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Abstract
Whether there exists a parallelepiped with edges, face diagonals, and main diagonals

all of integer length is an open question. This is equivalent to thirteen linked quadratic
Diophantine equations. We look at the basic Diophantine equation: the structure of integer
length vectors in dimensions two, three, and four and give matrix generators for producing
all the 3-dimensional integer length integer vectors. Parametric families of parallelepipeds
that have good properties and the results of computer searches for perfect parallelepipeds
are also described.

1. Introduction

The question of whether there is a rectanglular 3-dimensional box with integer edges,
face diagonals, and body diagonal is an open problem often referred to as the perfect
cuboid problem [1]. Thus, this question is whether there exist three positive integers x, y,
and z such that x2+ y2, x2+ z2, y2+ z2, and x2+ y2+ z2 are all squares. Along with the
three conditions that each of the edges is integer length, this results in 7 conditions. It is
known that if any one of those seven lengths is allowed to be noninteger, then infinitely
many solutions exist [1].
Another variation on the perfect cuboid problem is to relax the condition that the

edges should be perpendicular. More precisely, is there a nondegenerate parallelepiped in
three dimensions such that its edges, face diagonals, and main diagonals are all of integer
length? This question is also open and is known as the perfect parallelepiped problem [1].
A negative answer would imply that no perfect cuboids exist. We investigate mathematics
related to the perfect parallelepiped problem.
Notice that a nondegenerate parallelepiped is generated by three independent vectors,

say u, v, w. Notice that each face has two diagonals and there are four body diagonals.
Thus, a perfect parallelepiped would satisy the 13 conditions that ,u,, ,v,, ,w,, ,u +
v,,,u−v,, ,u+w,, ,u−w,, ,v+w,, ,v−w,, ,u+v+w,, ,−u+v+w,, ,u−v+w,, and
,u+v−w, are all integers. While there is no requirement that a perfect parallelepiped have
integer coordinates, we will be focusing on this stronger version of the perfect parallelepiped
problem.
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Our main tool will be the parametrization of all integer length integer vectors in two,
three and four dimensions. While matrix generators are known for the 2-dimensional case
(yielding the Pythagorean triples), we give the corresponding, more general, result in the
3-dimensional case. We will conclude by looking at families of vectors having some of the
perfect parallelepiped properties, and describe some searches for perfect parallelepipeds
using the tools we develop.

2. Integer Length Integer Vectors

Integer length integer vectors correspond to solutions of diophantine equations requiring
a sum of squares to be a square. For example, such vectors in Z2 correspond to integer
solutions to x2+ y2 = t2. Positive integer solutions are Pythagorean triples corresponding
to right triangles with integer sides. For example, the classic 3−4−5 triangle corresponds
to the integer length vector u = �3, 4X. It will often be convenient to append the length
of a vector to itself. We will call these extended coordinates and denote them with a
superscript plus. Thus, the above classic triangle has extended coordinates u

+

= �3, 4, 5X.
While that vector is formally in Z3, we will feel free to regard it as an integer length

vector in 2-dimensions. The 3 and 4 are then called the ordinary coordinates of u
+

. Also,
anytime we discuss the length of an extended coordinate vector we will mean the length

of its ordinary coordinates. So ,u+, = 5 for the example above.
The following theorem gives us techniques for parametrizing integer length vectors with

integer coordinates in 2, 3, and 4-dimensional space. The 3-dimensional version is similar to
the parametrization given in Sierpinski [4]; the 4-dimensional version contains a case similar
to the 3-dimensional parameterization, as well as a totally new case. The 2-dimensional
version is given for completion and contrast.

