2 y write file y with character (binary) data x (see `fwrite` and `fwrites`)
```
x 1!:3 y append file y with character (binary) data x (see fappend and fappends)

Files may also be referenced by number; keyboard and screen input/output are supported, and other facilities give other useful file access including indexed i/o, permissions, erasure, locking, attributes.

11. Scripts

Scripts consist of text that gives a listing of definitions or J expressions to be executed. The text of scripts is often stored in files and these scripts are the natural place to store collections of J definitions.

cntl-n keystroke to open a new script window
0!:0 <filename.ijs' run the script "filename.ijs"; note boxing of filename
load 'filename.ijs' similar to 0!:0 except local definitions made inside the load function do not exist upon completion.
loadd 'filename.ijs' similar to load except the results of running the script are displayed.
open 'filename.ijs' opens the script in an edit window.
0!:0 y run the J noun y as a script
0!:1 y run the J noun y displaying the result
0!:10 y run the J noun y and continue on errors

12. Front End Short-Cut Keys

Many J short-cut keys are defined and users may define their own. A few are mentioned below.

enter grabs current line for editing on the execution input line
F1 help
ctrl-F1 context sensitive help
ctrl-shift-up-arrow scroll up in execution log history
ctrl-d window with execution history
ctrl-tab shift active window
ctrl-E load selection
ctrl-shift-E load selection showing display
ctrl-shift-1 set mark 1 on current line (likewise 2-9)
alt-1 go to mark 1 in current window (likewise 2-9)

The following expression would put "My F2" into the tools menu and execute f2expression when F2 is pressed.

wd 'smsetcmd 2 1 "&My F2",TAB,'F2" "f2expression";'
13. Boxed Arrays

- `< y` \(\text{box } y\)
- `> y` \(\text{open (unbox) } y\) one level
- `x ; y` \(\text{link } x\) and \(y\); box \(x\) and append to \(y\); if \(y\) is unboxed, then box \(y\) first
- `; y` \(\text{raze } y\); remove one level of boxing appending along an existing axis.
- `F&.> y` apply \(F\) inside of each boxed element of \(y\).
- `F&> y` apply \(F\) to the inside of each boxed element of \(y\) and adjoin the results.
- `a:` \(\text{boxed empty (noun called ace)}\)
- `; : y` boxed list of \(J\) words in string \(y\); \((\text{word formation})\)
- `L. y` the depth or deepest level of boxing in \(y\)
- `F L: n y` apply \(F\) at level \(n\) and maintain boxing. May be used dyadically and left and right level specified. If boxing is thought of as creating a tree structure, then \(L: 0\) may be called leaf.
- `F S: n y` apply \(F\) at level \(n\) and list the result. \((\text{spread})\)
- `{:: y` \(\text{map has the same boxing as } y\) and gives the paths to each leaf
- `x {:: y` \(\text{fetch the data from } y\) specified by the path \(x\)

14. Noun Atoms

- `r` gives rationals; \(5r4\) is \(5/4\)
- `b` gives base representations; \(2b101\) is \(5\)
- `e` gives base 10 exponential (scientific notation); \(1.2e14\) is \(1.2 \times 10^{14}\)
- `p` gives base \(\pi\) exponential notation; \(3p6\) is \(3\pi^6\)
- `x` gives base \(e\) (natural) exponential notation; \(3x2\) is \(3e^2\)
- `x` also gives extended precision; \(2^{100}x\) is the exact integer \(2^{100}\)
- `j` gives complex numbers; \(3j4\) is \(3 + 4i\)
- `ad` gives angle in degrees; \(1ad45\) is approximately \(0.707j0.707\)
- `ar` gives angle in radians; \(1ar1\) is \(^0j1\)
- `a.` \(\text{alphabet: gives the list of all 256 characters including the usual ASCII characters}\)
- `a:` \(\text{boxed empty}\)
- `_1` negative one; negatives denoted with underline prefix
- `_` \(\text{infinity}; an underbar in isolation denotes infinity}\)
- `__` \(\text{negative infinity}\)
- `_.` \(\text{indeterminant}\)

