
Chaotic Attractors with Discrete Planar Symmetries 
 
 

NATHAN C. CARTER 
RR6 Box 6538, Moscow, PA 18444, USA 

ncarter@epix.net 
 

RICHARD L. EAGLES  
403 Duncan Lane, Hampstead, MD 21074, USA 

eaglesr@lafayette.edu 
 

STEPHEN M. GRIMES 
6690 Nicoll Dr., N. Ridgeville, OH 44039, USA 

grimes@bucknell.edu 
 

ANDREW C. HAHN 
RD 1 Box 1794, Saylorsburg, PA 18353, USA 

hahna@lafayette.edu 
 

CLIFFORD A. REITER 
Department of Mathematics, Lafayette College, Easton, PA 18042, USA 

reiterc@lafayette.edu 
 

Abstract ─ Chaotic behavior is known to be compatible with symmetry and 
illustrations are constructed using functions equivariant with respect to the 
desired symmetries.  Earlier investigations determined families of equivariant 
functions for a few of the discrete symmetry groups in the plane; those results 
are extended to all the discrete symmetry groups of the plane.  This includes 
consideration of the all the frieze and two-dimensional crystallographic 
groups. 

 
 1. INTRODUCTION 
Nontrivial attractors that arise from the iteration of systems have appeared in a great variety 
of theoretic and applied contexts.  One of the most famous attractors is the Lorenz attractor 
[1] that arose from a model of weather; that attractor is in three space and has no apparent 
symmetries.  Other systems have been noted to have a great deal of inherent symmetry even 
while exhibiting chaotic behavior.  For example, the patterned flows in Courent-Taylor 
systems [2] have simultaneous symmetry and turbulence.  Patterns arising naturally, whether 
they are stripes and spot formations in a biological context or x-ray diffraction patterns, are 
intriguing because they suggest both randomness and hidden patterns [3,4].  The 
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simultaneous sense of symmetry and the bizarre was used by the artist M. C. Escher, who 
often took advantage of frieze and crystallographic symmetries [5]; indeed, he had 
significant interaction with the crystallographers of his day.  General introductions to 
symmetry include Stewart and Golubitsky [2] and Weyl [6].  Thompson's [7] classic text on 
the symmetry of physical forms includes Harold Edgerton's example “an instantaneous 
photograph of a 'splash' of milk” which has dramatic symmetry.  That text also discusses the 
shapes and forms of many living things.  Grünbaum and Shepard give a near encyclopedic 
discussion of patterns in the plane [8]. 
 We can create chaotic attractors by choosing a family of maps in the plane, randomly 
choosing the coefficients for the terms as parameters and testing whether the Ljapunov 
exponent is indicative of chaotic behavior.  Monte Carlo searches through parameter space 
yield the desired illustrations of attractors and these will have the desired symmetry if our 
family of maps possesses suitable properties.  Figure 1 shows a nontrivial chaotic attractor 
with no apparent symmetry that was constructed from such a quadratic map in ℜ2 .  Figure 2 
shows an attractor with cyclic 10-fold symmetry and Figure 3 shows an attractor with 
dihedral 10-fold symmetry; note the dihedral symmetry also includes reflections through 
10 central lines.  Field and Golubitsky [9, 10] discuss classes of polynomial maps that 
can be used to create attractors with these symmetries.  They also discuss and give 
illustrations of attractors with the symmetry of four of the crystallographic groups.  
Attractors with the symmetry of the cube [11], n-cube [12] and tetrahedron [13] have also 
been studied. 
 The discrete symmetry groups in the plane are well known to consist of the identity, 
two infinite families of rotational groups (cyclic and dihedral), seven frieze groups that 
include one independent translation each and 17 crystallographic groups that include two 
independent translations each [8].  Amazingly, the 230 crystallographic groups in three space 
were enumerated before the planar groups [8].  In the next section we look at some of the 
details of the maps used to create attractors with trivial and rotational symmetry in order to 
set the stage for our discussion of attractors with frieze and crystallographic symmetry that 
appears in Sections 3 and 4.  For now we note we found it convenient to use three 
dimensional tensors to represent the parameter space.  One dimension of the tensor 
corresponds to the pair of output coordinates and the others correspond either to a power 
series or a fourier series.  Roughly speaking, the number of independent translations 
determine the number of axes dedicated to fourier series.  Specific symmetries constrain the 
parameters and in many cases we must use special techniques to maintain equivariance with 
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a truncated  series. 
 
 2. GROUPS WITHOUT TRANSLATION 
Quadratic and higher degree functions of one variable can exhibit chaotic behavior.  For 
example, the logistic map is a quadratic map for which this can be observed and sometimes 
proven.  It is natural to look at two variable quadratic or higher degree maps as a potential 
source of chaotic behavior.  Sprott [14] has done this using the Ljapunov exponent [15, 16] 
as a selection device.  In practice one might speed up the selection process using genetic 
algorithms [17] but we found Monte-Carlo searches based on the lack of periodicity, lack of 
collinearity, and well behaved Ljapunov exponent sufficient.  In some cases we also tried to 
select according to boundedness of each component of the complement of the attractor.  
Sometimes the attractor can degenerate; see [18,19] for the theory of admissible subgroups. 
 We may represent a degree 2 map 
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where ( )a  =  A ijk  is a three dimensional array with 
indices bounded by 2k0 1,j0 2,i0 ≤≤≤≤≤≤ .  
Note that the indices of the coefficient aijk  are such 

that i corresponds to the power of x, j specifies the 
output coordinate, and k corresponds to the power of y.  For example,  
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A0
 corresponds to the three dimensional array shown in Table I. 

 Figure 1 was generated by such a function where the entries in the array were randomly 
selected between ±1.  A Monte Carlo search for Ljapunov exponents between 0.05 and 
0.6 was done and the figure was selected for its apparent lack of symmetry.  In that figure 
pixels visited few times are colored in red while pixels visited more times are colored 
with a color with a higher hue value.  The color contrast was optimized using a 
cumulative distribution with a logarithmic bias on frequencies, thus red appears more 
frequently.  We will use the same scheme in general but will vary the starting hue for 
variety. 