Theorem 1. Up to rearranging the ordinary coordinates, the nonzero integer length
integer vectors in two, three, and four dimensions may be parametrized in extended coor-
dinates by the following forms:
(a) The 2-dimensional form is:

u
+

=
?p2 − n2

n
, 2p,

p2 + n2

|n|
#

where p is any integer and n is a divisor of p2.
(b) The 3-dimensional form is:

u
+

=
?p2 + q2 − n2

n
, 2p, 2q,

p2 + q2 + n2

|n|
#

where p and q are any integers and n is any divisor of p2 + q2. Moreover, if the first
coordinate is positive, and not both p and q are zero, then n may be chosen to be so that
0 < n <

0
p2 + q2.

(c) The 4-dimensional forms are:

u
+

=
?p2 + q2 + r2 − n2

n
, 2p, 2q, 2r,

p2 + q2 + r2 + n2

|n|
#

(1)
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and

u
+

=
? (2p+ 1)2 + (2q + 1)2 + (2r + 1)2 − n2

2n
, 2p+ 1, 2q + 1, 2r + 1,

(2p+ 1)2 + (2q + 1)2 + (2r + 1)2 + n2

2|n|
#

(2)

where p, q, and r are any integers and n is any divisor of p2 + q2 + r2 for equation (1) or
any divisor of (2p+ 1)2 + (2q + 1)2 + (2r + 1)2 for (2).
Proof. First we note that in each case, direct computation verifies that the extended

coordinate is the length of the ordinary coordinates and it is easy to check that when the
divisibility conditions hold, then all the terms are integer. A Mathematica script verifying
the length computations may be found at [3].
Now we need to show that any nonzero integer length integer vector in the specified

dimensions has one of the given forms. We begin by proving part (b). A nonzero integer
length vector in Z3 corresponds to integer solutions to:

x2 + y2 + z2 = t2 (3)

where t > 0. We note that squares of integers are congruent to 0 or 1 modulo 4, depending
on whether the integer is even or odd. Thus, the only possibilities for (3) to hold modulo
4 are if all four of the squares are congruent to 0 or if exactly one of x2, y2, z2 along
with t2 is congruent to 1. In either case, at least two of x, y, and z must be even. Up
to rearranging ordinary coordinates, that means that we may assume y = 2p and z = 2q.
Substituting those and t = x+ e into (3) and simplifying yields:

4p2 + 4q2 = e(2x+ e). (4)

Thus 0 ≡ e(2x+ e) ≡ e2 mod 2 and hence e must be even. Say e = 2n. Using that in (4)

and solving for x (provided n W= 0) we see x = p2+q2−n2
n as desired. If n < 0, then we need

to use |n| in the denominator of the extended coordinate to maintain our convention that
the extended coordinate is nonnegative since it is a length. The case n = 0 arises only
when p = q = 0 and in that case we see x = ±t and hence

�x, y, z, tX = �−n, 0, 0, |n|X = a−n2
n
, 0, 0,

n2

|n|
@

with n W= 0 parameterizes the remaining solutions. Note that n divides 0 when n W= 0.
Thus, both the form and divisibility condition remain valid for the case when p = q = 0.
Note that if x > 0 and y and z are not both zero, then since p2 + q2 = n(x + n), we

may select the divisor n to be positive and hence the numerator p2 + q2 − n2 > 0 whence
n <
0
p2 + q2, which gives the “moreover” portion of (b).

Part (a) follows from the specialization of (b) to the case when z = 0.
Lastly, we consider part (c). First note that modulo 8, squares are congruent to 0, 1,

or 4. Thus, the sum of squares can result in a square, x2 + y2 + z2 + w2 = t2, only if
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combinations of 0 and 4 on the left sum to 0 or 4, or a single 1 and three 0’s add to 1, or
four 1’s add to 4. In the first two cases, there are at least three even variables. Up to order,
we may suppose that y = 2p, z = 2q, and w = 2r. The proof is analogous to the proof for
part (b), except that there are sums of three squares where there had been two, and this
results in (1). In the case when four 1’s add to 4 modulo 8, we take y = 2p+1, z = 2q+1,
w = 2r + 1 since we know they are odd. Also y2 + z2 + w2 = t2 − x2 = (t + x)(t − x).
Letting the m = t+ x and n = t− x, we see mn = y2 + z2 + w2 and x = m−n

2 = mn−n2
2n .