15. Conversion: String, Numeric, Base, Binary

- `": y` \(\text{format array } y\) as a character array
- `ajb ": y` \(\text{format data in } y\) with field width \(a\) and \(b\) decimal digits;
 \(\text{try } 15j10 ": o.i.3 4\)
- `":! c y` \(\text{format data showing } c\) decimal figures
- `": y` \(\text{execute or do the string } y\)
convert the data in \(y \) to numeric using \(x \) for illegal numbers. J syntax is relaxed so appearances of \(- \) in \(y \) is treated like \(_ \).

\[. \text{.} \ y \]

execute the expressions in CRLF delimited substrings appearing in \(y \) (assuming it ends with CRLF) and adjoin the results

\['. @) ; . _2 \ y \]

the value of the name \(m \) is evoked

\[#: \ y \]

binary representation of \(y \) (antibase-two)

\[\times #: \ y \]

representation of \(y \) base the digit values given in \(x \) (antibase)

\[\times #: . y \]

value of the binary rank-1 cells of \(y \) (base-two)

\[\times 3 !: n \]

J floats to binary short floats while \(_1 (3 !:4) \ y \) converts binary short floats to J floats. See the foreign conjunction help.

16. Sorting and Searching

\[/ : y \]

grade up; indices of items of \(y \) ordered so that the corresponding elements of \(y \) would be in nondecreasing order

\[\times / : y \]

sort \(x \) according to indices in \(/ : y \)

\[/ : - \ y \]

sorts items of \(y \) into nondecreasing order

\[/ : / : y \]

rank order of items in \(y \)

\[\backslash : y \]

grade down; indices of items of \(y \) ordered so that the corresponding elements of \(y \) are in nonincreasing order

\[\times i. y \]

indices of items of \(y \) in the reference list \(x \)

\[\times e. y \]

test if \(x \) is an item in \(y \) (member of)

\[e. y \]

test if the raze is in each open; compare \((; e. & >"_0]\) y\)

\[\times E. y \]

mark beginnings of list \(x \) as a sublist in \(y \) (pattern occurrence);

\[~. y \]

nub of \(y \); that is, items of \(y \) with duplicates removed

\[(., #)/.- y \]

may use key to get nub and frequencies appearing in \(y \)

\[~ y \]

nubsieve: boolean vector \(v \) so \(v \# y \) is \(~. y \)

\[= y \]

self-classify \(y \) according to \(~. y \)

\[(G \ # \]\) y \]

selects elements of \(y \) according to boolean test \(G \); thus, \((2 &< \ # \]\) y \) gives the elements of \(y \) greater than 2.

\[\times -. y \]

the items of \(x \) less those in \(y \)

See cut in Section 7 and the regex laboratories for matching more complex patterns than those handled by \(E \).

17. Matrix Arithmetic

\[\times +/ . * y \]

matrix product of \(x \) and \(y \) (dot product for vectors)

\[\times +/ . = y \]

for vectors, gives the number of places where arguments match

\[\times F / . G y \]

inner product; \(F \)-insert applied to pairwise \(G \)'s applied row by column; the last axis of \(x \) and first axis of \(y \) need to be compatible (same or 1) and that axis collapses in the product.

\[\times H . G y \]

inner product; \(H \) applied to cells of \(G \) applied rank \(_1 \)
The J AddOns lapack.ijs and fftw.ijs give extensive linear algebra and fast Fourier transform utilities, respectively.

18. Rank

Rank can be specified by one, two or three elements. If the rank \(r \) contains three elements, the first is the monadic rank, the second the left dyadic rank and last the right dyadic rank. If it contains two elements, the first gives the left dyadic rank and the second gives the monadic and right dyadic rank. All the ranks are the same when a single element is given.

- \(F^{r} y \) apply \(F \) on rank \(r \) cells of the data \(y \)
- \(\times F^{r} y \) apply \(F \) on rank \(rr \) cells from \(x \) and rank \(lr \) cells from \(y \) where the right rank \(rr \) and left rank \(lr \) are specified by \(r \) as noted above.
- \(\times F^{0} _ y \) table builder when \(F \) is scalar
