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Abstract. This paper investigates the real dynamics of a generalization of the 3x + 1

function using powers of three. We will see that any cycle of positive integers is attractive

for this generalization and the cycle has an expansion factor given by Terras’ coefficient

function. We will see the function has a negative Schwarzian derivative for x ≥ 0 and

will be able to identify invariant intervals and approximately locate the fixed points and

critical points. The special simplicity of dynamics around the cycle (1, 2) means there is

a natural generalization of total stopping time for this function. We conjecture that the

odd critical points of this generalization are well behaved. In particular, they lie in the

immediate basin of total stopping time surrounding each odd integer.
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1 Introduction

The classic 3x + 1 problem concerns the iteration of a function that results
in 3x + 1 for odd x and x/2 for even x. The classic 3x + 1 conjecture is
that iteration of that function upon a positive integer eventually reaches
the cycle containing 1. However, there are slight variations on the function
and there are many related conjectures now in the literature. Lagarias gives
an overview of important early results regarding the 3x + 1 problem in [5]
and maintains an annotated bibliography of the subject [7]. The literature
of the subject is rapidly growing and includes Wirsching’s book [14], which
is another source that provides an overview of the literature. Considerable
amounts of information on the 3x + 1 problem appear on the web; good
starting points include the web version of [5] and Roosendall’s site which
includes search results [11].
Notice that when x is odd, then 3x+1 is even, and hence the next iteration

of the classic function will be division by 2. Thus, many of the results known
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about the 3x+ 1 problem may be easily described in terms of the following
function, which we will call “the” 3x+ 1 function.

t(x) =
x
2 if x ≡ 0 mod 2

3x+1
2 if x ≡ 1 mod 2 for x ∈ Z (1)

In this form, the 3x+ 1 conjecture becomes the conjecture that iteration of
t(x) on any positive integer eventually results in a value 1. Thus, primary
interest in t(x) is when x > 0.
The total stopping time of a positive integer, x, under iteration of t(x)

is the least nonnegative k, if it exists, such that tk(x) = 1; otherwise, it is
defined to be ∞. Thus, the 3x + 1 conjecture is equivalent to saying that
every positive integer has finite total stopping time.
As noted in [13], the 3x+ 1 function may be written in the form

1

2
3 mod 2(x)x+ mod2(x) (2)

where mod2(x) is 0 for even integers and 1 for odd integers. Notice that we
can view Equation 2 as defining a function of a real or complex variable by
taking mod2(x) as a real or complex function that is 0 for even integers and
1 for odd integers. In particular, in this note we investigate the real dynamics
of the function T (x) defined as follows.

T (x) =
1

2
3 mod 2(x)x+ mod2(x) where mod2(x) = sin

2 πx

2
(3)

We call T (x) the 3-power extension of the 3x+ 1 function.
Figure 1 shows the graph of T (x). Notice that away from the origin

there are regular growing oscillations between x/2 and (3x+1)/2 with fixed
points in between. The function T (x) was used in Terras [13] to derive the
“remainder representation theorem” for the iteration of the 3x+ 1 function.
We will state the theorem in Section 2.
The dynamics of other functions interpolating the function t(x) have been

studied. Indeed, we consider Chamberlain’s [1] interpolating function C(x),
defined in equation (4) below, to be the most direct interpolating function.

C(x) = (1− mod2(x))x
2
+ mod2(x)

3x+ 1

2
(4)

One can check that

C(x)− T (x) = x

2
2 mod 2(x) + 1− 3 mod 2(x)

where the right-hand factor is nonnegative and periodic; from that it is easy
to check that lim infx→∞ C(x) − T (x) = 0 and lim supx→∞ C(x) − T (x) =
∞. Thus, even though C(x) and T (x) agree infinitely often, namely, at the
integers, they become unboundedly different in between.
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Figure 1: The function T (x).