Table I Coefficients of a 
Quadratic Map on the Plane 

 1 0 0 
 4 0 0 
 
A0  = 2 0 0 
 0 5 6 
 
 3 0 0 
 0 0 0 



 
 

 4

 In order to generate attractors with specified symmetries we need functions 
ℜℜ 22 >_:f  that preserve those symmetries in a certain manner.  In particular, a 

function f  is said to be equivariant with respect to a group of symmetries if for all σ  in 
that group of symmetries and ℜ∈ 2    X  (f(X))  =  (X))f( σσ .  For example, if σ  is a 

rotation and f  is σ -equivariant, then the iterates of the rotation of a point are the same 
as the rotation of the iterates of the point.  This means that the attractor associated with f  
should have the desired symmetries.  It is possible that the attractor has only the 
symmetry when initial point averaging is done; however, in practice, transitive attractors 
occur and illustrations can be constructed using these maps.  Moreover, it is easy to 
verify that if a map is equivariant with respect to the generators of a symmetry group then 
it is equivariant with respect to all the elements of the group.  Thus, we need only verify 
equivariance with respect to generators. 
 The theory of which polynomial maps have n-fold rotational and n-fold dihedral 
symmetry is given in [9].  A truncated form for these maps can be written in complex 
coordinates as z  +  z))zRe(+zz + i+(  =  F(z) 1n-  n γβαωλ  where 0=ω  corresponds to 

dihedral symmetry.  Higher degree truncations can be used [20] and these maps can be 
put into the form of the three dimensional array described above but we are content to 
leave them in the given form and turn to a discussion of the frieze groups. 
 
 3. FRIEZE GROUPS 
The frieze group with the least amount of symmetry is denoted p111; it has one independent 
direction of translation and no other symmetry.  Since fourier series are often described in 
terms of functions that have period 2π we are interested in maps  ℜ→ℜ 22:f  that are 
equivariant with respect to y),2+(x=y)(x, πσ .  Here we have written pairs in ℜ2  as a 

row instead of a column and we will use both notations freely.  Note we take our 
translations along the x-axis for the frieze groups.  Fourier series can be used to represent 
smooth enough functions with period 2π.  Thus we expect any function of x and y that is 
periodic in x and smooth enough will have the form 

 ( )(nx)(y)c+(nx)(y)b+(y)b nn
1=n

0 sincos∑
∞

 

where the coefficient functions have power series expansions in y. We take our functions to 
be truncated fourier series in x and truncated power series expansions in y yielding the form: 
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where A is a 5 by 2 by 3 array.  The entries of this array, aijk , are such that i represents the 

index in the fourier terms, j indicates the output coordinate, and k indicates the power of 
y.  Note we reduce modulo 2π in the x coordinate and do not reduce the y coordinate.  We 
easily verify that these functions are equivariant with respect to this model of p111.  
Subsequent Monte-Carlo searches for attractors lead to images such as Figure 4.  This 
figure contains sweeps and swirls repeated with period 2π as desired. 
 To induce symmetries in addition to translational, we impose restrictions on our 
family of functions or modify them in some way.  The p112 symmetry group contains two-
fold rotations (180o).  In order to create this symmetry we require equivariance with respect 
to σ(x,y)=(-x,-y).  The equivariance conditions means that gA(σ(x,y))=σ(gA(x,y)). This implies 
 >)yy,1,< A>(2x) (x), (2x), (x), 1,(<- 2••sinsincoscos  

which means 
=...+(-x)(-y)a+(-x)a+)(-ya+(-y)a+a 101100

2
002001000 coscos  

 ...+(x)y a-(x)a-ya-ya-a- 101100
2

002001000 coscos  

and 
=...+(-x)(-y)a+(-x)a+)(-ya+(-y)a+a 111110

2
012011010 coscos  

 ...+(x)y a-(x)a-ya-ya-a- 111110
2

012011010 coscos  

where aijk are the entries in the array A. Note that we have two separate equations, 
corresponding to the two coordinates of the maps. Simplifying and equating like terms 
requires that a000 = -a000, a001 = a001, a002 = -a002, a100 = -a100, a101 = a101, a102 = -a102,... This 
means sixteen of our parameters must be zero and the other fourteen are unconstrained.  This 
allows us to limit our family of functions to those that have the desired symmetry simply by 
creating a mask of our array A.  We can now write our family of functions for p112 as 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
y
x

g MA* 112p
, where Mp112 is the array mask in Table II.  Note  A*Mp112 is an elementwise 

product of the matrices; this forces some of the random entries to become zero creating the 
desired symmetry.  Note again, the result is modulo 2π in the x coordinate.  Figure 5 exhibits 
the p112 symmetry, and results from Monte-Carlo searches.  Notice this image has 
translations and a clear non-trivial rotation.  
 The frieze group pm11 has lines of symmetry perpendicular to the axis of translation. 
 We can obtain these lines of symmetry by requiring equivariance with respect to σ(x,y)=(-
x,y).  We then use an analysis similar to that used for the p112 frieze group.  Thus the family 

of functions ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
y
x

g MA* 11pm
 with mask Mpm11 as seen in Table II has the desired symmetry.  
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Figure 6 is an example of a frieze with this type of symmetry.  Notice the two lines of 
reflection in the fundamental motif, with the second implied by the first in accordance with 
the periodicity. 
 The symmetry 
group p1m1 is characterized 
by a line of reflection 
parallel to the direction of 
translation.  That is, we 
require equivariance with 
respect to σ(x,y)=(x,-y) and 
obtain functions of the form 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
y
x

g MA* 1m1p
, with mask 

Mp1m1, as can be seen in 
Table II.  Figure 7 is an 
image representative of this 
group. 
 A glide reflection is 
a translation accompanied 
by a reflection across the axis of translation.  In our case the glide is of length π, and our 
functions have period 2π.  We require that our function be equivariant with respect to 
σ(x,y)=(x+π,-y).  If we attempt to equate the like terms in the equations resulting from the 
equivariance condition y))(x,g(  =  y))(x,(g AA σσ  we find the following. 