- \(N^{r} \) the constant function of rank \(r \) and result \(N \)
- \(F \ b. 0 \) gives the monadic, left and right ranks of the verb \(F \)

19. Constant and Identity Functions

- \(] y \) the result is \(y \), the identity function on \(y \) (same)
- \(\times] y \) the result is \(y \), the function is called right
- \([y \) the result is \(y \), the identity function on \(y \) (same)
- \(\times [y \) the result is \(x \), the function is called left
- \(0: y \) the result is the scalar 0
- \(1: y \) the result is 1; likewise, there are constant functions denoted \(2: \) to \(9: \) and \(_1: \) to \(_9: \)
- \(_: y \) the result is the infinite scalar _
- \(N^{r} \) is the constant function with value \(N \) on rank \(r \) cells
20. Function Composition

Atop
\[F @ G \]
\[F \]
\[G \]
\[y \]
\[x \]
\[F @ G \]

Compose
\[F & G \]
\[F \]
\[G \]
\[y \]
\[x \]
\[F & G \]

Under
\[F &. G \]
\[G^{-1} \]
\[F \]
\[G \]
\[y \]
\[x \]
\[F &. G \]

Hook
\[(G \ H) \]
\[G \]
\[/ \]
\[H \]
\[y \]
\[(G \ H) \]

Fork
\[(F \ G \ H) \]
\[F \]
\[G \]
\[H \]
\[y \]
\[x \]
\[(F \ G \ H) \]

The rank of \(F @ G \) and \(F & G \) is the rank of \(G \). At is denoted \(@ \): and is the same as \(@ \) except the rank is infinite. Appose is denoted \(& \): which is the same as \(& \) except the rank is infinite. Under is \(& . \): is the same as \(& \) except for rank infinity; that is, \(u \ & . \ v \) is equivalent to \(u & . \ (v^n) \). The
ranks of the hook and fork are infinite. Longer trains of verbs are interpreted by taking forks on the right. Thus \(F \ G \ H \ J \) is the hook \(F \) \((G \ H \ J) \) where \(G \ H \ J \) is a fork.

Cap

\([F \ G \) has the effect of passing no left argument to \(F \) as part of the fork—the left branch of the fork is capped—thus \(F \) is applied monadically

21. More Functions From Functions

- \(N \& G \) monad derived from dyad \(G \) with \(N \) as the fixed left argument
- \(G \& N \) monad derived from dyad \(G \) with \(N \) as the fixed right argument; both known as *bond* or *curry*
- \(F \sim y \) reflects \(y \) to both arguments; i.e. it is the same as \(y \ F \ y \); *(reflex)*
- \(x \ F \sim y \) *pass* interchanges arguments; i.e., it is the same as \(y \ F \ x \); *(commute)*
- \(F : G \) function with monad \(F \) and dyad \(G \) *(monad/dyad)*
- \(F :. G \) function \(F \) with *obverse* (restricted inverse) \(G \)
- \(G f. \) function \(G \) with names appearing in its definition recursively replaced by their meaning. This *fixes* (makes permanent) the function meaning
- \(F \ b. _1 \) the *obverse* (inverse) of \(F \)
- \(F \ b. 1 \) the *identity function* for \(F \)

22. Gerunds and Controlled Application of Functions

- \(^: \) *iterate* (function power)*
- \(F^:n y \) iterate \(F \) a total of \(n \) times on \(y \); see the Dictionary for gerund \(n \)
- \(F^:_ y \) iterate \(F \) until convergence *(limit)*
- \(F^:(i.n)y \) the result of \(F \) iterated 0 to \(n-1 \) times on \(y \)
- \(F^:G^:y \) iterate \(F \) on \(y \) until \(G \) gives false
 - \(F^:G \) *tie* verbs \(F \) and \(G \) together forming a gerund
 - \(H/. y \) evaluate each verb in gerund \(H \) taken cyclically on data \(y \) *(evoke gerund)*
 - \(H^:0 y \) alternative form of *evoke gerund* resulting in all combinations of functions from \(H \) on \(y \)
 - \(H@.F \) *agenda*: use \(F \) to select verb from gerund \(H \) to apply
 - \(F::G \) *adverse*: apply \(F \), if an error occurs, apply \(G \) instead

Many adverbs and conjunctions have gerund meanings that give generalizations; for example, gerund insert cyclically inserts verbs from the gerund. Thus \(+^:\%/1 \ 2 \ 3 \ 4 \) is \(1+2\%3+4 \).

23. Recursion

One can use self reference of verbs that are named. For example, the factorial can be computed recursively as follows.