Chamberlain studied the real dynamics of C(x) in [1]. The 3-power ex-
tension of the 3x+1 function, T (x), defined in Equation (3) is arithmetically
more complicated than the function C(x) because it involves exponentials;
nonetheless, we will be able to establish facts about its dynamics analogous
to those in [1]. However, we will also see that there are ways in which the
behavior of T (x) seems more natural.

We will show that any integer cycle of the 3x+1 function is an attracting
cycle of T (x) and the multiplier for the cycle is the coefficient function of
Terras. We will show that the Schwarzian derivative of T (x) is negative for
x ≥ 0 and we can approximately locate the positive critical and fixed points.
Unlike C(x), the function T (x) appears only to have a single attractive pos-
itive real cycle. Namely, the expected cycle (1, 2). We also offer evidence for
our conjecture that the odd critical points “shadow” the odd integers.

Before turning to our investigation of T (x), we comment that some in-
vestigations of the complex dynamics of similar generalizations of the 3x+1
function have appeared. Letherman, Schleicher and Wood [8] analyze a fam-
ily of functions that generalize t(x) that have complex dynamics that can
be somewhat controlled. However, their family does not include either C(x)
or T (x). In [4] the complex dynamics of several functions related to and
including C(x) and T (x) were visually investigated.
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2 Attractive Cycles

In this section we establish that any cycle of positive integers for the 3x+ 1
function is an attractive cycle for T (x). We will see that the expansion factor
for a cycle of integers is the coefficient function from Terras and it must be
less than one.

Theorem 1 Any positive integer cycle of the 3x+1 function is an attractive
cycle of T (x).

Proof. Note that if Ω is a cycle of positive integers for the 3x + 1 function,
then

1 =
x∈Ω

T (x)

x
=
x∈Ω

1

2
3 mod 2(x) +

mod2(x)

2x
>
x∈Ω

1

2
3 mod 2(x) (5)

since mod 2(x)
2x ≥ 0. The inequality is strict since it is not possible to have a

cycle consisting entirely of even positive integers. The derivative of T (x) is
the following.

TI(x) =
modI2(x)

2
1 + x ln(3)3 mod 2(x) +

1

2
3 mod 2(x) (6)

Note that

modI2(x) = π sin(
πx

2
) cos(

πx

2
) (7)

is zero at every integer. Thus, we see by Equations (5) and (6) that

x∈Ω
TI(x) =

x∈Ω

1

2
3 mod 2(x) < 1 (8)

Hence the cycle is attractive which completes the proof.
Now we state the remainder representation theorem from Terras [13].

Theorem 2 (The Remainder Representation Theorem of Terras). Let xk =
T k(x0) be the k

th iterate of T (x) on x0 = x and let zk = mod 2(xk). Next let

λk =
3z0+z1+···+zk−1

2k
(9)

and let

ρk =
λk
2

z0
λ1
+
z1
λ2
+ · · ·+ zk−1

λk
. (10)

Then,

T k(x) = λkx+ ρk. (11)
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Notice that the expansion factor we found for a positive integer cycle is
precisely the coefficient function on the cycle. That is,

x∈Ω

1

2
3 mod 2(x) = λk. (12)

Thus we obtain the following fact.

Proposition 3 If Ω denotes a cycle of positive integers of length k and x ∈
Ω, then λk is the expansion factor of Ω as a cycle of T (x).

The stopping time of T (x) on an integer (or real) x is defined to be the
smallest k, if it exists, such that T k(x) < x; otherwise the stopping time is
∞. Notice that if λk ≥ 1, then by the remainder representation theorem,
T (x) > x. Thus, λk < 1 must occur before T (x) < x. This motivates the
definition of the coefficient stopping time as the smallest k ≥ 1 such that λk <
1 or∞ if there is no such k. The above remark is that the coefficient stopping
time is less than or equal to the stopping time. Remarkably, it appears that
the converse holds as well. The coefficient stopping time conjecture is that
the stopping time is equal to the coefficient stopping time for all integers
n ≥ 2.
The fact that Proposition (3) relates the classical coefficient function of

Terras with the expansion factor of any positive cycle of integers is evidence
that T (x) is a natural generalization of t(x) in the sense that the real dynam-
ics of T (x) are directly related to the behavior of classically studied functions.
In the next section we continue to develop facts about the real dynamics

of T (x). In particular, we show that T (x) has negative Schwarzian derivative.

