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Abstract. Tilings are created from root lattices using canonical
projection. Like diffraction images, these tilings make the
quasicrystaline or crystalline nature of many of these structures clear.
These tilings may aso be viewed as shadows of |attice sphere packings
in n-dimensions. The atlas gives many new intriguing quasicrystalline
tilingsin a systematic way.
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1. Introduction

The classification of the crystallographic symmetry groups in 3-dimensional spacein the
19th century was a remarkabl e achievement that was essential to understanding the x-ray
diffraction patterns of materials studied in the early part of the 20th century. That, in turn,
facilitated the devel opment of molecular chemistry. There was great shock when
diffraction patterns that were impossible for crystalline structures were discovered in real
materialsin 1984 [1]. These materials have become known as quasicrystals. The
existence of quasicrystalline materials has increased interest in the mathematical
understanding sets of points structured more loosely than in the regular, periodic pattern
of lattices. For example, canonical projection from the 5-dimensional integer lattice can
be used to give athorough analysis of Penrose tilings [2]. When Penrose tilings were
introduced [3-5], their remarkable aperiodic properties were recognized, but it was not
immediately clear that they were not merely a mathematical curiosity.

Our goal isto provide an atlas of tilings resulting from canonical projection for a
much broader class of lattices. Such tilings display shadows of the symmetries of the
higher dimensional lattices with avisual representation in the plane. Many of these
tilings are new and wonderful quasicrystalline patterns. The lattices can also be visually
studied by their diffraction patterns; however, apart from translational and forbidden
rotation symmetry, it is difficult to directly observe information from the diffraction
pattern. The tilings have considerable inherent interest beyond any obvious lattice and
rotational structure. Our focus is upon using canonical projection from the root lattices to
obtain nonperiodic tilings. Not surprisingly, the integer lattices in other dimensions
behave most like the lattice that generates Penrose tilings while the other root lattice
produce quite different, but equally remarkable tilings.

In recent years, root |attices have become more important because of their relation
to codes and sphere packings [6]. Modern theories of fractal space-time have highlighted
the importance of irregular structures and high dimensional lattices have played an
important role in modern physics [ 7-11]. Thus, we expect the atlas presented here to not
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only be of interest to investigators of tilings but also to those interested in studying
sphere packings and other applications of high dimensional lattices themselves.

We understand that in many ways our task is hopeless. There are infinitely many
root lattices and even for asingle one, say the 5-dimensional integer lattice commonly
used to produce Penrose tilings, it iswell known that uncountably many such tilings may
be created [2]. Moreover, special cases and new generic types appear for special types of
"offset" used in the canonical projection. However, the same local configurations appear
in many of the variations. The forbidden crystalline symmetries which appear are
highlighted by the projection used; so while they are afeature of the lattice, the fact that
that aspect of the lattice symmetry is visible depends upon the choice of projection. In
any case, thetilings give visual shadows of the higher dimensional lattices which are
worthwhile, even while we recognize the impossibility of conveying al the features of
such alattice with a planar tiling.

Quasicrystals are recognized by their diffraction patterns which exhibit symmetry
impossible for a crystallographic pattern. The 3-dimensional crystallographic groups and
diffraction theory are described in [12-14] and generalizations to 4-dimesions are given
in[15]. A wonderful visual atlas of diffraction patterns appearsin [16]. That atlas
provides a guide to the diffraction patterns produced by simple masks as well as
exploring complex masks including those related to crystallographic patterns. A chapter
in [2] considers diffraction patterns for tilings, including a few nonperiodic tilings.

An important general introduction to tilingsis [17]; however, that book was
written before physical quasicrystals were discovered. Radin [18] discusses the theory of
tilings from a post quasicrystalline viewpoint. Nonetheless, [17] does discuss nonperiodic
tilings and aperiodic tilings. Aperiodic tilings are tilings whose tiles only give
nonperiodic tilings. While aperiodic tilings are remarkable, see also [2, 19], we are
interested in the nonperiodic tilings arising from canonical projection, which we call
quasicrystalline tilings.

We note that a handful of quasicrytalline tilings, created from integer lattices,
appear at [20]. Patterns arising from the A4 root lattice are analyzed in [21].
Generalizations of VVoronoi tilings and their duals have also been used to create
remarkable quasicrystalline tilings [22-23] and a substantial theory for the tilings that
arise when the projections are quadratic has been developed [24-25].

2. Canonical Projection

The Voronoi cell around a point in acollection of pointsisthe set of pointsin space that
are at least as close to the given point as any other point in the collection. The Voronoi
cells decompose space into neighborhoods around the collection of pointsin anatural
way. Figure 1 shows the Voronoi cells around a Penrose configuration of points. Notice
each point is surrounded by a polygon forming its VVoronoi cell and each edgeisa
segment on a bisector between two points. The Voronoi cells for alattice must be
congruent since each point in alattice has a neighborhood looking like any other. Thus,
the Voronoi cellsfor alattice are a polytope that tile space. Since the point set in Figure 1
isnot alattice, the Voronoi tiling seen there is more complicated.