=...+)+(x(-y)a+)+(xa+)(-ya+(-y)a+a 101100
2

002001000 ππ coscos  
 ...+(x)(y)a+(x)a+)(ya+(y)a+a+ 101100

2
002001000 coscosπ  

and 
=...+)+(x(-y)a+)+(xa+)(-ya+(-y)a+a 101100

2
002001000 ππ coscos  

 ...+(x)(y)a-(x)a-)(ya-(y)a-a- 101100
2

002001000 coscos  
We find that equating constant terms requires that π=0, which is impossible, hence gA  is 

inadequate for the glide reflection.  We create the family of functions 
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 to deal with that difficulty.  This addition of x to the first 

coordinate does not interfere with our translational equivariance as x modulo 2π is a 
periodic function.  Requiring equivariance with respect to σ  on our functions now 

Table II Array Masks for p112, pm11, p1m1, and p1a1. 

  p112    pm11    p1m1    p1a1 
0   1   0  0   0   0  1   0   1  1   0   1 
0   1   0  1   1   1  0   1   0  0   1   0 
 
0   1   0  0   0   0  1   0   1  0   1   0 
0   1   0  1   1   1  0   1   0  1   0   1 
 
0   1   0  0   0   0  1   0   1  1   0   1 
0   1   0  1   1   1  0   1   0  0   1   0 
  
1   0   1  1   1   1  1   0   1  0   1    0 
1   0   1  0   0   0  0   1   0  1   0    1 
 
1   0   1  1   1   1  1   0   1  1   0    1 
1   0   1  0   0   0  0   1   0  0   1    0 
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allows us to solve for the mask for this group.  This mask, Mp1a1 (see Table II), yields the 

family of functions ⎟⎟
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x

.  Figure 8 clearly shows a glide 

reflection.  The parameters for this attractor and a compact implementation are given in 
the appendix. 
 We create the final two frieze patterns from combinations of the masks and function 
families we have already seen.  The pma2 frieze pattern is characterized by lines of reflection 
perpendicular to the axis of translation, glide reflections, and two-fold rotations.  The glide 

reflection requires we use ⎟⎟
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gA+
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.  By combining the masks of pm11 and 

p1a1 we get a mask that will also generate the rotations, as well as require the desired 

symmetries for our function ⎟⎟
⎠
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g M*MA* 1a1p11pm
+

0
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.  Figure 9 shows a chaotic 

attractor with these symmetries.  Note the 180o rotation occurs at the midpoint between the 
lines of reflection. 
 The final frieze pattern, pmm2, contains reflections both parallel and perpendicular 
to the axis of translation, and a 180o rotation.  This time the random array A is restricted by 

the combinations of Mp1m1 and Mpm11 and yields the function family ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
y
x

g M*MA* 11pm1m1p
.  The 

resulting symmetries again generate the two-fold rotation.  Figure 10 is an image 
representative of this group.  Note the rotations fall on the intersections of lines of 
reflection as opposed to in between them. 
 
 4. CRYSTALLOGRAPHIC GROUPS 
The crystallographic groups, or wallpaper groups, are characterized by translations in two 
independent directions, which give rise to a lattice.  While frieze groups can contain only a 
two-fold rotation, the wallpaper groups may contain rotations of order two, three, four, and 
six.  These different possible orders of rotation, along with independent translations, 
reflections, and glide reflections, yield a total of 17 possible crystallographic groups. 
 The simplest of the crystallographic groups is p1, which is characterized by two 
independent translations and no other symmetry.  We find it convenient to use a function that 
is periodic in both the x and y directions.  We choose a period of 2π in both directions, and 
the square determined by the perpendicular translation vectors is our generating region for 
p1.  We recognize that using a square lattice does not impose additional symmetries on our 
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image as our chaotic attractors have no inherent symmetry.  Note that we will use the square 
lattice as our fundamental region except for groups which use the hexagonal lattice. 
 It is known that smooth functions periodic in both x and y can be represented using a 
two-variable fourier series [21].  Thus we use a truncated double fourier series in both x and 
y to guarantee that our function is periodic in the x and y directions with period 2π.  We 
truncate our fourier expansion at 2x and 2y.  Thus we get a function of the form: 

••⎟⎟
⎠

⎞
⎜⎜
⎝

⎛   A    >x)sin(2 sin(x), x),cos(2 cos(x), 1,<  =  
y
x

hA  

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
π
π

2
2

   >(2y) (y), (2y), (y), 1,< modsinsincoscos  

where A is a 5 by 2 by 5 coefficient array.  A coefficient of this array,  aijk , is such that i 

represents the index of the fourier terms in x, j indicates the output coordinate, and k 
indicates the index in the fourier terms of y.  Note that the result is mod 2π in both the x 
and y coordinates. 
 It is straightforward to check that this function is equivariant with respect to 
σ1(x,y)=(x+2π,y), and σ2(x,y)=(x,y+2π).  Monte-Carlo searches were performed to create 
attractors for this group.  Note that Figure 11 has only translational symmetry. 
 Once we have a function that is equivariant with respect to the two translations, 
combining masks allows us to create functions equivariant with respect to several 
crystallographic groups.  The crystallographic group p2 introduces two-fold rotations.  For 
our function to have the desired rotational symmetry, we require that it be equivariant with 
respect to σ(x,y)=(-x,-y), as we did with a two-fold rotation in the p112 frieze group.  The 
equivariance requires that y))(x,h (  =  y))(x,(h AA σσ .  This implies: 

>=(-2y)(-y),(-2y),(-y),1,<  A >(-2x)(-x),(-2x),(-x),1,< sinsincoscossinsincoscos ••  
 >)(2y)(y),(2y),(y),1,<  A (2x)(x),(2x),(x),1,(< - sinsincoscoscoscoscoscos •• . 