3 The Negative Schwarzian

Singer [12] established that iterates of functions on an interval with negative
Schwarzian derivative have dynamics satisfying some nice properties. The
Schwarzian derivative of f(x) is denoted Sf(x) and it is defined as follows.

Sf(x) =
f III(x)
f I(x)

− 3
2

f II(x)
f I(x)

2

(13)

Following [1] and [2] we state the following version of Singer’s Theorem.

Theorem 4 (Singer). If f : I → I is a C3 map with negative Schwarzian
derivative, then
1. the immediate basin of any attracting periodic orbit contains either a crit-
ical point of f(x) or a boundary point of I.
2. each neutral periodic point is attracting
3. there exists no interval of periodic points
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term parity
E1 = −3π2 cos4(x) −
E2 = 43

2 sin2(x)+1 cos2(x) ln(3) +

E3 = −4 3sin2(x)+1 π x cos4(x) ln(3) −
E4 = −4 32 sin2(x)+1 x2 cos4(x) ln2(3) −
E5 = −8 3sin2(x) π cos(x) sin(x) ±
E6 = −16 32 sin2(x) x cos(x) ln(3) sin(x) ±
E7 = −4 3sin2(x)+1 π cos3(x) ln(3) sin(x) ±
E8 = −2π2 cos2(x) sin2(x) −
E9 = −4 32 sin2(x)+1 ln(3) sin2(x) −
E10 = −8 3sin2(x) π x cos2(x) ln(3) sin2(x) −
E11 = −8 32 sin2(x)+1 cos2(x) ln2(3) sin2(x) −
E12 = −8 32 sin2(x) x2 cos2(x) ln2(3) sin2(x) −
E13 = 43

sin2(x)+1 π cos(x) ln(3) sin3(x) ±
E14 = 83

sin2(x)+1 π cos3(x) ln2(3) sin3(x) ±
E15 = −32 32 sin2(x) x cos3(x) ln3(3) sin3(x) ±
E16 = −3π2 sin4(x) −
E17 = −4 3sin2(x)+1 π x ln(3) sin4(x) −
E18 = −4 32 sin2(x)+1 x2 ln2(3) sin4(x) −
E19 = 16 3

sin2(x) π x cos4(x) ln3(3) sin4(x) +

E20 = −16 32 sin2(x) x2 cos4(x) ln4(3) sin4(x) −

Table 1: Terms of the Schwarzian Derivative

We show that the Schwarzian derivative of the 3-power extention of the 3x+1
function is nonnegative.

Theorem 5 The Schwarzian derivative of T (x) is negative for all x ≥ 0.
Proof. Note that at the critical points, this means the Schwarzian derivative is
negative infinity. The proof is elementary although there are many details to
verify. We first observe that if k is a constant, then Sf(kx) = k2Sf(x)|x )→kx.
Therefore, it suffices to show that T̂ (x) = T ( 2πx) has negative Schwarzian

derivative. We will do that by verifying that 2π2(T̂ I(x))2ST̂ (x) is negative
for x ≥ 0. Direct computation of 2π2(T̂ I(x))2ST̂ (x) leads to the twenty
terms in Table 1. In each case we informally indicate a parity of +, −, or ±
when the term is clearly nonnegative, nonpositive or changes sign for x ≥ 0.
Notice that only two of the terms are nonnegative although six terms change
sign. The powers of sin, cos and ln appearing in the table are ordinary powers
and not function iteration. We collect terms into the following six groups and
then show the first is strictly negative and the others are nonpositive.
(A) E1 +E2 +E9
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Figure 2: The Function fA(w).