```plaintext
fac=: 1:`(] * fac@<:)@.*
fac 3
6
```
One can also create a recursive function without naming the function by using $: for self-reference. The factorial function can be defined recursively without name as follows.

```
(1:~(]*$:@<:)@.*)) 3
6
```

```
(1:~(]*$:@<:)@.*)"0 i.6
1 1 2 6 24 120
```

24. Efficiency, Error Trapping, and Debugging

```
6!:2 y
```

the time (seconds) required to execute the string y. Optional left argument specifies the number of repetitions used to obtain average run time

```
7!:2 y
```

the space (bytes) required to execute the string y

```
u :: v
```

gives the result of applying the verb u unless that results in an error in which case v is applied (adverse)

```
try. e1 catch. e2 end.
```

is similar except expressions in explicit definition mode are executed instead of verbs being applied

The foreign conjunctions 13!:n provide debugging facilities. These facilities require a professional license. With the license, running the debug lab is recommended.

25. Randomization and Simulation

```
? y
```

is a random index from i.y; called roll; for example,
```
+/\(?100#2)\_1 1
```
is a 100 step random _1 1 walk

```
?. y
```

is a default random index from i.y using 16807 as the random seed

```
x ? y
```

is x random indices dealt from i.y without duplication

```
9!:0 ''
```

query the random seed

```
(9!:1) y
```

set the random seed to y

```
randomize ''
```

randomize the random seed; randomize is defined in numeric.ijs

See also system\packages\stat\statdist.ijs for utilities for randomly selecting from various distributions.
26. Complex Numbers

Complex numbers are denoted with a j separating the real and imaginary parts. Thus, the complex number commonly written $3.1 + 4i$ is denoted $3.1j4$.

- $+ y$ denotes the complex conjugate of y.
- $| y$ denotes the magnitude of y.
- $* y$ denotes the generalized signum; a complex number in y direction.
- $j. y$ denotes the complex number $0jy$; that is, $0 + iy$ (imaginary).
- $x j. y$ denotes the complex number xjy; that is, $x + iy$ (complex).
- $+. y$ denotes the pair containing $\text{Re}(y)$ and $\text{Im}(y)$, (real/imaginary).
- $*. y$ denotes the polar pair (r, θ) where $y = re^{i\theta}$, (length/angle).
- $r. y$ is e^{iy} (angle to complex).
- $x r. y$ is xe^{iy} (polar to complex).

See also the circular functions.

27. Number Theory, Combinatorics and Permutations

- $p: y$ denotes the y-th prime number.
- $p:^___1 y$ denotes the number of primes less than y.
- $q: y$ denotes the prime factors of y.
- $\times q: y$ denotes the prime factors of y with limited factor base.
- $\times +. y$ denotes the greatest common divisor (gcd).
- $\times *. y$ denotes the least common multiple (lcm).
- $\gcd y$ denotes the function gcd defined in $\text{system\packages\math\gcd.ijs}$ results in the gcd of the elements of y along with the coefficients whose dot product with y gives the gcd. Also useful for finding inverses modulo m.
- $\times | y$ denotes the residue of y modulo x (remainder after division).
- $! y$ denotes the factorial of y for integer y and $\Gamma(y+1)$ in general.
- $\times ! y$ denotes the number of combinations of x things from y things (generalized).
- $A. y$ denotes the atomic representation (position) of the permutation y.
- $\times A. y$ applies the permutation with atomic representation x of order $#y$ to y.
- $(i.!n) A. i.n$ gives all permutations of order n.
- $C. y$ denotes the cycle representation of the numeric permutation y as a boxed list; visa versa when y is boxed.
- $\times C. y$ permutes y according to the permutation x (either numeric or boxed cyclic representations for the permutation may be used).
- $\{} y$ denotes the Cartesian product: all selections of one item from each box in y.

28. Exact Integer and Rational Computations

2x is the exact integer 2 (extended precision)
2x^100 is the exact integer 2^{100}
2r3 is the exact rational number 2/3 (extended precision)
x: y convert y to extended precision rational
x:^:_1 y convert y to fixed precision numeric
2 x: y gives the numerator/denominator of extended precision rationals
