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Abstract

Cyclic cellular automata in two dimensions have long been intriguing because
they self organize into spirals and that behavior can be analyzed. The form
for the patterns that develop is highly dependent upon the form of the neigh-
borhood. We extend this work to three dimensional cyclic cellular automata
and observe self organization dependent upon the neighborhood type. This
includes neighborhood types intermediate between Von Neumann and Moore
neighborhoods. We also observe the patterns include nested shells with the
appropriate forms but that the nesting is far more complex than the spirals
that occur in two dimensions.
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1. Introduction

A cellular automaton is a collection of cells each of which has neighbors.
At every time step each cell is in a state and the set of allowed states is usually
finite. At each time step the states of all cells are updated according to a local
rule that depends only upon the state of the cell and its neighbors. Cellular
automata are valuable because they may be described using simple local rules
yet the global behaviors that evolve from those rules can be extremely rich
[1, 2, 3]. Perhaps the most famous cellular automata is Conway’s Game of life
that was popularized by Martin Gardner’s Scientific American columns [4, 5]
and has since been shown to be capable of universal computation [6, 7, 8].

Dewdney described cyclic cellular automata [9] in Scientific American in
1989 where they were called cyclic state automata. He states they were dis-
covered by David Griffeath who subsequently investigated them with others
[10]. We will refer to them as cyclic cellular automata (CCA). When CCA

Preprint submitted to Chaos, Solitons & Fractals June 15, 2011



are applied to a random initial configuration in 2D, they typically evolve
through distinct phases that have different appearances. The end result is
visually dramatic, periodic spirals that self-organize. In [11] those automata
were investigated using a wide variety of neighborhoods including asymmet-
ric and quasicrystaline neighborhoods. Generally speaking, the general form
of the spirals echoed the neighborhood shapes in the sense that their form
roughly followed the form of an inverted outline of the neighborhood, but
spiraling and periodic.

The fact that cyclic cellular automata on random backgrounds are ex-
pected to evolve into a periodic organized state can be explained [10, 9, 11] as
will be tersely described in the next section. Readers interested in more com-
plete explanation should consult those references. The same analysis means
that CCA on 3-dimensional rectangular grids should also evolve through
phases to a final nontrivial periodic configuration. Previous theoretic work
on 3-dimensional periodic spirals motivated by chemical reactions shows that
there are limits on possible configurations and an exclusion principle is de-
veloped [12, 13]. In this paper we experimentally explore the 3-dimensional
analogs of spirals and see that they depend upon neighborhood shape. We
also see that demons have a great deal more freedom to evolve in complex
forms.

2. Cyclic Cellular Automata and Terminology

A cyclic cellular automaton is defined as an automaton where each cell
takes one of N states 0, 1, 2, ...N − 1 and a cell in state i changes to state
i + 1 mod N at the next time step if it has a neighbor that is in state
i + 1 mod N , otherwise it remains in state i at the next time step.

The bond between two neighbors is open if the difference between their
states is −1, 0, 1 mod N . Otherwise the bond is closed. Note that once a bond
is open it must remain open for all future time. A site is considered debris
at a given time if it has no open bonds with its neighbors. The connected
components of the non-debris sites are called droplets. A loop within a droplet
using open bonds could possibly include only bonds −1, 0, 1 mod N . If one
takes a running sum (not mod N) of the differences mod N (so each difference
is from −1, 0, 1) along such a loop, then the total must be zero mod N since
each cell value appears once in a positive and negative sense. Thus, the sum
of the differences must be a multiple of N . If the multiple is not zero, then
the loop is part of a defect. That property of the loop will be preserved as
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the automaton evolves, and each cell in a defect must eventually continue
cycling through the states forevermore; although it may take more than one
time step between each change of state. Eventually every cell neighboring
such a loop must cycle. Then their neighbors must cycle. Eventually every
cell in such a droplet must cycle, and thus the droplet must grow since every
neighbor of the droplet will eventually join the droplet since the neighbor in
the droplet will eventually cycle through all values. Of course the speed of
such cycling need not be constant. If a defect loop runs through all states as
efficiently as possible on the lattice (minimal period having no unnecessary
0-difference bonds) then it is a demon. Given random initial states for all
the cells on an infinite lattice, demons are expected to occur somewhere with
probability one. Thus, demon domination is the expected long term state.