These facts together yield (2) as desired.

This theorem allows us to easily generate integer length integer vectors. For example,
in part (b) if we take p = 5 and q = 7, then p2 + q2 = 74, so we can take n = 2. This

yields u
+

= �35, 10, 14, 39X.
Several other remarks are in order. The bounds on n given in part (b) will play an

important technical role in our main theorem on matrix generators for integer length
vectors in Z3.

Discussions of Pythagorean triples usually focus upon positive integer solutions that
are primitive. The triple is primitive if the entries in the triple share no common factor.
Since we are interested in using these integer length vectors in the context of the perfect
parallelepiped problem, we expect to need to use negative entries (e.g., we consider the
length of both u+v and u−v) and when we consider collections of such vectors, it may be
helpful if some of them are not primitive. Thus, we want to consider negative entries and
nonprimitive solutions. However, we do consider a collection of vectors degenerate when
the vectors are linearly dependent. Three dependent vectors would form a degenerate par-
allelpiped with no volume. Thus, we require a perfect parallelepiped to have independent
edges.

Notice that if we substitute p = ab and n = b2 into the parametriztion (a), we get

u
+

= �a2 − b2, 2ab, a2 + b2X which is a more traditional form for the parametrization of
primitive Pythagorean triples.

The parametrizations given in Theorem 1 will make it easy for us to generate many
integer length integer vectors as part of searches that we will discuss in Section 4. In the
next section, we will also see that these play a key role in allowing us to describe matrix
generators for all the integer length triples in Z3.

3. Algebraic Structure of Integer Length Vectors in Z3

In this section we show that there is one matrix that, together with ordinary coordinate
interchanges and sign changes, generates all of the nonzero integer length integer vectors
in Z3. In particular, let

J =

⎛⎜⎝
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 2

⎞⎟⎠
Consider the following illustrations of the multiplication of an extended coordinate integer
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vector by J ; in each case the result is another extended coordinate integer vector.

J

⎛⎜⎝
1
2
2
3

⎞⎟⎠ =
⎛⎜⎝
7
6
6
11

⎞⎟⎠ , J

⎛⎜⎝
1
2
−2
3

⎞⎟⎠ =
⎛⎜⎝
3
2
6
7

⎞⎟⎠ , J

⎛⎜⎝
2
−1
2
3

⎞⎟⎠ =
⎛⎜⎝
4
7
4
9

⎞⎟⎠
The following theorem shows that this is a general property.

Theorem 2. Multiplying the extended coordinate form for any nonzero integer length
integer vector in Z3 by J produces a nonzero extended coordinate integer length integer
vector. Moreover, the multiplication preserves the gcd of the coordinates of the extended
vector; in particular, if the original vector was primitive, the resulting vector will be prim-
itive.
Proof. First notice that

J

⎛⎜⎝
x
y
z
t

⎞⎟⎠ =
⎛⎜⎝

y + z + t
x+ z + t
x+ y + t

x+ y + z + 2t

⎞⎟⎠ ;
therefore, interchanging ordinary coordinates (e.g. x interchanged with z) does not change
the length of the resulting vector. Thus, as we saw in Theorem 1(b), we may assume our
vector may be parametrized by:

u
+

= �p
2 + q2 − n2

n
, 2p, 2q,

p2 + q2 + n2

|n| X

where n divides p2+ q2. Direct, but tedious, computation [3] verifies that when n > 0, the

vector Ju
+

has length given by:

,Ju+,2 =
D
n2 + 2pn+ 2qn+ 3p2 + 3q2

i2
n2

where, as is our convention, the length means the length of the ordinary coordinates. The

length ,Ju+, must be integer since n divides p2 + q2. When n < 0 we get

,Ju+,2 =
D
3n2 − 2pn− 2qn+ p2 + q2i2

n2
.