Canonical projection of alatticein R" is based upon the idea of decomposing R"
in terms of orthogonal spaces E and E* and projecting select portions of the lattice in



R" onto E. In particular, some compact set, C, in E* is chosen. The "canonical" choice
for C isthe projection of Voronoi cell of the originin R", relative to the lattice, as
projected onto E* . We also shift (translate) the points before we project and test them;
one can equivalently describe the compact set C as shifted, but for convenience, we do
our shiftin R". The points which are projected onto E are the points of the lattice which
map to C under shift and projection to E*. In other words, the preimage of C
corresponds to acylinder in R", compact in some directions and unbounded in others.

The points of the latticein R" which are in that cylinder are projected onto E.

Figure 2 illustrates canonical projection in asimpler situation than we will use,
but it serves as a useful overview of the process. In the figure, the orthogonal spaces E
and E* are the marked lines and together they generate R?. A compact set Cin E* is

marked in black. The set C defines acylinder in * which lies between the dashed lines.
Some of the integer lattice points lie in the cylinder—these are marked as points with
gray centers. Others lattice points lie outside the cylinder—these are marked as points
with hollow centers. Those that are in the cylinder are projected onto E aong dotted lines
to points marked with black circles. The result of canonical projection of the lattice is that
point setin E.

The projections we use are not as smple. We are interested in the case when E is
2-dimensional and seek to connect the projected points with edges to give atiling.
Moreover, the compact sets we use tend to be quite complex. Our last exampleinvolves a
polytope with more than 40,000 facets as the compact set C.

Usually the shift used in the projection and the subspaces E and E* are chosen so
that E does not meet any faces of the shifted VVoronoi cell; this avoid singular cases.
When singular cases are avoided and the lattice isintegral, there is a general theory that
concludes that the projected point set is nonperiodic [2, 26].

In order to obtain atiling, we connect two projected verticesin E by an edgeif the
corresponding verticesin the cylinder (in R") differ by afacet vector of the Voronoi cell.
That is, we can imagine the selected | attices points in the cylinder giving avertex set;
vertices are connected by an edge if they differ by afacet vector of the Voronoi cell; the

set of vertices and edges gives a graph with a particular geometric representation in R".
Thetiling we seek is the projection of that geometric graph onto E. There is no reason to
believe ahead of time that the tiling will only use a small number of distinct tiles; nor
have we specified enough to guarantee that edges won't cross. Thus, additional vertices,
corresponding to the intersections, would need to be introduced in order to make some of
the images we create into formal tilings. As we have noted, in the nonsingular integral
cases we expect nonperiodic tilings, we call these quasicrystallinetilings. In many cases
even the nonperiodic tilings are quite regular, but in every case they are a shadow of the

generating latticein R" and exhibit some of its symmetry.

3. Root Lattices

The root lattices may be characterized various ways, but they consist of three infinite
families, Z", D, and A,, where n denotes the dimension of the lattice, along with three
special latticesin afamily: Es, E7, and Es. For a detailed enumeration of many of their
properties, see [6]; the classic book [27] also describes many of their properties,



especially those related to the polytopes related to these constructions. We will content
ourselves to describing the properties we will use and focus our exampleson 3<n <8,
although we will consider some slightly higher dimensional casesfor Z".

The integer lattice Z" is generated by the rows of the n by n identity matrix and
the Voronoi cell around the origin has 2n facets, half a unit from the origin, and
orthogonal to the generators and their opposites. The covering radius for alattice isthe
minimal radius such that the union of the spheres of that radius centered at the lattice

Jn

points will cover space. The covering radiusfor Z"is R=—.

Thelattice Dy is {(xl,x2,~~-,xn)e Z" | X, + X, +---+ X, iseven } Thislatticeis

called the checkerboard lattice since every aternate vertex of Z" isincluded. It is
generated by the rows of the following matrix.
-1 -2 0 0 --- 0 O

1 -1 0 0 - 0 O
0o 1 -10.- 0 O

O 0 0 0 -1 -1
The Voronoi cells are generated by the 2n(n + 1) permutations of (+1,£1,0,---,0) and the

covering radiusis R= % for n>3and R=1forn=3.

Thelattice Anis {(xl,xz,---,xml)e Z™H X A Ky ot X, = O}. It is generated

by the rows of:
-1 1 0 O 0 O
0O -1 1 0 0 O
0O 0 -11 0 O
O 0 0 0 - -11

The Voronoi cells are generated by the (n + 1)(n + 2) vectorsthat consist of the

S|

n+1

permutations of (1,—1,0,---,0). The covering radiusis R=

where [nTHJ isthe floor of the quotient.

Thelattice Egis
{(x,, %, %) |dl x, € Zoral x, € Z+1and x, + X, +---+ X, =0mod 2}. It is generated
by the rows of the following matrix.