Note that there are once again two separate equations, corresponding to the two coordinates 
of the maps.  The above implies 

=   ...   +  (-2y)a  + (-y)a  + (-2y)a  + (-y)a  + a 004003002001000 sinsincoscos  
 ...  -  (2y)a  - (y)a  - (2y)a  - (y)a  - a- 004003002001000 sinsincoscos  

and 
=   ...   + (-2y)a  + (-y)a  + (-2y)a  + (-y)a  + a 014013012011010 sinsincoscos  

 ...   -  (2y)a  - (y)a  - (2y)a  - (y)a  - a - 014013012011010 sinsincoscos  
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Simplifying and equating like terms yields 
the array mask for p2 shown in Table III.  
Now we can write the family of functions 

for p2 as ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
y
x

h 2MA* p
.  Figure 12 is an 

image resulting from Monte-Carlo 
searches for attractors across the 
parameter space. 
 The symmetry group pm is the most 
basic crystallographic group which contains 
reflections.  The lines of reflection are 
placed such that the axes of reflection are 
parallel to one axis of translation and 
perpendicular to the other axis of 
translation, creating a rectangular lattice in 
the most general case.  To generate a 
function with the pm symmetry, we require 
equivariance with respect to (x,-y)  =  y)(x,σ .  Note that this creates a mirror parallel to the 

horizontal translation vector; it could easily have been parallel to the vertical translation 
vector.  The properties of equivariance imply certain coefficients must be zero, resulting 
in the mask for pm shown in Table III. It follows that the family of functions for pm has 

the form ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
y
x

h MA* pm
.  Figure 13, which illustrates such an attractor, has regions of high 

iteration falling near the line of reflection.   
 The most basic crystallographic group with glide reflections is pg.  As with the glide 
reflection used for the frieze groups, we require that our function be equivariant with respect 
to y) ,-+(x  =  y)(x, πσ .  Note once again that the choice of a horizontal or vertical glide 

reflection axis is arbitrary.  If we attempt to equate the terms in h required to be equal by 
equivariance, as for p1a1, π gets equated with zero.  To avoid this contradiction, we use a 

new family of functions as before: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
π
π

2
2

 mod  
y
x

 hA  + 
0
x

.  To reiterate, the addition of 

x to the first coordinate does not interfere with translational equivariance because x 
modulo 2π is a periodic function.  Using the new family of functions, we find a mask to 
obtain equivariance with respect to a glide reflection of length π in the x direction.  

 
Table III Array Masks for p2, pm, and pg. 

   p2            pm           pg 
 
0 0 0 1 1   1 1 1 0 0   1 1 1 0 0 
0 0 0 1 1   0 0 0 1 1   0 0 0 1 1 
 
0 0 0 1 1   1 1 1 0 0   0 0 0 1 1 
0 0 0 1 1   0 0 0 1 1   1 1 1 0 0 
 
0 0 0 1 1   1 1 1 0 0   1 1 1 0 0 
0 0 0 1 1   0 0 0 1 1   0 0 0 1 1 
 
1 1 1 0 0   1 1 1 0 0   0 0 0 1 1 
1 1 1 0 0   0 0 0 1 1   1 1 1 0 0 
 
1 1 1 0 0   1 1 1 0 0   1 1 1 0 0 
1 1 1 0 0   0 0 0 1 1   0 0 0 1 1 
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Figure 14 resulted from functions that had the form ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
π
π

2
2

 mod   
y
x

h MA* pg
 + 

0
x

. 

 The symmetry group cm contains both reflections and glide 
reflections in parallel directions but no rotations.  So, in addition to 
requiring equivariance with respect to translations, we require 
equivariance with respect to the symmetries (x,-y)  =  y)(x,1σ  and 

y)- ,+(x  =  y)(x,2 ππσ .  Notice that for σ1 the reflection is across the x-

axis, and for σ2 the glide reflection is across the line y=π.  We need the 

extra term ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
y
x

 instead of the ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
0
x

 we used for pg since both coordinates 

of σ2 include the constant π.  Requiring equivariance with respect to σ1 and 
σ2 and equating like terms creates the function mask shown in Table IV.  
The family of functions for cm takes the form 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
π
π

2
2

mod    
y
x

h MA* cm
 + 

y
x

.  Note that M*M  =  gpmcm =y πM , where 

M g =y π
 denotes the mask created by imposing equivariance with respect 

to the glide reflection along the line y=π.  Figure 15 illustrates a chaotic 
attractor with this symmetry.  The parameters for this image appear in 
the appendix. 

 The symmetry group pmm, which has perpendicular reflections, can make use of the 
existing mask used for pm to create a function that is equivariant with respect to the desired 
symmetries.  In addition to being equivariant to translations, pmm must be equivariant with 
respect to (x,-y)  =  y)(x,1σ  and y) (-x,  =  y)(x,2σ .  Since the mask for pm forces 
equivariance with respect to σ 1 , or horizontal reflections, we need only to design a mask 
which imposes equivariance with respect to σ 2 .  It is not surprising that the resulting 
masks are related: for every 0  =  aijk  in the pm mask, the a i )j -(1 k  entry in the vertical 

reflection mask is also equal to zero.  Combining the two masks via component-wise 
array multiplication, we obtain the pmm mask in shown in Table V.  The functions with 

pmm symmetry then take on the form ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
y
x

h MA* pmm
.  See Figure 16, and note the 

perpendicular axes of reflection with the absence of rotational symmetry. 

 
Table IV  
Array mask for 
cm. 