(B) E10 +E19
(C) 12E11 +E13 +E16
(D) E8 +

1
2E11 +E12 +E14 +E15

(E) E3 +E4 + E5 + E6 + E7 + E17 +E18
(F) E20
Group (A). Simplifying fA = E1 + E2 + E9 with the identity cos

2(x) =
1− sin2(x) and substituting w = sin2(x) gives the function

fA(w) = −3π2 (1− w)2 + 432w+1 ln(3) (1− w)− 4 32w+1w ln(3).

Figure 2 shows fA(w). Numerical calculus verifies that fA(w) ≤ −3.975 for
0 ≤ w ≤ 1 and hence E1 +E2 +E9 < 0 for all x.

Group (B). Direct computation shows that

E10 +E19 = 83
sin2(x) π x cos2(x) ln(3) sin2(x) 2 cos2(x) ln2(3) sin2(x)− 1 .

Showing that the last factor is nonpositive is equivalent to checking that
sin2(2x) ≤ 2

ln2(3)
≈ 1.657, which is true, and hence E10 +E19 ≤ 0.

Group (C). Simplifying we see

1

2
E11 +E13 +E16 = −3 sin2(x) π sin(x)− 2 3sin2(x) cos(x) ln(3) 2

which is nonpositive.
Group (D). We see each term has a factor of −2 cos2(x) sin2(x) and hence we
need to show that following five terms are positive.

fD(x) = 4 32 sin
2(x) ln2(3)x2 + 16 32 sin

2(x) cos(x) ln3(3) sin(x)x

− 4 3sin2(x)+1 π cos(x) ln2(3) sin(x) + 2 32 sin2(x)+1 ln2(3) + π2

(14)
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Figure 3: The Function fD(x) is positive on [0, 3].

Only two terms have mixed signs and they can be dominated by the first
term for sufficiently large x. Note that the 3/4ths the first term is larger
than the second term when x > 8

3 ln(3) ≈ 2.929632 and 1/4th the first term
is larger than the third term when x >

√
2π ≈ 2.506. Thus, the claim is true

for x > 3. Figure 3 shows the above five terms on [0, 3]. Numerical calculus
verifies the function is positive on this range as required to complete this
group.
Group (E). First notice that each term is nonpositive in the first quadrant,

so we may assume that x ≥ π/2. Next, each term has a factor of −4 3sin2(x),
so it suffices to show that the sum of terms, divided by that factor, is non-
negative. Moving those terms with odd powers of sine and cosine to one side
means we need to show that for x ≥ π/2, the following holds.

3sin
2(x) 2 ln(3)x+ π +

3

2
π ln(3) cos2(x) sin(2x)

≤ 3x ln(3) 3sin2(x) ln(3)x+ π cos4(x) + sin4(x)

(15)

Now for x ≥ π/2,

3

2
π ln(3) cos2(x) =

5

4
π ln(3) +

1

4
π ln(3) ≤ 5

4
ln(3)π +

1

2
x ln(3)3sin

2(x)

The left-hand-side of Equation (15) is bounded as follows.

3sin
2(x)2 ln(3)x+ π +

3

2
π ln(3) cos2(x) sin(2x)

≤ max(2.5, 1 + 5
4
ln(3)) 3sin

2(x) ln(3)x+ π

Moreover, max(2.5, 1 + 5
4 ln(3)) = max(2.5, 2.3732 . . . ) = 2.5. The right-

hand-side of Equation (15) satisfies

3x ln(3) 3sin
2(x) ln(3)x+ π cos4(x) + sin4(x)
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Figure 4: The Schwarzian Derivative of T (x).

≥ 3 (π/2) ln(3) 3sin2(x) ln(3)x+ π (1/2)

since x ≥ π/2 and cos4(x)+sin4(x) ≥ 1/2. Notice that 3 (π/2) ln(3)(1/2) ≈
2.58854 ≥ 2.5 which implies the desired inequality. Thus Equation (15) holds
and hence this group is nonpositive.
Group (F). This term is always nonpositive.