m&| (2x&^) y computes 2^y mod m efficiently (without computing 2^y)

29. Calculus, Roots and Polynomials

F D. n y the n-th derivative of F at y
F d. n y the n-th derivative rank zero: compare to (F D. 1)^"0 y
x F D: n y the slope of the secant of F at y and x+y
F t. n the n-th Taylor series coefficient of F about 0
F t: n the n-th Taylor series coefficient of F about 0 weighted by !n
F T. n y the n-th degree Taylor polynomial for F about 0 evaluated at y
p. y polynomial/root; toggles between coefficient representation and
the leading-coefficient-with-root boxed representation of polynomials
x p. y polynomial specified by x evaluated at points y
p.. y Derivative of the polynomial specified by y
x p.. y Integral of the polynomial specified by y with constant term x

30. Addons

There are several addons available for J; see http://www.jsoftware.com/download/download.htm
Also, under windows it is easy to use system dll calls; see the J file
system\packages\winapi\win32api.dat

- fftw fast fourier transform package
- JAR (or J-ARchive), is a complete database system for J words, data, test cases and general scripts
- image2 gives facilities for reading and writing 24 bit images in a variety of formats (J4)
- image3 like image2, with significant improvements including some animation and 8-bit support (J5)
- lapack standard linear algebra package; nicest documentation I've seen is at http://www.cs.colorado.edu/~lapack/
- SFL The SFL (Standard Function Library) from iMatix is a portable function library for C/C++ programs (lots of general stuff).

An alternate random number generator by Ralph Selfridge has also appeared on the Jforum but not made it onto the Jsoftware site.
31. Graphics

J offers a great number of facilities for doing Windows graphics. Running the Graphics, Open GL and Plot labs is recommended. The plot.ijs script provides a powerful high level set of useful utilities. Most users will do well to study the plot lab first. The scripts gl2.ijs and gl3.ijs provide the graphics functions for windows driver and opengl graphics functions. While the main features remain, there are significant differences between system graphics for J 4.06 and 5.

Graphics scripts for fvj2 (available from Cliff’s J pages) include:

- `fvj2dwin+.ijs` which gives a simple object based window environment
- `fvj2raster5.ijs` which contains utilities for working with raster images
- `fvj2chaotica+.ijs` which contains utilities for working with chaotic attractors including functions for resolving data in various ways that are useful in a broader contexts.
- `fvj2povkit+.ijs` which gives facilities for formatting 3-D scenes for ray tracing by Pov-RAY
- `fvj2owin+.ijs` which gives a simple Open GL based 3-D modeling environment.

32. Parts of Speech and Grammar

The words of a string representing a J expression may be obtained using word formation (; ::). Most words are denoted with an ASCII symbol found on standard keyboards, or such a symbol followed by a period or colon. For example, we may think of "%" as denoting a J word meaning "reciprocal", and "." as an inflection of that word meaning "matrix inverse". Basic data objects in the language are nouns. These include scalars, such as 3.14, as well as lists (vectors) such as 2 3 5 7, matrices which are a rectangular arrangement of elements and higher dimensional arrays of elements. In general, arrays contain elements that are organized along axes. These arrays may be character, numeric or boxed. Any array may be boxed and, thereby, be declared to be a scalar. Nested boxing allows for rich data structures. The number of axes of an array gives its dimension. Thus, a scalar is 0-dimensional, a vector is 1-dimentional, a matrix is 2-dimensional and so on. The shape of an array is a list of the lengths of its axes. Often, the shape can be imagined as being split into two portions, giving an array of arrays. The leading portion of the split gives the frame (the shape of the outer array) and the other portion corresponds to the shape of the "element" arrays, giving what are called cells. The items are the cells that occur by thinking of an n-dimensional array as a list of (n-1)-dimensional arrays. That is, items are rank _1 cells.