1 0 1 0 0 
0 0 0 0 1 
 
0 1 0 0 0 
0 0 0 1 0 
 
1 0 1 0 0 
0 0 0 0 1 
 
0 1 0 0 0 
0 0 0 1 0 
 
1 0 1 0 0 
0 0 0 0 1 
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 The symmetry group pmg contains lines 
of reflection perpendicular to lines of glide 
reflection.  The family of functions takes on the 

form ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
π
π

2
2

mod    
y
x

h M*MA* g 0=xpm
 + 

y
0

, where 

M g 0=x
 is the function mask derived by 

requiring the function be equivariant with 
respect to a glide reflection of length π along 
the line x=0.  Figure 17 is an example of an 
attractor with pmg symmetry; note the two 
distinct glide reflections.   
 The wallpaper group pgg has 
perpendicular glide reflections.  The family of 
functions takes on the form 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
π
π

2
2

mod    
y
x

h MA* pgg
 + 

y
x

, because there 

are now glide reflections in both the x and y 
directions.  Note that in Figure 18 two-fold rotations appear, resulting from perpendicular 
glide reflections.      
 The group cmm is similar to pmm in that it contains perpendicular 
reflection axes, but it also contains rotations of order two which do not lie 
on the reflection axes.  Glide reflections also exist, resulting from 
combining perpendicular mirrors and half turns, so our function should be 
equivariant with respect to four symmetries: σ1(x,y) = (x,-y), σ2(x,y) = (-
x,y), σ3(x,y) = (x+π,π-y), and σ4(x,y) = (π-x,y+π).  The family of functions 

takes the form ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
π
π

2
2

mod    
y
x

h MA* cmm
  +  

y
x

.  The mask M cmm  is the 

product M*M* ggpmm =x=y ππM .  Note that in Figure 19, the intersection of 

perpendicular glide reflections occurs a half-period away in both 
directions from the intersection of the perpendicular mirror reflections. 
 The most general symmetry group that contains a four-fold 
rotation is p4.  For a function to have this symmetry, we require it be 
equivariant to σ(x,y)=(-y,x).  The implications of placing this requirement 
on hA  are as follows: 

Table V  Array masks for pmm, pmg, 
pgg. 

   pmm         pmg         pgg 
 
0 0 0 0 0   0 1 0 0 0   0 1 0 0 0 
0 0 0 1 1   0 0 0 0 1   0 0 0 0 1 
 
0 0 0 0 0   0 1 0 0 0   0 0 0 1 0 
0 0 0 1 1   0 0 0 0 1   1 0 1 0 0 
 
0 0 0 0 0   0 1 0 0 0   0 1 0 0 0 
0 0 0 1 1   0 0 0 0 1   0 0 0 0 1 
 
1 1 1 0 0   1 0 1 0 0   0 0 0 0 1 
0 0 0 0 0   0 0 0 1 0   0 1 0 0 0 
 
1 1 1 0 0   1 0 1 0 0   1 0 1 0 0 
0 0 0 0 0   0 0 0 1 0   0 0 0 1 0 

 
Table VI  
Array mask for 
cmm  

0 0 0 0 0 
0 0 0 0 1 
 
0 0 0 0 0 
0 0 0 1 0 
 
0 0 0 0 0 
0 0 0 0 1 
 
0 1 0 0 0 
0 0 0 0 0 
 
1 0 1 0 0 
0 0 0 0 0 
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   a000=a010, a001=a110, a002=a210, ... 
   ..., a300=-a013, a301=-a113, a302=-a213, ... 
More specifically stated, ai0k=ak1i for the first three planes of A (where 0<i<2 and 0<k<4) and 
ai0k=-ak1i for the last two planes of A (where 3<i<4 and 0<k<4).  The irregular pattern of 
minus signs and indices here is caused jointly by the swapping of x and y by σ and the even 
and odd nature of our trigonometric functions. 
 Thus we find it useful to define the function )(M  )(M : T 525525 ℜ→ℜ  by T(A)=B, 

where bi0k=ai0k, bi1k=ak0i for 0<i<2 and 0<k<4, and bi1k=-ak0i for 3<i<4 and 0<k<4.  So T 
converts an array A to the form we desire.  Hence we use hT(A) as our function for generating 
attractors that fit the symmetry group p4.  The example in Figure 20 displays centers of four-
fold rotation in the centers of each empty region and each colored region, as well as centers 
of two-fold rotation on the connections between the masses. 
 The symmetry group p4m contains the four-fold rotational symmetry of group p4 as 
well as perpendicular lines of reflection.  We used the function from group p4 coupled with 
the mask of the group pm, obtaining h M*T(A) pm

 which is equivariant with respect to p4m.  

We only need apply the mask corresponding to σ(x,y)=(x,-y), representative of one 
horizontal line of reflection, for coupling this with the four-fold rotational symmetry 
creates perpendicular lines of reflection.  In this manner we obtain images such as Figure 
21, in which one can spot centers of four-fold and two-fold rotation, in addition to 
horizontal and vertical lines of reflections through the centers of four-fold rotation. 
 Using a similar tactic to our extension of p4 to p4m, we extend p4 to p4g.  As with 
previous groups involving glide reflections, we add a special term; here we add the vector 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
y
x

 and reduce modulo 2π in both coordinates to fulfill our equivariance condition.  

Hence the function ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
π
π

2
2

mod    
y
x

h M*T(A) pg
+

y
x

 generates p4g images such as the one 

in Figure 22.  Lines of glide reflection pass horizontally and vertically through the 
centers of four-fold rotation. 
 The symmetry group p3 has third turns in addition to two independent translations.  
Since a square lattice does not map to itself by third turns, we need to use a different lattice.  
Indeed, a lattice with 120° angles between the independent directions is appropriate.  We 
take (1,0)2  =  u0 π  and /2)3(-1/2,2  =  u1 π  as the generators of our lattice L.  