Our theorem established that the Schwarzian derivative is negative for x ≥
0 which is the classical region of interest for the 3x+1 function. However, it
appears that the Schwarzian derivative is negative except for a short interval
contained in [−0.4,−0.1]. See Figure 4. While we expect that arguments
like those used in the proof of Theorem 5 could be used for x sufficiently
negative, we have not carried out the details. We have checked that some of
the groups (A)-(F) give positive values as x → −∞ and hence some other
organization would be needed.

4 Fixed Points and Critical Points

In this section we consider the nonnegative fixed and critical points of T (x).
In general there is a critical point “near” to each integer and a fixed point in
between. Two invariant intervals between fixed points occur and these have
simple dynamics. We are able to establish approximate positions for all the
nonnegative fixed points and critical points.

Our first theorem establishes the regular appearance and approximate
position of positive fixed points and critical points.

Theorem 6 Let the constant δ be defined by δ = 2
π sin

−1 log3(2) ≈ 0.584336.
The nonnegative fixed points of T(x) are 0 = μ0 < μ1 < μ2 < . . . < μn < . . ..
They satisfy n− 1 ≤ μn ≤ n and for large n, they are close to being an even
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integer ±δ. In particular,

μn =
n− δ +O 1

n if n is even

n− 1 + δ +O 1
n if n is odd

(16)

Furthermore, the nonnegative critical points of T (x) are c1 < c2 < . . . <
cn < . . . and they satisfy μn ≤ cn ≤ μn+1. In particular,

cn = n− (−1)n 2

π2 ln(3)

1

n
+O

1

n2
. (17)

Proof. We may establish the basic pattern of oscillations by noting that the
function

h(x) =
T (x)− x/2
x+ 1/2

is zero at the even integers and one at the odd integers. Furthermore, its
derivative is zero exactly at the integers for x ≥ 0. That fact may be carefully
shown by analyzing terms in the style of the proof of Theorem 5. The fixed
points of T (x) correspond to intersections of h(x) with x

2x+1 which monoton-
ically increases to the asymptote y = 1/2 as x → ∞. Hence there are no
extra positive critical points or fixed points.
We turn to the more precise placement of the fixed points and critical

points of T (x).
The fixed points of T (x) satisfy

3 mod 2(μn) − 2 = − mod 2(μn)
μn

(18)

Let zn be zero or one according to the parity of n and let 6n denote the error
of approximation in Equation (16). That is, μn = n − zn ± δ + 6n. Notice
that μn ∼ n and hence the right-hand-side of Equation (18) is O 1

n . For

even n, trigonometric identities imply that mod2(x+ n) = sin
2 π(x+n)

2 =

mod2(x). Of course, n− zn is even for all n. Also, δ was defined so that the
following power series holds.

3 mod 2(x±δ) − 2 = ±Cx+O x2 (19)

where C ≈ 3.33096 is an exactly computable constant. Hence,

3 mod 2(μn) − 2 = 3 mod 2(n−zn±δ+6n) − 2 = 3 mod 2(±δ+6n) − 2
= ±C6n +O 62n

(20)

Using Equation 18 and the above remark about it, we see the error 6n is
O 1

n as claimed.
Next consider the critical points. For even integers, n, we know that

mod2(x + n) = mod2(x). Recalling Equation (7), we see likewise for the
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n μn cn
1 0.31581620327986408296 1.1309941431270213886
2 1.5155526112246360140 1.9344565225151632834
3 2.5189777540293784504 3.0551547747623897629
4 3.4649453878164739882 3.9620246295489206948
5 4.5458698070488534748 5.0346163272795386811
6 5.4481739006727628044 5.9731645377030619937
7 6.5570236427362714510 7.0251934109819066797
8 7.4398921913666236970 7.9792331855813816122
9 8.5631514104741717243 9.0197963599168494544
10 9.4349665507394106536 9.9830581933811043246
...

...
...

100 99.417562309023307386 99.998172064566257856
101 100.58245959056682904 101.00182077495494432
...

...
...