Again, the length is integer.

Let d be a common divisor of the coordinates of u
+

, then d is also a divisor of the coor-

dinates of the resulting vector Ju
+

, since the coordinates are integer linear combinations
of the original coordinates. Since the determinant of J is 1, the inverse matrix has integer

coefficients, so the converse is also true. Thus, u
+

and Ju
+

have the same gcd.
Additionally, if the original vector was nonzero, the resulting vector will be nonzero.

This follows since J is invertible, so Ju
+

= 0 implies J−1Ju
+

= 0 and hence u
+

= 0.
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We will adopt a subscript notation to signify columns of J which have had their sign
changed; for example:

J12 =

⎛⎜⎝
0 −1 1 1
−1 0 1 1
−1 −1 0 1
−1 −1 1 2

⎞⎟⎠
is the same as J except the first and second columns have been negated.

Proposition 3. The following matrix identities hold:
(a)

J−1 =

⎛⎜⎝
0 1 1 −1
1 0 1 −1
1 1 0 −1
−1 −1 −1 2

⎞⎟⎠
(b)

J2123 = J
4
12 = J

4
13 = J

4
23 = I

(c)

J23J =

⎛⎜⎝
−1 0 0 0
0 1 2 2
0 2 1 2
0 2 2 3

⎞⎟⎠
(d)

J3 − 3J2 − 3J + I = 0
Proof. These can be checked by direct computation; see [3].
A number of authors have described the generation of Pythagorean triples using ma-

trices and resulting in what is called the Barning tree [2]. The matrices they multiply
Pythagorean triples by include ⎛⎝ 1 2 2

2 1 2
2 2 3

⎞⎠
and variants associated with sign changes of ordinary coordinates. We saw this matrix
appeared as a subblock of J23J in Proposition 3(c). In Theorem 4 we will show that J
and its variants generate all the nonzero integer length integer vectors in Z3. Thus, the
matrix generators for the Pythagorean triples arise as a special case of Theorem 4.
While we do not use most of the properties in Proposition 3, part (b) will play a crucial

role in the proof of Theorem 4. In particular, notice that J123 = JS where S is a diagonal
matrix with �−1,−1,−1, 1X on the diagonal. So J2123 = I from Proposition 3 implies that
J−1 = SJS. Thus, we see the following.
Remark. When we have a collection of transformations including multiplication by J

and sign changes, we automatically have the inverse transformations as well.
The proof of Theorem 4 utilizes this reversiblity. We show that any integer length

integer vector can be reduced to the trivial case �s, 0, 0, sX and hence could have been
produced from the trivial case by the reverse process.
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Theorem 4. The extended coordinate form for any nonzero integer length integer
vector in Z3 with the gcd of the coordinates equal to s may be produced from �s, 0, 0, sX
by a sequence of ordinary coordinate interchanges, ordinary coordinate sign changes, and
multiplication by J .
Proof. Ordinary coordinate interchanges, ordinary coordinate sign changes, and multi-

plication by J all preserve the gcd of the coordinates, so it suffices to consider any primitive

vector u
+

. Since the vector is primitive, at least one ordinary coordinate is odd, so by
applying coordinate interchanges and sign changes if neccesary, we may assume the first

coordinate is odd and positive. If u
+

= �1, 0, 0, 1X, then we are done. Otherwise, we know
by Theorem 1(b) that u

+

is of the form

u
+

= �p
2 + q2 − n2

n
, 2p, 2q,

p2 + q2 + n2

n
X

and n may be chosen to be so that 0 < n <
0
p2 + q2. We claim that at least one of J1u