Connecting vertices in this lattice yields a regular tiling of the plane by equilateral 
triangles and blocks of six give hexagons; hence this is called a hexagonal lattice.  The 
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vectors )3(1,-1/  =  v0  and )3(0,-2/  =  v1  form a basis for the dual lattice L*.  In 
particular, for all i and j, v  u ji •  is an integer multiple of π2 .  Thus, if u denotes any 

element of L and v is any element of L* then vu •  is an integer multiple of  π2  and hence 
X)(v  =  u))+(X(v •• coscos  and X)(v  =  u))+(X(v •• sinsin .  Consider the function 

ℜ→ℜ 22:F  defined by 
 ( )   Lmod  X)sin(v  +  X)cos(v  =  F(X) vv

Vv

••∑
∈

βα  

where V is a finite subset of the dual lattice L* and ℜ∈ 2
vv ,βα  are constant vectors.  If σ  

is any translational symmetry of L then the above remarks help us verify that F(X) is 
equivariant with respect to σ .  Now if we also want to require that our maps are 
equivariant with respect to third turns about the origin we can insist that whenever one 

term appears, so do two others.  Let ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

1/2-/23

/23-1/2-
  =  M , then X  M =  R(X)  

designates a counterclockwise rotation by 120°.  Now if v is in the dual lattice and 
ℜ∈ 2

vα  then 
   Lmod  X)(v)Rcos()(R + X)cos(R(v)) R(+ X)cos(v  =  (X)G 2

v
2

vvv ••• ααα   

is equivariant with respect to the translations from the original lattice L and we can see it is 
also equivariant with respect to R as follows:  
 X)(v)Rcos( + X)cos(R(v))(R + X)cos(v)  R(=  (X))GR( 22

v ••• ααα while 
 R(X))(v)Rcos( )(R + R(x))cos(R(v) ) R(+ R(X))cos(v  =  (R(X))G 22

v ••• ααα . 
The facts that X(v)R = R(X) 2 ••v , X v= R(X)R(v) •• , and X R(v)= R(X)(v)R2 ••  
follow from the matrix form for R and these give (X))G  R(=  (R(X))G vv  which is the 

desired equivariance.  An analogous sum of sine terms, 
   Lmod  X)(v)Rsin()(R + X)sin(R(v)) R(+ X)sin(v  =  (X)H 2

v
2

vvv ••• βββ , 

also has these equivariance properties.   
 We define a family of functions used to create attractors with p3 symmetry based on 
a random 2 by 3 by 2 array A of parameters as follows.  We take our finite set in the dual 
lattice to be }v,v,v{  =  V 210  where v0  and v1  were specified above and v+v = v 102 .  We 

consider functions of the form 

   Lmod  (X)H + (X)G vv jj   ∑
2

0=j

 

where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

a
a

  =  
0j1

0j0
v jα  and ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

a
a

 = 
1j1

1j0

v j
β .  Thus, the indices of the coefficients aijk  are 

ordered so that i selects cosine or sine, j corresponds to the elements in V, and k 
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corresponds to the fact that the coefficients are chosen from ℜ2  and hence have two 
coordinates.  Figure 23 shows an example of an attractor with these three-fold rotations 
generated by this type of function.  Notice that there are two independent nonorthogonal 
translations and that there are three different types of threefold rotations. 
 The symmetry group p3m1 has the symmetries of p3 with the addition of mirrors 
going through each 3-fold rotation.  This can be accomplished by adding a mirror along the y 
axis in our model for p3.  Namely, we require equivariance with respect to 

y)(-x,  =  y)(x,yσ .  Now the terms of y))(x,(G yv σ  and y))(x,Gv(yσ  are not the same.  
Nonetheless, the terms of y))(x,(G yv σ  are nearly the same as those from y)(x,G (v)yσ  
since X(v)  =  (X)v yy •• σσ ; however, the coefficients are not quite correct.  We add 
together two terms of the form (X)Gv  with related constants to get a new function with 

the desired equivariance.  Let 
   Lmod  (X)G + (X)G  =  (X)Ĝ (v)vv, yy σσ  
where the constants for the second term are chosen so that )(  =  vy(v)y ασασ .  Namely, 

X)(v)Rcos()(R+X)cos(R(v))R(+X)cos(v  =  (X)Ĝ 2
v

2
vvv, y

••• ααασ  

. Lmod X)(v))(Rcos())((R+X)))(cos(R())(R(cos y
2

vy
2

vyvy ••• σασασασσασ +X)(v)()(+ yvy  
Now we know (X)Ĝ yv,σ  is equivariant with respect to the translations and third turns 

since it is the sum of such functions and we can check directly that it is equivariant with 
respect to σ y ; however this requires using facts noted above along with relations 
between R  and σ y  such as R  =  R 2

yy σσ .  We note that we can construct another class 
of equivariant functions, which we will denote (X)Ĥ yv,σ , using sines instead of cosines 

and β v  as the coefficients.  Then taking the sum   Lmod  (X)Ĥ +  (X)Ĝ yjyj ,v,v  σσ∑
2

0=j

 gives 

a family of functions whose parameters can be given by a 2 by 3 by 2 array as was the 
case for the p3 symmetry group.  Figure 24 shows an example of an attractor constructed 
by such a function.  Notice the variety of triangles, near circular patterns and that the 
three different third turns all lie on mirrors as required.  The parameters and sample code 
for generating this image are given in the appendix. 
 The symmetry group p31m again has third turns and mirrors in addition to 
translational symmetry.  However, only one of the types of third turns lies on a mirror in this 
group.  In our model we can require equivariance with respect to a reflection across the x-
axis; that is, with respect to (x,-y)  =  y)(x,xσ .  Consider the functions 

  Lmod  (X)Ĥ +  (X)Ĝ xjxj ,v,v  σσ∑
2

0=j

 where the convention now requires )(  =  vx(v)x ασασ  
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and likewise for the )(  =  vx(v)x
βσβσ  coefficients.  We see these functions are 

equivariant with respect to the translations, the third turns and σ x  in the same manner as 

the analysis for p3m1.  However, the symmetry group is subtly different; two of the three 
different types of third turns do not lie on mirrors.  In Figure 25 we see that there are 
obvious third turns on mirrors and light third turn pinwheels. 
 The symmetry group p6 is generated by two independent translations and a sixth 

turn.  Again we use a hexagonal lattice about the origin.  If we let ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

1/2/23

/23-1/2
  =  N , 

then XN   =  S(X)  designates a counterclockwise rotation by 60°.  Redefine (X)Gv  in 

this situation as follows. 