We illustrate these notions with a 2-dimensional example. Figure 1, from
[11], shows the evolution of a N = 14 state CCA with Von Neumann neigh-
bors and periodic boundary conditions on a 500 by 500 array of cells. The
states are shown cyclically with hue, running from red through green and
blue and magenta. In the upper left time step 75 is shown and debris and
droplets can be noted. In the upper right time step 150 is shown and some
debris remains, droplets dominate, but a few spirals have self organized. In
the lower left time step 225 is shown and the spirals have grown and several
new spirals have formed. Portions of the image that have reached periodicity
14 are separated from other portions by the black pixels. In the lower right
time step 975 is shown and spirals dominate and the optimal period 14 spi-
rals have almost overtaken all the higher period spirals. The spirals have a
diamond orientation, which is the outline of a cell’s Von Neumann neighbors.

3. Cyclic Cellular Automata in 3-Dimensions

In a rectangular three dimensional grid there are various highly symmetric
choices for neighborhoods. Imagine a 3 by 3 by 3 block of cells numbered as
in the three planes shown below.

0 1 2 9 10 11 18 19 20
3 4 5 12 13 14 21 22 23
6 7 8 15 16 17 24 25 26

We consider the center cell to be in position 13 and the six Von Neumann
neighbors share “faces” and have positions 4, 10, 12, 14, 16 and 22. The

3



Figure 1: Von Neumann CCA in two dimensions with N = 14 states at times t =
75, 150, 225, 975

.
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Figure 2: Von Neumann CCA in three dimensions with N = 38 states at time t = 400

.

Moore neighbors are all the positions except 13. In 3-dimensions we also have
the intermediate “edge” neighbors which amount all the positions except the
eight cube corners. That is, 0, 2, 6, 8, 18, 20, 24, and 26 are not included.

We first consider the Von Neumann neighbors. The outline of those
neighbors has an octahedral shape. Figure 2 shows the configuration using
N = 38 states after t = 400 steps are applied to an initially random 150 by
150 by 150 configuration. On the left is a 3-dimensional view with just 4
states shown while on the right the entire top plane is shown. Debris and
development of droplets is apparent. Figure 3 shows the configuration after
t = 500 steps where debris, droplets and defects are all visible. Figure 4
shows t = 999 where nested octahedral-like faces have developed. Notice
a kind of spiraling of the level can be observed. Movies showing the full
evolution of this automaton may be found at [14].

Figure 5 shows the closed bonds that arise from the configuration shown
in the previous three figures after period 38 has been achieved. Any circuit
in the transparent region that circuits a column would be a demon. The
almost fractal like pattern the closed bonds exhibit suggests there is a rich
variety of demons.

5



Figure 3: Von Neumann CCA in three dimensions with N = 38 states at time t = 500

Figure 4: Von Neumann CCA in three dimensions with N = 38 states at time t = 999

.
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Figure 5: Closed bonds for Von Neumann CCA in three dimensions with N = 38

.
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Figure 6: Moore CCA in three dimensions with N = 128 states at time t = 642

.

We next consider the Moore neighborhoods using N = 128 states. The
outline of those neighbors has a cubic shape. Figure 6 shows the configuration
after t = 642 steps and complex passing waves with partial cubic-like forms
observed in many places.

We next consider the Edge neighborhoods and N = 86 states. The outline
of those neighbors has a truncated cubic shape with 14 faces. Figure 7 shows
the configuration after t = 534 steps. Partial truncated cubic patterns appear
and spiraling may be observed.

We lastly consider mixed neighborhoods that are Moore in two dimensions
but Von Neumann in the orthogonal direction. In particular, the neighbors
have positions 4, 9, 10 11, 12, 14 15, 16, 17, and 22. The outline of those
neighbors has an unclear shape although we might expect square cross sec-
tions both parallel to and at a 45 degree offset from the underlying rectan-
gular lattice. Figure 8 shows the configuration when there are N = 56 states
after t = 640 time steps.

4. Conclusions

We have seen that Cyclic Cellular Automata in three dimensions must
self-organize for the same reasons that 2-dimensional versions self-organize.
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Figure 7: Edge CCA in three dimensions with N = 86 states at time t = 534

.

Figure 8: Von Neumann & Moore mixed CCA in three dimensions with N = 56 states at
time t = 640

.
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We see that the shapes of the organization reflect the patterns of the neigh-
borhoods and in three dimensions there are additional highly symmetric
neighborhoods that are possible. However, in three dimensions the self organ-
zation is more complex than simple spirals since concentric levels of a demon
must be connected, but in three dimensions the paths for those connections
have many alternatives.
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