+

,

J12u
+

, J13u
+

, and J123u
+

is shorter than u
+

. Once we verify this claim, the proof will
follow inductively by repeating the argument until, within a finite number of steps (since
the lengths are strictly decreasing sequence of positive integers), it must happen that we

reach the alternate case where u
+

= �1, 0, 0, 1X. As per the remark before the theorem, the
reversibility of the process means we could have generated the original primitive vector

from u
+

= �1, 0, 0, 1X.
It remains to show that at least one of J1u

+

, J12u
+

, J13u
+

, and J123u
+

is shorter than

u
+

. First we compute

,J1u+,2 − ,u+,2 = 4

n
(n+ p+ q)(2n2 + pn+ qn+ p2 + q2). (5)

The computation is direct but tedious and can be found at [3]. We know n is positive, and
by completing the square we can check the last factor is positive regardless of the signs of
p and q. Thus,

,J1u+, < ,u+, exactly when (n+ p+ q) < 0.
Doing the same computation in equation (5) with J1 replaced by J12, J13, and J123 gives
equivalent results up to sign changes. Once again the last factor is positive and so:

,J12u+, < ,u+, exactly when (n− p+ q) < 0,
,J13u+, < ,u+, exactly when (n+ p− q) < 0,
,J123u+, < ,u+, exactly when (n− p− q) < 0.

The four inequalities on the right of those equivalences have the form n < ±p ± q and
we claim at least one of these inequalities must hold. Suppose not, then n ≥ ±p ± q for
all choices of ±. That implies n ≥ |p| + |q|; however, n <

0
p2 + q2 ≤ |p| + |q| as noted

above and using the triangle inequality. This is a contradiction, and hence one of the

inequalities must hold and thus one of the four vectors is shorter than u
+

. That completes
the induction step and the proof.
The above theorems show that the J matrix plays a key role in the structure of integer

length integer triples. We have remarked that the integer length integer pairs are closely
related. We do not know of a generalization to integer length integer vectors in Z4.
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While complications arising from the two types of parameterizations would be expected,
we suspect that the difficulties are deeper and that matrix generators do not exist for the
nonzero integer length integer vectors in Z4.
Furthermore, despite the rich structure and beautiful identities described in Proposition

3, we have not found this structure useful for generating families of examples with partial
perfect parallelepiped structure. For example, nontrivial identities of the form f(J) +
g(J) = I where f and g are any products of J and its variants would mean that for integer

length integer vectors u
+

, the three vectors f(J)u
+

, g(J)u
+

, and (their sum) Iu
+

would
all be integer length integer vectors; three such integer length vectors would form the sides
and positive diagonal of a parallelogram. We know of no such identities.

4. Almost Perfect Parallelepipeds

While we have found no perfect parallelepiped, we have special families and examples
to discuss. However, first we note that any examples that we find short of complete perfect
parallelepideds are unimpressive in the following way. Consider the almost perfect cuboid
from [1] that has only one irrational edge. In vector notation:

u = �7800, 0, 0X
v = �0, 18720, 0X
w = �0, 0,

√
211773121X

Of the thirteen conditions required for a perfect parallelepiped, the only one that fails is
that ,w, is not integer (of course, a noninteger entry also appears in w). The other twelve
conditions hold. Thus, we don’t expect be able to get nearer to a perfect parallelpiped by
counting the number of the thirteen conditions that hold.
We are able to give families of vectors with some of the perfect parallelepiped properties.

Proposition 5. Consider the parametric family of vectors such that:

u = �4q2(p2 + q2 − 1), 8pq2, 8q3X
v = �4(r2 − 1)2q2 + (2pr + 1)2), 8q2r,−4q(2pr + 1)X

For all choices of integers p, q and r, the length of u, v and u+ v are integer.
Proof. Direct computation verifies these three vectors have length 4q2(p2 + q2 + 1),

