
Preprint 1

With Mathematica
and J:

Gasoline Inventory
Simulation

Cliff Reiter

Computational exercises and demonstrations

appear frequently in the classes that I teach at
Lafayette College. The software that I use for in-class
demonstrations is usually Mathematica [4] or J [3]. I
focus on one language or the other throughout the
course when I expect the students to develop the
ability to make substantial explorations and do
independent experimentation. There is an ongoing
expectation at Lafayette that Mathematica be used in
Calculus Classes [2]; I also use Mathematica for my
Numerical Analysis and Techniques of Math
Modeling classes. I use J for teaching Number Theory
and Linear Algebra and it is central to my
mathematical visualization course that follows the text
[6]. However, I always have interest in how the
explorations that I do in one language would be done
in the other.

I recently asked my math modeling students to
explore an inventory simulation. While this is a toy
problem, it involves a substantial data set, the need to
develop a Monte Carlo Simulation of demands, and
exploration of the behaviors that appear with various
choices of parameters. After the exercise, one student
mentioned that her family runs a fuel oil business and
they have software to determine likely demand and
they input data similar to what we used in the
simulation. Her family was surprised and pleased to
know she was learning something useful in college.

That encouraged me to share the exercise here. In
particular, in this note we compare the Mathematica
template solution for this simulation presented in class
with an analogous effort in J.

Simulation Overview
The inventory demand simulation from our

Techniques of Math Modeling text [1] is premised on
having data for the number of gallons of gasoline sold

by a station for a thousand weeks. The pattern involves
demands of between 1000 and 2000 gallons per week
broken into categories of size 100, with the most
frequently occurring categories being toward the
middle. We understand that there may be various costs
associated with the delivery and storage of the
gasoline and we desire not to run out of gasoline or
exceed the station's storage capacity. The idea is to use
the data to generate a realistic Monte Carlo simulation
of demand, so that we might experiment with delivery
strategies.

Random Reals, Linear Interpolation,
Monte Carlo Simulation:
Mathematica

We can easily generate random "real" numbers
between 0 and 1. Timing the creation of a million
random numbers of this type (ten times) shows that
these sizable samples can typically be generated in
about 0.2 seconds.

In[1]:= Random@D
Out[1]= 0.874221

In[2]:= Table@Random@D, 85<D
Out[2]= 80.292129, 0.728089, 0.342794, 0.961358, 0.307707<
In[3]:= t= Table@Timing@x= Table@Random@D, 81000000<D;D,810<D

Out[3]=

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

0.22Second Null
0.21Second Null
0.211Second Null
0.2Second Null
0.22Second Null
0.211Second Null
0.21Second Null
0.21Second Null
0.21Second Null
0.211Second Null

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
In[4]:= Mean@First@Transpose@tDDD

Out[4]= 0.2113Second

In order to simulate demands so that they appear in the
categories with some specified frequencies, we first
consider a small data set. Suppose that we want to be
able to generate a random number from the intervals
[0,100), [100,200), and [200,300) with frequencies 0.2,
0.5 and 0.3 respectively. That is, we assume that 20%

APL Quote Quad 2

of the time the demand will be between 0 and 100. See
Table I below. We then compute the cumulative sums
as follows.

Demand Frequency Cumulative
0 ≤ x < 100 0.2 0.2

100 ≤ x < 200 0.5 0.7
200 ≤ x < 300 0.3 1.0
Table I. Simplified Demand and Cumulative Frequency

In[5]:= <<Statistics̀ DataManipulatioǹ

In[6]:= x= 80, 100, 200, 300<
Out[6]= 80, 100, 200, 300<
In[7]:= y= 80, 0.2, 0.5, 0.3<

Out[7]= 80, 0.2, 0.5, 0.3<
In[8]:= cy= CumulativeSums@yD

Out[8]= 80, 0.2, 0.7, 1.<

We select a random real from [0,1) and use that to
select a random demand. For example, whenever the
random real is between 0.7 and 1 we recognize that as
from the third interval, which occurs with the
appropriate frequency 0.3 and linearly interpolate in
order to simulate a specific demand. Thus, to produce
a random demand, we produce a random real and then
apply the piecewise linear function through the points
given by cumulative frequencies (with a leading 0 pre-
pended) paired with the demand interval endpoints.

The Mathematica function Interpolation
with an appropriate option can be used to create the
piecewise linear interpolating function. It is the inverse
to the cumulative frequency function and given a
number from [0,1) results in the simulated demand.