Functions are known as verbs. For example, + denotes plus, % : denotes root, and (+ % #) denotes average. Adverbs take one argument (often a verb) and typically result in a verb. For example, insert, denoted by / is an adverb. It takes a verb argument such as + and results in a derived verb +/ that sums items. Notice that adverbs take their adverbial argument on the left. The derived verb may itself take one argument (where it is a monad) or two arguments (where it is a dyad). It is sometimes helpful to be able to view a function as an object that can be formally manipulated. This facility is inherent in the J gerund. Gerunds are verbs playing the role of a noun.

Conjunctions take two arguments and typically result in a verb. For example, dot is a conjunction. (Dot is an isolated period; be careful to distinguish this from a dot immediately after
a nonblank symbol that is an inflection.) For example, with left argument sum and right argument times, we get the matrix product $+/\ast$ as the derived verb.

The application of verbs to arguments to obtain the result of an expression is often said to follow a right to left order. Thus $3*5+2$ is 21 since the $5+2$ is evaluated first. However, it is possible to think of the expression as being read left to right: 3 times the result of 5 plus 2. Hence, it is probably safer to describe the order of execution by saying that verbs have long right scope and short left scope. Of course, one can use parentheses to order computations however desired: $(3*5)+2$ is 17.

In contrast to verbs, adverbs and conjunctions bond to their arguments before verbs do. Also in contrast, they have long left scope and short right scope. Thus, we do not need the parentheses in $(+/\ast)$. $*\text{ to denote the matrix product since the left argument of the dot is the entire (verbal) expression on its left, namely, }+/\text{ which gives the sum. Thus }+/\ast\text{ denoted the matrix product.}$

33. Glossary

Adverb
A part of speech that takes an argument on the left and typically results in a verb. For example, insert / is an adverb such that with argument plus as in $+/\text{ the result is the derived verb "sum".}$

Atom
A 0-dimensional element of an array; it may be numeric, character or boxed.

Axis
An organizational direction of an array. The shape of an array gives the lengths the axes of the array.

Cell
A subarray of an array that consists of all the entries from the array with some fixed leading set of indices.

Conjunction
A part of speech that takes two arguments and typically results in a verb. For example, $*:\wedge:3$ is a function that iterates squaring three times. Function power $\wedge:\text{ is a conjunction.}$

Dimension
The dimension of an array is the number of axes given by the array's shape.

Dyad
A verb with two arguments.

Explicit
Describes a definition which uses named arguments; for example, a verb defined using $x\cdot\text{ and }y\cdot\text{.}$

Fork
A list of three verbs isolated in a train so that composition of the functions, as described in Section 11 occurs.

Gerund
A verb playing the role of a noun.

Hook
A list of two verbs isolated so that composition of the functions, as described in Section 11 occurs.

Inflection
The use of a period or colon suffix to change the meaning of a J word.

Item
A cell of rank $_1$. Thus, an array may be thought of as a list of its items.

Monad
A verb with one argument.

Noun
A data object that is numeric, literal (binary) or boxed.

Rank
The dimension of cells upon which a verb operates; additional leading axes are handled uniformly.

Tacit
Function definition without explicit (named) reference to the arguments

Verb
A function; when it uses two arguments, it is a dyad; and when it uses one argument, it is a monad.
Acknowledgements. These notes grew out of Appendix B that appeared in the author's first edition of *Fractals, Visualization and J*. The remarks of Keith Smillie on drafts of these notes were greatly appreciated.

Clifford A. Reiter
Department of Mathematics
Lafayette College
Easton, PA 18042
reiterc@lafayette.edu
http://www.lafayette.edu/~reiterc