1000 999.41585374523525213 999.99981571466777848
1001 1000.5841464758883631 1001.0001842129025298

Table 2: Some Approximate Fixed Points and Critical Points of T (x)

derivative: modI2(x + n) = modI2(x). Thus, if we use those facts upon sub-
stituting cn = n+ 6n into T

I(cn) = 0 and recalling Equation (6) which gives
T I(x), we obtain the following equation

3 mod 2(6n) + (n+ 6n)3
mod 2(6n) ln(3) mod I2(6n) + mod

I
2(6n) = 0 (21)

Now expanding Equation (21) in a power series we see that 6n = − 2
π ln(3)

1
n +

O 1
n2 .
When n is odd, mod2(x+ n) = 1− mod2(x) and

mod I2(x+n) = − mod I2(x), and the power series expansion changes the sign
of the O 1

n term, giving the result.
Table 2 shows some numeric approximations to some fixed points and

critical points. Notice that the critical points are close to the corresponding
integers and the difference, as expected in light of Theorem 6, is O 1

n . Next,
the fixed points are in between, but these are close to the integer ±δ.
We have the following results regarding invariant intervals.

Theorem 7 The interval [0,μ1] is an invariant set and every point in [0,μ1)
is attracted to the fixed point 0.

Proof. Note that [0,μ1] is an invariant set with T I(0) = 0.5 and T I(μ1) ≈
1.59. Thus, 0 is an attracting fixed point and μ1 is a repelling fixed point.
On [0,μ1) we have 0 ≤ T (x) < x and no other fixed points, hence iteration
of T (x) on points from that interval converges to 0.
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Figure 5: The functions x, T (x), and T 4(x) on [μ1,μ3].

Theorem 8 The interval [μ1,μ3] is an invariant set and every point in
(μ1,μ3) is attracted to the cycle (1, 2).

Proof. This interval contains the attractive 2-cycle (1, 2) and the repelling
fixed points μ1, μ2 and μ3. Figure 5 shows the fourth iterate of T

4(x) on
this interval. Notice are no 4-cycles. In light of Sarkovskii’s Theorem [3],
there are no other periodic points. The two critical points of T (x) on this
interval are attracted to the cycle (1, 2). Thus, every point in the interior of
this interval is attracted to the cycle (1, 2).

The behavior of T (x) on [μ1,μ3] contrasts with the behavior of C(x) on its
corresponding interval. The function C(x) has two attractive 2-cycles with
the basins of attraction forming Cantor sets. We will see that the simpler
behavior of T (x) allows us to give a natural definition for the total stopping
time for T (x).
The behavior of T (x) on (μ3,∞) is much more complicated than for

0 ≤ x ≤ μ3. For example, Figure 6 illustrates that there are several repelling
three cycles on [μ3,μ5]. In light of Sarkovskii’s Theorem [3], that implies
periodic points of all orders which on an interval implies chaos [9]. This is
not surprising given the difficult to analyze, random nature that T (x) appears
to have.
Table 3 shows the complex cycles of T (x) that were dynamically found by

the basin of attraction algorithm used in [4] for images showing−6 ≤ Re(x) ≤
10. Notice that it found only the one attractive positive cycle, although there
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Figure 6: The functions x and T 3(x) on [μ3,μ5].

0.5 (0)
0.469947 (-1.15387)
1.5 (-1)
0.75 (1, 2)

0.703092 (-10.0157, -5.01091, -7.01408)
1.12501 (-10, -5, -7)

Table 3: Some Cycles for T (x).

are some of the expected negative cycles including an attractive one that
shadows the cycle (−10,−5,−7) and a shadow of the fixed point (−1).
The situation is similar for C(x), see Table 4. However, there is also a

cycle shadowing the cycle (1, 2), and the 11-cycle (−136,−68, ... − 61,−91)
and its shadow were also observed. In particular, the dynamics of C(x)
appears more complicated than those for T (x) because of the extra attractive
cycles, especially the positive one.