In[9]:= f= Interpolation@Transpose@8cy, x<D,
InterpolationOrder→ 1D

Out[9]= InterpolatingFunction@H 0. 1. L, <>D
In[10]:= f@0D

Out[10]= 0.

In[11]:= f@0.2D
Out[11]= 100.

In[12]:= f@0.6D
Out[12]= 180.

The random demand function can then be defined and
the fact that it produces the expected frequencies of
numbers in the specified categories is illustrated as
follows.

In[13]:= randd@n_D:= Table@f@Random@DD, 8n<D
In[14]:= randd@2D

Out[14]= 8191.488, 260.732<
In[15]:= Timing@s= randd@1000000D;D

Out[15]= 84.667Second, Null<
In[16]:= Frequencies@Floor@sê100DD

Out[16]=
ikjjjjjj 199693 0

500428 1
299879 2

y{zzzzzz

Notice that creating a million random numbers with
the desired distribution took less than 5 seconds.

Random Reals, Linear Interpolation,
Monte Carlo Simulation: J

We can likewise easily generate random "real"
numbers between 0 and 1 in J. Timing the creation of a
million random numbers of this type (ten times) shows
that a million such numbers can typically be generated
in about 0.06 seconds, more than 3 times faster than
Mathematica.

 ? 0
0.971379

 ? 5 $ 0
0.0466292 0.330109 0.01346 0.220004
0.600044

 timing=:6!:2

 10 timing 'x=: 1000000 ?@:$ 0'
0.0559868

Creating the small data set, including cumulative

sums is straightforward; we use plus insert infixes for
the cumulative sum.

 x=:0 100 200 300

 y=:0 0.2 0.5 0.3

Preprint 3

]cy=:+/\y
0 0.2 0.7 1

Creating the piecewise linear function that fits the

cy and x data can be done in various ways. One is to
use the piecewise linear function from raster5.ijs, a
script associated with the old (edition 2) of scripts
associated with Fractals, Visualization and J [5].
Another, inspired by the cubic spline functions in the J
script spline.ijs, is discussed below. We define the
function xy_to_p that takes lists of x and y
coordinates of the points for which we want the
piecewise linear function as its arguments (x is
assumed to be ordered). It produces the list of
coefficients of the linear functions on the intervening
subintervals. The adverb lin_spline creates an
efficient function for evaluating that piecewise linear
function.

 xy_to_p=:4 : 0
(2]\ y) %."1 2]2 (1&,.)\ x
)

 lin_spline=:1 : 0
'X Y'=.m
p=.X xy_to_p Y
{&p@:(0>.<:)@:(+/)@:}:@:(X&(<:/))p.]
)

 f=:(cy;x) lin_spline

 f 0 0.1 0.2 0.6 0.7 1 1.1
0 50 100 180 200 300 333.333

Note that we extended the domain of the piecewise

linear function so that it is extended beyond the
endpoints of its domain using the linear functions on
the corresponding ends. Now we define the random
demand function and verify that it produces values in
the expected intervals with the expected frequencies.

 randd=: f@:?@:$&0

 randd 2
206.029 136.503

 10 timing 's=:randd 1000000'
0.583247

 /:~ (({.,#)/.~)<.s%100
0 199767
1 500216
2 300017

Notice that the expected frequencies appear and
that J produces the random demands almost ten times
faster than in Mathematica.

The Text's Problem
The actual class illustration that we used was to create
a simulated demand function randd for the data in
Table II along with a function that runs day-by-day
simulations of the daily demand. It also keeps track of
some other information along the way.

Demand Frequency Cumulative
1000 ≤ x < 1100 0.01 0.01
1100 ≤ x < 1200 0.02 0.03
1200 ≤ x < 1300 0.05 0.08
1300 ≤ x < 1400 0.12 0.20
1400 ≤ x < 1500 0.20 0.40
1500 ≤ x < 1600 0.27 0.67
1600 ≤ x < 1700 0.18 0.85
1700 ≤ x < 1800 0.08 0.93
1800 ≤ x < 1900 0.04 0.97
1900 ≤ x < 2000 0.03 1.00

Table II. Demand and Cumulative Frequencies

We will define a function MCIS that does a Monte
Carlo Inventory Simulation over a specified period.
We assume that a certain quantity Q of gasoline is
delivered with T days between deliveries. The
simulation begins with day zero and ends with day N;
At the start, the tanks are empty and a delivery is
made. We also assume there is a delivery cost d per
delivery and storage costs s per gallon per day.
Internal to the function MCIS, n denotes the day, c the
cumulative cost, In the current inventory level and z
gives the accumulated values of n, In and c.