   Lmod  X)(v)Scos()(S  =  (X)G j
v

j
5

0=j
v  •∑ α  

We can check this is equivariant with respect to the translations and S; we can take 
advantage of the fact that X(v)S  =  S(X)(v)S 1j-j •• .  Likewise 

   Lmod  X)(v)Ssin()(S  =  (X)H j
v

j
5

0=j
v  •∑ β  

is equivariant with respect to the translations and S.  Hence we can use the function family 

   Lmod  (X)H +  (X)G vv jj  ∑
2

0=j

 

to produce attractors with the desired symmetry.  Note our parameters again can be arranged 
in a 2 by 3 by 2 array A where the indices of aijk  are ordered so that i selects cosine or 

sine, j corresponds to the elements in V, and k corresponds to the fact that the coefficients 
are chosen from ℜ2 .  Figure 26 shows an example of an attractor with these six-fold 
rotations and the two independent translations.  Notice that there are numerous other 
symmetries forced by those symmetries: half-turns and third turns, for example. 
 The last crystallographic symmetry group is p6m which has the symmetries of p6 
along with a mirror through the sixth turns.  It turns out we can obtain this group by putting a 
mirror along either axis and we choose equivariance with respect to (x,-y)  =  y)(x,xσ .  

Consider  
   Lmod  (X)G + (X)G  =  (X)Ĝ (v)vv, xx σσ  

where we use the S  form for the Gv  functions and the constants for the second term are 
again chosen so that )(  =  vx(v)x ασασ .  As was the case for p31m, we can check that 
those functions are equivariant with respect to the translations, S  and σ x .  Similar 

statements can be made for  
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   Lmod  (X)H + (X)H  =  (X)Ĥ (v)vv, xx σσ  
which uses sines and β v  instead of cosines and α v .  Then taking the sum 

  Lmod   (X)Ĥ +  (X)Ĝ xjxj ,v,v  σσ∑
2

0=j

 gives a family of functions whose parameters can be 

given by a 2 by 3 by 2 array A as in our other hexagonal lattice families.  These functions 
have the desired equivariance properties.  Figure 27 shows an example of an attractor that 
has p6m symmetry.  Notice the sixth turns lie on lines of reflection and additional 
symmetries include third turns. 
 

5. CONCLUSIONS 
One can create chaotic attractors that are forced to have any of the discrete symmetry groups 
of the plane.  This is accomplished by the construction of suitable families of functions 
equivariant with respect to each symmetry group followed by Monte Carlo searches through 
parameter space.  The frieze groups take advantage of fourier series in one direction and a 
power series in the other.  In most cases additional symmetry can be added by masking the 
parameter space.  Glide reflections require special consideration; addition of a special term 
allows us to construct families with finitely many terms that have equivariance with regard 
to those symmetries.  Most of the crystallographic groups are implemented using double 
fourier series.  Again, many of the symmetries can be obtained using a mask of the 
parameter space, but special terms are required for glide reflections, and quarter turns 
introduce conditions on the parameter space more complex then a mask.  Symmetry groups 
that contain third or sixth turns require a hexagonal lattice.  Here our families of equivariant 
functions make use of a dual lattice, and rotational and reflective symmetry is added by 
summing suitable terms.  Images of these attractors often have a striking appearance when 
the Ljapunov exponent is positive and this allows for the construction of beautiful examples. 
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Appendix 

This appendix contains the parameter values and function definitions for Figures 8, 15 and 
24.  A few details of our implementation are given so that readers exploring the attractors in 
this paper should be able to verify their function implementations.  Our examples were 
constructed using J which is not widely known but is available for downloading from 
www.jsoftware.com.  Very preliminary versions of a couple of the constructions of attractors 
with planar symmetry given in this paper also appear in [22, 23].  Readers interested in 
creating their own attractors with symmetries as we have described will be interested in the 
parameter values and sample function values appearing below.  Since little additional space 
was required to add enough J so readers can also create their own versions of these images, 
that is also done, though the meaning of the code is not transparent to the uninitiated.  
Readers creating high resolution versions of these images in J are encouraged to study the J 
documentation, [24] and/or [25]. 
 
x=:+/ . *                       matrix multiplication 
sin=:1&o.                        
cos=:2&o. 
min=:<./ 
max=:>./ 
floor=:<. 
 
FZ2 creates functions with p1a1 symmetry from suitable parameters. 
 
FZ2 =: 1 : '(2p1&|@{.,{:)@(({.,0:)+(1: , 2&o. , 2&o.@+: ,  
 1&o., 1&o.@+:)@{. x  m."_ x ^&(i.3)@{:) f.' 
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par08=: 5 2 3$;<@".;._2]0 : 0         parameters for Figure 8 
 0.831722         0 _0.0138725 
        0  0.255773          0 
 
        0 _0.137478          0 
 0.156811         0  0.0538264 
 
 0.659532         0   _0.74701 
        0 _0.715334          0 
 
        0   0.44344          0 
_0.506331         0  _0.461773 
 
 0.980024         0  _0.649317 
        0   0.75199          0 
) 
 
f08=: par08t FZ2    function for Figure 8 
 
WP2 creates functions with cm symmetry from suitable parameters. 
 