Chamberland’s Theorem 6.1, see [1], shows that any continuous interpo-
lation of t(x) on x > 0 has a three cycle, a homoclinic orbit and a divergent
trajectory. Thus, our function T (x) must have all those properties. However,
in the next section we conjecture that the critical points near the odd integers
are “well placed”. Before turning to that section, we empirically observe the
placement of complex fixed points and critical points for T (x).
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0.5 (0)
0.385708 (-1.27773)
1.5 (-1)
0.75 (1, 2)

-0.230754 (1.19253, 2.13866)
0.0363716 (-10.0349, -5.046, -7.04531)
1.12504 (-10, -5, -7)
0.0035933 (-136.002, -68.0033, -34.0035, -17.0027, -25.0038, -37.0048,

-55.0051, -82.0042, -41.0056, -61.0052, -91.0038)
1.08086 (-136, -68, -34, -17, -25, -37, -55, -82, -41, -61, -91)

Table 4: Some Cycles for C(x).

Figure 7: The Contours of |T (x) − x| Showing Complex Fixed Points for
−6 ≤ Re(x) ≤ 10

Figure 7 shows levels of |T (x) − x| in the complex plane with −6 ≤
Re(x) ≤ 10 and −2.2 ≤ Im(x) ≤ 2.2. The regions around the fixed points
are shown in black and we see the fixed points along the real axis, expected in
light of Theorem 6. However, there also appear to be many infinite families
of fixed points with increasing imaginary part. Experiments with Newton’s
method confirm the exisitence of these fixed points with nonzero imaginary
part.

Figure 8 shows contour levels for |T I(x)| viewed as a function of a complex
variable with −6 ≤ Re(x) ≤ 10 and −2.2 ≤ Im(x) ≤ 2.2. The dark regions
are lowest and show the pattern of critical points in the complex plane. Again
there appear to be many infinite families of critical points with increasing
magnitude imaginary part.

The placement of the complex fixed points and critical points is consistent
with the small isolated regions with small stopping times observed away from
the real axis in [4].
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Figure 8: The Contours of |T I(x)| Showing Complex Critical Points for −6 ≤
Re(x) ≤ 10

5 Odd Critical Point Conjecture

Recall that the total stopping time of a positive integer x is defined to be
the smallest k such that tk(x) = 1 if it exists and it is ∞ if there is no
such k. When generalizing this to real x, one faces the difficulty that values
attracted to the cycle (1, 2) typically do not reach it. One can require that
an iterate come sufficiently close to 1 as the condition, [4], but the choice
of comparison tolerance is arbitrary. However, in light of Theorem 8 we see
there is a natural choice for the total stopping time of T (x). Once an iterate
enters the interval (μ1,μ3), unless it hits the fixed point μ2, we have seen
that it is attracted to the cycle (1, 2). That interval is naturally split by the
repelling fixed point μ2. Thus, we define the total stopping time of a real
number x to be the least k, if it exists, such that μ1 < T

k(x) < μ2 and it is
∞ if there is no such k.

Note that we have seen that points in [0,μ1) are attracted to 0, and
hence would have infinite total stopping time. Also, the fixed points μk
all have infinite total stopping time. Moreover, we noted that T (x) must
have divergent trajectories. All the points in those trajectories must have
infinite total stopping time. Thus there is no hope of claiming that the total
stopping time is finite for positive x. We will see there is evidence that
the total stopping time is the same for the odd positive integers as for the
associated critical points.

Consider even and odd examples. Table 5 shows selected iterates of T (x)
on 27 and the nearby critical point c27. The iterates on c27 are of course
approximations. The entries here are truncations of 200 digit computations.
Notice that the iterates of the critical point stay close to the iterates of 27.
Figure 9 shows the total stopping time on a region in the complex plane
around 27 and c27. The image center is at 27 and it is marked with a black
hash mark from above. The critical point is two thirds of the way from the
center toward to the right edge and it is also marked with a hash mark. The
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k T k(27) T k(c27)
0 27 27.0067545035
1 41 41.0050660042
2 62 62.0032885663
3 31 31.0025664593
4 47 47.0030112618
...

...
...