Monte Carlos Inventory Simulation:
Mathematica

First we obtain the text data and demand function.
Then we implement and apply the simulation using
deliveries of 10,000 gallons every week with delivery

APL Quote Quad 4

costs of $500 per delivery, storage costs of one-fifth of
a penny per gallon per day. The result for the
simulation to day 10 is shown.

In[17]:= x= Range@1000, 2000, 100D
Out[17]= 81000, 1100, 1200, 1300, 1400,

1500, 1600, 1700, 1800, 1900, 2000<
In[18]:= y= 80, 0.01, 0.02, 0.05, 0.12, 0.2, 0.27,

0.18, 0.08, 0.04, 0.03<
Out[18]= 80, 0.01, 0.02, 0.05, 0.12, 0.2, 0.27, 0.18, 0.08, 0.04, 0.03<
In[19]:= cy= CumulativeSums@yD

Out[19]= 80, 0.01, 0.03, 0.08, 0.2, 0.4, 0.67, 0.85, 0.93, 0.97, 1.<
In[20]:= f= Interpolation@

Transpose@8CumulativeSums@yD, x<D,
InterpolationOrder→ 1D

Out[20]= InterpolatingFunction@H 0. 1. L, <>D
In[21]:= randd@n_D:= Table@f@Random@DD, 8n<D
In[22]:= MCIS@Q_, T_, d_, s_, N_D :=

Block@8In= 0, c= 0, n= 0, z = 8<<,
While@n<= N,
c= c+In∗s;
If@0== Mod@n, TD, In= In+Q;c =c+dD;
In= In−f@Random@DD;
z= Join@z, 88n, In, c<<D;
n= n+1D;

zD
In[23]:= MCIS@10000, 7, 500, 0.002, 10D

Out[23]=

i

k

jj

0 8592.07 500
1 7158.11 517.184
2 5670.84 531.5
3 4401.39 542.842
4 2804.81 551.645
5 1258.9 557.254
6 -303.861 559.772
7 8122.42 1059.16
8 6437.06 1075.41
9 4827.97 1088.28
10 3263.11 1097.94

y

{

zz

Notice that at day 6 the inventory became negative
and at that point the data becomes invalid since, for
example, storage cost can not be negative. We are
primarily interested in designing a delivery strategy
with reduced cost while minimizing the likelihood of
having inventory below 0 or above 20,000 (the

capacity of our system). Thus, we define a function to
give some summaries over longer runs. We decide that
we will be pleased with a strategy if when we run the
plan for a month, there is less than a 5% likelihood of
falling outside the desired inventory range. Below we
use the summary function on 31 day simulations with
the minimum inventory, maximum inventory, last
inventory and total cost given for each run.

In[25]:= MCISsum@Q_, T_, d_, s_, N_D :=
Block@8In, c, n<,8n, In, c< = Transpose@MCIS@Q, T, d, s, NDD;8Min@@In, Max@@In, Last@InD, Last@cD<D

In[26]:= Table@MCISsum@10000, 6, 500, 0.002, 30D, 83<D
Out[26]=

ikjjjjjj 615.279 12058.1 12058.1 3373.2
331.183 12941.4 12941.4 3361.01
668.671 11967.6 11967.6 3340.73

y{zzzzzz

Notice that there is a delivery on the last day, and
that the maximum inventory is the same. Thus, it
appears there is a mild accumulation of gasoline. Thus,
the class was presented with a reasonable but not
refined strategy for deliveries. They were asked to
design a strategy that reduced costs further given the
availability of larger tanker trucks. Most students had
no trouble finding cost reductions, and staying within
the other constraints. A couple students were able to
give really nice descriptions leading to compelling
choices.

The class then explored a similar problem
involving the number of miles run by a runner during a
week, based upon tabulated daily data. They were
expected use the same tools, with far less specific
guidance.