4r2q2 + 4q2 + 4p2r2 + 4pr + 1, and 4q2 + 4p2q2 + 4r2q2 + 4p2r2 + 4pr + 1, respectively
[3].
While the proof of Proposition 5 can be verified as remarked above, we briefly describe

how the parametrization was found. The special case of Theorem 1(b) when n = 1 is
an especially simple integer vector. Creating two such vectors, u and v formally and
completing the square of ,u + v,2 yields a linear remainder. Solving for one parameter
and clearing the denominator gives the form in Proposition 5.
Notice in Proposition 5 that u depends only upon p and q, not r. Thus, we can repeat

the construction using the same p and q but different choices for r. This gives three integer
length integer vectors with two of the positive diagonals integer. It is not obvious, but
three such vectors must be collinear and hence only produce degenerate examples [3].
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Proposition 6. Consider the parametric family of vectors such that:

u = �25p2 − 25q2, 50pq, 0 X
v = �25p2 − 25q2, −50pq, 0 X
w = � 0, −28pq, 96pqX

For all choices of integers p and q the length of ,u,, ,v,, ,w,, ,u+v,,,u−v,, ,u+v+w,,
,−u+ v+w,, ,u− v+w,, and ,u+ v−w, are integer. Moreover, of the remaining four
conditions, ,u + w, = ,v − w,, and ,u − w, = ,v + w,; therefore, only two additional
conditions are required to obtain a perfect parallelepiped.

Proof. Proof by direct computation can be found at [3].

The parameterization in Theorem 1 or the structure in Theorem 4 may be used to create
large sets of integer length integer vectors in various dimension. We can utilize those in
various focused searches for perfect parallelepipeds.

Search Type I. (i) Create lists of integer length integer vectors in 3 dimensions. (ii)
Determine which pairs give rise to parallelograms in 3-dimensions with integer length edges
and diagonals. (ii) look for edges duplicated in more than one such paralellogram. (iii) use
such overlaps to obtain three promising vectors; then restrict to those that satisfy additional
conditions.

We ran such computations for all choices of parameters in Theorem 1(b) with magnitude
less than or equal 45. Only a few examples where found. For example, the following has
11 of the 13 conditions hold:

u = �21, 72, 0X
v = �21, −72, 0X
w = �0, 0, 40X.

In the above example, the two condtions that fail are equivalent: ,u−v+w, = ,−u+v+w,
is not an integer; hence this is an example where, like the best cuboid examples, we are
just one condition away from having a perfect parallelepiped, yet we managed that using
integer coordinates. This example also suggests that examples of the form

u = �a, b, 0X
v = �a, −b, 0X
w = �0, 0, cX

may be a rich hunting ground for perfect parallelepipeds. Indeed, other examples similar
to the above, but with larger entries, may be found by searches of vectors with the above
pattern.

Not all of the examples found by Type I searches fit the above pattern. For example,

u = �24, 27, 36X
v = �−24, 27, 36X
w = �0, 112, −84X
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Search Type II. Here we consider parallelepipeds with a rectangular base and one
vector completely free. That is, examples of the form:

u = �a, 0, 0X
v = �0, b, 0X
w = �c, d, eX

Here we can efficiently generate integer length pairs �a, bX and triples �c, d, eX using The-
orem 1. We tested all parameters with magnitude below 70 for the pairs and 60 for the
triples. The best examples we found, such as the following, satisified 10 of the 13 condi-
tions.

u = �42, 0, 0X
v = �0, 40, 0X
w = �21, 56, 12X

Search Type III. Here we consider 3-dimensional parallelepipeds embedded in 4-
dimensions. We use the same strategy as in Type I searches, except we used vectors in
4-dimensions.
We checked all vectors with parameters up to 6 in magnitude in Theorem 1(c). Again

we found examples, such as the following, with 11 of the 13 conditions holding.

u = �4, 6, 6, 9X
v = �−4, 10, 2, 7X
w = �12, −8, −4, 10X

However, in this example the two lengths failing to be integer ,u − v + w, = √668, and
,−u+ v + w, = √160 are not equivalent.
Search Type IV. We directly searched through parallelepipeds of the form given in

Proposition 6.
We checked parameters up to one million without finding any perfect parallelepipeds.
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