44 3077 3077.0000529260
45 4616 4616.0000443393
46 2308 2308.0000344719
47 1154 1154.0000209546
48 577 577.0000111646
...

...
...

66 5 5.0000000973
67 8 8.0000001460
68 4 4.0000000730
69 2 2.0000000365
70 1 1.0000000183

Table 5: Iterates on 27 and c27.

regions with total stopping time 70 are shown in cyan. Other finite stopping
times appear in red. Notice that the immediate basin of total stopping time
70 around the point 27 appears to have 27 near the left edge and the critical
point appears to be in its center. Zooms of a couple orders of magnitude
show 27 to be an interior point of the basin even though it is very close to
the edge.

Table 6 shows selected iterates of T (x) on 54 and the nearby critical point
c54. Notice that the iterates of the critical point diverge from those of 54 at
around the tenth iterate. Figure 10 shows the total stopping time on a region
in the complex plane around 54 and c54. The center is 54 and the hash marks
point to the points c54 and 54. Notice that 54 is still on the left edge of the
immediate basin of 54 with total stopping time 71. However, the critical
point is to the left and apparently not near that basin.

While this type of failure of a critical point to shadow the nearby integer
seems slightly atypical (but not rare), we know of no examples where an odd
critical point fails to shadow the integer. We have checked that the total
stopping time all odd integers less than 180, 000 matches the total stopping
time for the associated critical point.

Lagarias [6] mentions that V. Vyssotsky found

nV = 37 66497 18609 59140 59576 52867 40059
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k T k(54) T k(c54)
0 54 53.9966405567
1 27 26.9991601600
2 41 40.9986619383
3 62 61.9976922320
4 31 30.9993002093
5 47 46.9988879845
6 71 70.9980941404
7 107 106.9960881520
8 161 160.9874561304
9 242 241.8780269644
10 121 125.8722964761
11 182 65.7618391600
12 91 38.1435957646
13 137 20.1741877894
14 206 10.9660735658
...

...
...

26 334 4.4900479607
27 167 4.0644796600
28 251 2.0603056805
29 377 1.0448012336
30 566 2.0562399989

Table 6: Iterates on 54 and c54.

Figure 9: The Total Stopping Time of T (x) Near 27.
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Figure 10: The Total Stopping Time of T (x) Near 54.

has an unusually large total stopping time, 2565. We computed the critical
point cnV using high precision floating point arithmetic in Mathematica [10].
Using Newton’s method on the estimate from Equation (17) we computed the
critical point to 50,000 decimal places. We confirmed that the total stopping
time for cnV was also 2565. During those steps, the floating point precision
was reduced to 28, 147 digits. The value of T 2565(cnV ) ≈ 1 + 7.1 10−72.
Conjecture 1 (Odd Critical Point Conjecture) Let n be an odd, positive
integer and cn be the associated critical point of T (x).
(i) The point cn is attracted to the cycle (1, 2).
(ii) The total stopping time of n is the same as the total the stopping time of
cn.
(iii) cn is in the immediate basin of total stopping time equal to the value at
n.

The Odd Critical Point Conjecture implies that the 3x+ 1 function has
no positive integer cycles except (1, 2). That follows since all odd integers
would follow their critical points to the cycle (1, 2).

6 Conclusion

We have seen that the function T (x) generalizes the 3x + 1 function. The
real dynamics of T (x) include the fact that every positive integer cycle of
T (x) must be an attractive cycle with expansion factor given by the Terras
coefficient function on the cycle. The Schwarzian derivative is negative for
x ≥ 0. We have seen that the fixed points and critical points of T (x) can



Dynamics of 3x+ 1 19

be approximately located and two invariant intervals appear. The simple
dynamics on the interval containing the cycle (1, 2) allows a natural definition
to be given for the total stopping time for T (x). We saw the odd critical
points, unlike the even ones, appear to be closely bound to their associated
critical points, yielding the “odd critical point conjecture”. That conjecture
implies there are no nontrivial positive cycles for the 3x+ 1 function.
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