WP2=: 1 : '2p1&|@(+({. x  m."_ x {:)@:(1: ,. cos ,. cos@+: ,. 
 sin ,. sin@+:)) f.' 
 
par15=: 5 2 5$;<@".;._2]0 : 0  parameters for Figure 15 
0.0767508         0  0.804914        0        0 
        0         0         0        0 0.530214 
 
        0 _0.265496         0        0        0 
        0         0         0 0.926566        0 
 
 0.967418         0 _0.980258        0        0 
        0         0         0        0 0.563521 
 
        0  0.539515         0        0        0 
        0         0         0  0.10244        0 
 
_0.549542         0  0.322755        0        0 
        0         0         0        0 0.704369 
) 
 
f15=:par15 WP2 
 
WP3 creates functions with p3m1 symmetry from parameters. 
 
WP3=: 1 : 0  
fu2r=.(2p1,o.%:3)&|"1  NB. fund unit to rect 
L=.(l1=.2p1 0),.l2=.2p1*(2 1 o. 2r3p1) 
fup=. 1&| &. (%.&L) 
R=.x&(((cos,sin),:-@sin,cos) 2r3p1) 
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M=.R^:(i.3)"2 m. 
v=.R^:(i.3)(1 0,0 1,:1 1)x(1,-%%:3),:0,_2%%:3 
sig=.(_1 1)&*"1 
fup@:(+/^:3)@:((M"_ *"1 0 ])@:(cos,:sin)@:(v&x) + ((sig M)"_ 
 *"1 0 ])@:(cos,:sin)@:((sig v)&x)) f. 
) 
 
par24=: 2 3 2$;<@".;._2]0 : 0  parameters for Figure 24 
_0.0966238 0.0436792 
  0.116669  0.852935 
 _0.713108  0.796924 
 
_0.0978695 _0.892281 
 _0.569655 _0.186624 
  _0.58311 _0.332584 
) 
 
f24=:par24 WP3 

 
We next display iterates 10 to 14 on initial guess 0.1 0.2 for each of the functions created as a 
check for implementations. 
 
   f08^:(10+i.5)0.1 0.2 
2.55032  0.0824602 
2.75651  _0.473115 
3.21827 _0.0158882 
4.84963  _0.112226 
4.84338   0.445774 
   f15^:(10+i.5)0.1 0.2 
1.62329 2.88606 
1.78365 2.95051 
  2.085 3.03449 
2.54699 3.07267 
3.11211  3.0119 
   f24^:(10+i.5)0.1 0.2 
 _0.40199  1.52887 
  5.17233  1.34564 
  3.93791 0.853705 
  4.74573  2.32464 
_0.399799  4.18074 

 
Lastly, we offer a quick construction of a small version of Figure 8 for those who wish to 
explore these images in J.  Explanations of the J details are skipped but the online help could 
be used fill in the meaning of primitives.  This section assumes the reader has run the above 
definitions and the script raster3.js that comes with the J extras. 
 
   xy=.f08t^:(1000+i.10000) 0.1 0.2 Get 10,000 iterates 
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   min xy 
0.00121 _2.39929 
   max xy 
6.28244 2.39933 
 
Rescale to pixel coords: 
 
   XY =.floor (200 % 6.283 4.8)*"1 (0 2.4)+"1 xy  
   3{.XY       the first three lit pixels 
196 196 
121  73 
176  90 
 
   n=.~.XY      pixels hit 
   fq=.#/.~ XY      their frequency count 
   max fq 
32 
   pal=.255,hue 5r6*(i.%<:) 32  palette with 32 colors 
 
Insert frequencies in 200 by 200 zero matrix: 
 
   b=. |:fq (<"1 n)}200 200$0   
   (pal;b) writebmp8 'fig08.bmp' 

 
The last command should create a low resolution, but color, windows bitmap with the 
attractor seen in Figure 8.  One can use similar constructions to create Figures 15 and 24. 
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Figure 1.  C1: A chaotic attractor in the plane with no symmetry.  
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Figure 2. C10: An attractor with 10-fold cyclic symmetry. 
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Figure 3. D10: An attractor with 10-fold dihedral symmetry. 
 
 
 
 



 
 

 25

 
Figure 4. P111: An attractor with translational symmetry  
 
 
 

 
Figure 5. P112: An attractor with a translation and a half turn. 
 
 
 
 

 
Figure 6. PM11: An attractor with a translation and a horizontal reflection. 
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Figure 7. An attractor with a translation and vertical reflection.  
 
 
 

 
Figure 8. P1A1: An attractor with a translation and a glide reflection 
 
 

 
Figure 9. PMA2: An attractor with a translation and horizontal and vertical reflections. 
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Figure 10: PMM2: An attractor with horizontal and vertical reflections. 
 
 
 
 

 
Figure 11: P1: An attractor with two translations. 
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Figure 12: P2: An attractor with two translations and a half turn. 
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Figure 13: PM: An attractor with two translations and a reflection. 
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Figure 14: PG: An attractor with two translations and a glide reflection. 
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Figure 15: CM: An attractor with two translations and  
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Figure 16: PMM: An attractor with two translations and two reflections. 
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Figure 17: PMG: An attractor with two translations a reflection and a glide reflection.  
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Figure 18: PGG: An attractor with two translations and two glide reflections. 
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Figure 19: CMM: An attractor with two translations and  
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Figure 20: P4: An attractor with two translations and a quarter turn. 
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Figure 21: P4M: An attractor with two translations, a quarter turn and reflection. 
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Figure 22: P4G: An attractor with glide reflections through quarter turns. 
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Figure 23: P3: An attractor with third turns. 
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Figure 24: P3M1: An attractor with all third turns on reflections  
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Figure 25: P31M: An attractor with some third turns on reflections. 
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Figure 26: P6: An attractor with sixth turns. 
 
 
 



 
 

 43

 
Figure 27: P6M: An attractor with reflections on sixth turns. 
 