Monte Carlo Inventory Simulation: J
We update our simulated demand function and

translate the Mathematica Monte Carlo Simulation
almost directly into J.

 x=:1000+100*i.11

 y=:0 0.01 0.02 0.05 0.12 0.2 0.27
0.18 0.08 0.04 0.03

]cy=:+/\y
0 0.01 0.03 0.08 0.2 0.4 0.67 0.85
0.93 0.97 1

Preprint 5

 f=:(cy;x) lin_spline

 randd=: f@:?@:$&0

 MCIS=: 3 : 0
'Q T d s N'=.y
c=.n=.In=.0
z=.i.0 3
while. n<: N do.
 c=.c+In*s
 if. 0=T|n do.
 In=.In+Q
 c=.c+d
 end.
 In=.In-randd 1
 z=.z,n,In,c
 n=.n+1
end.
z
)

 MCIS 10000 7 500 0.002 10
 0 8095.4 500
 1 6862.15 516.191
 2 5397.09 529.915
 3 4279.79 540.709
 4 2869.79 549.269
 5 1295.7 555.008
 6 _142.2 557.6
 7 7973.12 1057.32
 8 6246.84 1073.26
 9 4643.85 1085.76
10 3063.55 1095.04

Notice that we again see that we run out of

gasoline on day 6. We use tacit functions to create the
summary information. The verb Ip gives the
inventory information while Lp gives the information
from the last part.

 Ip=:(<./,>./)@:(1&{)@:|:

 Lp=:_2&{.@{:

 MCISsum=: (Ip,Lp)@:MCIS"1

 MCISsum 3#,:10000 6 500 0.002 30
1355.22 13483.7 13483.7 3411.46
451.477 10811.3 10811.3 3323.94
760.336 12548.4 12548.4 3351.77

Furthermore, we implement a loop-less version of

MCIS and create the corresponding summary function
easily enough, and get identical results so long as we
reset the random seed appropriately.

 MCISa=:3 : 0
'Q T d s N'=.y
dd=.0=T|i.N+1
In=.+/\(Q*dd)-randd N+1
c=.+/\(d*dd)+s*0,}:In
(i.N+1),.In,.c
)

 9!:1]7^5

 MCISa 10000 7 500 0.002 10
 0 8095.4 500
 1 6862.15 516.191
 2 5397.09 529.915
 3 4279.79 540.709
 4 2869.79 549.269
 5 1295.7 555.008
 6 _142.2 557.6
 7 7973.12 1057.32
 8 6246.84 1073.26
 9 4643.85 1085.76
10 3063.55 1095.04

 MCISsuma=: (Ip,Lp)@:MCISa"1

Timing tests of 100 repetitions of 31 day
simulations using MCIS take about 0.12 seconds total
in both Mathematica and J, making the running time
fairly insignificant. However, the loop-less J version
(MCISsuma) is more than 10 times faster. We did not
try a loop-less implementation of the Mathematica
function, but we expect it would also be more efficient
than the loopy version.

Postscript
We see that demand simulations can be readily

implemented in Mathematica and J. These run quickly,
but the J implementations were usually faster on core
number crunching and its loop-less version ran very
quickly. I note that both J and Mathematica would
benefit by better help indices. Finding whether there
are suitable linear splines does not seem to amount to
simply typing "linear spline" or "piecewise linear" into
the help search menu for either language. Readers may

APL Quote Quad 6

want to glance back at the looped Mathematica and J
implementations of MCIS. The flow of the J
implementation is easier for my eye to follow. Indeed,
I do not hesitate to use explicit, loopy functions when
sharing J models with classes. Students are often more
comfortable modifying such functions than tacit ones.
However, regardless of the language, when efficiency
becomes a driving issue, utilizing array arithmetic
should be considered and that was easy to implement
in the simulation that we did in J.

References
[1] Giordano, Weir & Fox, A First Course in

Mathematical Modeling, 3rd edition, Thomson,
Brooks/Cole, 2003.

[2] L. T. Hill and C. A. Reiter, Laboratories as an
Enhancement to Calculus, The Mathematica
Journal, 2 1 (1992) 41-44.

[3] Jsoftware, J6.01c, http://www.jsoftware.com,
2007.

[4] Mathematica™ 5.2, http://www.wolfram.com
Wolfram Research, Inc., 2005.

[5] C. A. Reiter, Fractals, Visualization and J, 3rd
edition, Published by Lulu, http://www.lulu.com,
2007.

[6] C. A. Reiter, Archive of FVJ2 material,
http://www.lafayette.edu/~reiterc/j/index.html,
2006.

