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Modeling techniques forecast future behavior 
based upon available data. Traditional models use 
linear or differential equations to create deterministic 
models that use the available information to estimate 
parameters in the model and then current information 
is used as input to the model to forecast subsequent 
evolution. The idea of fractal or chaotic forecasting is 
to use historical data that closely matches the pattern 
of the current situation, and only utilize the most 
relevant historical data for the construction of the 
forecast. The technique is fairly simple and can be 
effective, especially if the phenomenon contains subtly 
hidden, deterministic, nonlinear behavior. For more 
discussion of fractal forecasting, see [1,2]; earlier 
versions of some of these experiments and some 
variants of the implementation appear in [3].  

The Henon Map 
We begin by considering the Henon map. This is a 

nonlinear map that depends upon the previous two 
data values. In particular, it is defined by the 
following. 
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We can implement it in J as a function that takes a 
pair ),( 12 −− nn hh  and results in the subsequent pair 

),( 1 nn hh −  as follows. Notice that when we iterate a 
few steps, the first value in a pair matches the last 
value in the previous pair. Thus, to obtain 1000 steps 
of the Henon map as data, defined below, we need 
only one column of the result of the iteration. 
 
   hen=:{:,1:+0.3&*@{.+_1.4&*@*:@{: 
 
   hen^:(i.6) 0.1 0.5 
     0.1      0.5 

     0.5     0.68 
    0.68  0.50264 
 0.50264 0.850294 
0.850294 0.138592 
0.138592   1.2282 
 
   $data=:{.|:hen^:(3+i.1000) 0 0 
1000 
 

Figure 1 shows the first 80 values in the data. 
Notice that the data appears to be fairly random, yet 
certain patterns of zigzag up-downs seem to roughly 
reappear. That is the type of subtle, almost repeated, 
behavior that fractal forecasting exploits. 

 
Figure 1. Some Steps of the Henon map. 

 

Fractal Forecasting 
We now will transform the first 900 points in our 

time series into a reference set and try to use it to 
predict the behavior of some sample data that starts at 
a latter time. For this time series data we have special 
knowledge. We know that pairs of points determine 
the next value. Thus, we will use infix to form moving 
windows of size 2 into a reference list of pairs of 
Henon map data. We also select a single sample pair, 
not in our reference set, from which we will forecast. 
We define a function dist that computes the distance 
between points. We use it to find the distance between 
the sample point and the reference data points and then 
we locate the 5 closest points in the reference list. 
 
   dist=: +/&.:*:@:-"1 
    
   4 0 1 dist 2 2 2 
3 
 
   w=:2    NB. window size 
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   $ref =:}: w ]\ 900{.data 
898 2 
 
   _3{.ref 
_0.353521 0.574497 
 0.574497 0.431878 
 0.431878 0.911223 
 
   ]sam=:data {~ 950+i.2 
1.09422 _0.794183 
 
   5{.sam dist ref 
1.74765 0.964141 2.23679 0.306888 
2.2355 
 
   5{./:~ sam dist ref 
0.00173705 0.00854398 0.0208798 
0.0283261 0.031843 
 

Notice above that the 5 closest points are a couple 
of orders of magnitude closer than the first 5 points.  

In practice, it is convenient to have the indices 
where those smallest distances occur. Then we create a 
least squares linear model using the 5 nearest reference 
points and their subsequent values. There is nothing 
special about our choice of using 5 points. We must 
choose at least one more point than the window width 
in order to compute the linear model; using too few 
points risks highly sensitive predictions and using too 
many points would not take advantage of the pattern 
that appears in the sample point. The coefficients of 
the linear model, given in coef below, are then used 
to make a forecast from the sample point and that is 
compared to the true Henon value below. Notice they 
do not differ until the third decimal place. 
 
   ]j=:5{./: sam dist ref 
763 292 497 84 470 
 
   ]coef=:((w+j){data)%. 1,.j{ref 
_2.05754 5.19404 4.00548 
 
   coef +/ . * 1,sam 
0.444781 
 
   952{data 
0.445247 
 

Of course, the forecast and the last entry in the 
sample point can now be used as a new sample point 
and further forecasts can be made. We automate the 
process with the function ffcast. It is a dyadic 

function where both arguments are a list of two items. 
The left argument specifies the number of nearest 
reference points to use and the number of steps to 
forecast into the future. The right argument is a boxed 
list of the reference data as a vector and the sample 
point from which to forecast. Notice it uses two locally 
defined functions; one of those functions locates the 
indices of the best reference points for the given data 
and the other gets the linear model fitting those points. 
The last line iterates the process of creating and 
applying those linear models. We then compare 4 steps 
of the forecast with 4 steps of real Henon data. Figure 
2 compares the prediction with the real data over 20 
steps. 
 
   ffcast=: 4 : 0 
'y sam'=. y. 
w=.#sam 
'k n'=. x. 
ref=.}:w ]\ y 
get_j=.k"_ {. [: /: ref"_ dist ] 
get_coef=.({&y@:(w&+)%.1:,.{&ref)@:get_j 
{:|:(}.,get_coef +/ . *1:,])^:(1+i.n)sam 
) 
 
   $pred=:5 4 ffcast (900{.data);sam 
4 
 
   $real=: (952+i.4){data 
4 
 
   pred,:real 
0.444781 0.484614 0.804691 0.238852 
0.445247 0.484202 0.805342 0.237254 
 

 
Figure 2. Comparison of Forecast and Henon Data. 
 

In Figure 2, the forecast is shown in black while 
the real data is lighter. Notice that the forecast does 
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quite well for about 10 steps but eventually diverges 
from the true data. 

Sunspots 
As a second illustration we will consider fractal 

forecasting applied to sunspot data. Sunspot 
observations have been recorded for over 400 years 
and can be estimated from other phenomena [4]. We 
use 400 years worth of data available in a script 
associated with [3]. 
 
   load 'fvj2\ts_data.ijs' 
 
   $sunspots 
400 
 

Figure 3 shows 200 years worth of sunspot data. 
Notice the periodicity, yet near repetitions are not 
obvious.  

 

 
Figure 3. Sunspot Data 

 
Sunspot cycles are around 11 years, so we will use 

a width of 12 for our reference and sample points. We 
use the 20 closest reference points to make our 
estimate and attempt a 25 year forecast as follows. The 
results are shown in Figure 4. 
 
   w=:12 
 
   sam=:(351+i.w){sunspots 
 
   refdat=:350{.sunspots 
 
   pred=:20 25 ffcast refdat;sam 
 
   real=: (w+351+i.25){sunspots 
 

 
Figure 4. Comparison of Sunspot Data and Forecasts. 

 
While the general trend of sunspot activity is 

followed, the forecasting seems quite sensitive to the 
window width and number of reference points used. 
Indeed, since the pattern diverges more on the earlier 
steps, the fit shown in that figure involves luck. Still, 
the technique seems to follow the cyclic pattern fairly 
reliably and gets the scale of the peaks correct with 
reasonable frequency. 

Like any forecasting technique, fractal forecasting 
is not magic and is only appropriate in certain 
contexts. However, it seems to be remarkably able to 
utilize subtle nonlinear relationships in data provided 
there is an ample historical data base and fractal 
forecasting is quite easy to implement.  
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