2 0 0 0O O 0 OO
-11 0 0 O O 0O
0 -1 1 0 0 0 OO
0O 0 -1 1 0 O OO
0O 0 0 -1 1 0 OO
0O 0 0 0 -1 1 0O
0O 0 0 0 0O -110
1 14 1 1 & 1 11

2 2 2
In computational practice, we use arescaled version of the lattice in order to maintain
integral entries.

The Eg and E lattices appear as sublattices of Eg; E; may be described by
E, ={(X, %, %) € Eg |X + X, ++--+ X, = 0 } and Eg may be described by
Ey ={ (X, Xy, . X5) € Eg | X, + Xg = X, +---+ X, = 0 }. The generating matrices for these
lattices may be found in [6]. The Voronoi cells of the Es, E7 and Eg lattices have 72,
126, and 240 facets. The projections are far more complex as we will seein Section 10.

The covering radii for these latticesare R= \E \/g , and 1, respectively.

4. Quasicrystalline Projection
In order to obtain local symmetry in our tilings we select the canonical projectionin a
way so that certain symmetrically related lattice points remain related. In particular, we

select Ein R" sothat it is preserved by a certain n-fold rotation.
The most commonly used subspaces E and E* that generate Penrose tilings are
defined as follows. The subspace E of R® is generated by the two vectors:
U, = (cos(0Or/5),cos(2r/5),cos(4n/5),cos(6rn/5),cos(8r/5)),
U, = (sin(Or/5),sin(2r/5),sin(4n / 5),sin(6r/ 5),sin(8n / 5)) .
The subspace E* is generated by the three vectors:
U, = (cos(0Or/5),cos(4n/5),cos(8r/5),cos(12r/ 5),cos(16m/5)),
U, = (sin(Or/5),sin(4r/5),sin(8r/5),sin(12r/5),sin(16rn/5)) , and
Us =(11111).
The five vectors taken together, {U,,U,,---, U} , form an orthogonal coordinate system.
We generalize the above choice of subspaces and coordinate systemto R", for
n> 3, asfollows. Let E be generated by the two vectors:
U, = (cos(0Or/n),cos(2n/ n),cos(4n/n),---,cos(2(n —1)m/ n))
U, = (sin(Or/n),sin(2r/n),sin(4r/n),---,sin(2(n—-r/n)).
Furthermore, let E* be generated by the vectors:
Uy, = (cos(Omj / n), cos(2nj / n), cos(4nj / n),---,cos(2j(n—Dr/n)),
Uy; = (sin(Orj / n),sin(2nj / n),sin(4xj / n),---,sin(2j(n—r/n))



22—‘.Also U, =(11%---,2) and when niseven we also use

for 2< | S{n

U,,=(1-1%-1-1-1).

We can check that {U,,U,,---,U,} formsan orthogonal coordinate system. Now
let r(x;, X,,-+, X,) = (X, X3, =++, X,,, X;) Whichisafunction that gives an n-fold rotation of
coordinates. We see that r fixes the last vector in that basis, r(t,,) = G, and we claim that
r(E) = E . We show the claim by observing the linearity of r and showing that the image
of U, and U, under r isalinear combination of G, and U, and hencein E. If we write

U, = <cos(2—kn)> and likewise U, = <si n(&)> , we see the image of U, under
0<k<n-1 0<k<n-1
ris:
_ 2(k+Dm
(@) = cos 20T
n 0<k<n-1

n n O<k<n-1

Zhr
n

2km

= <cos( ) COS(Z—:) -9 n(T) s n(Z_r:c)>

0<k<n-1
21, . 2T,

= €cos(—)U, — sin(—)U,
n n

whichisin E asclaimed. A similar argument shows the same for the image of U, . Thus

we have chosen E so that if it contains alattice point, then the rotations of the lattice
point under r will also bein E. If the lattice is mapped to itself by r, and the compact set
is symmetric under r, then thisis enough to give global n-fold symmetry to the tiling.
Even without C being completely symmetric, there are fragments of the symmetry given
locally that form the quasicrystalline nature of the structure.

The projection of aunit hypercubein R° onto E is shown in Figure 3. Notice that
31 vertices appear; only the central pair of vertices corresponds to a duplicate. Edges
which could be used as alocal configuration in a Penrose tiling are shown embol dened.

Figure 4 shows a portion of atypical Penrose tiling (its set of verticesis the same
as appeared in Figure 1). Thisis constructed using the standard Voronoi cell around the
origin as the compact set with a suitable shift—along with our standard spacesE and E*,
described above. The shift used to generate Figure 4 is special in that only certain vertex
configurations are possible. In the next section we discuss several different types of shifts
that we will use, along with briefly exploring other variations.

5. Variation of the Compact Set

We have aready mentioned that shifting is an important way to change the compact set
in E* used to create the tiling. In addition, we can increase or decrease the diameter of
the Voronoi cell and even choose the compact set to have nothing to do with projected
Voronoi cells. We will primarily utilize the Voronoi cell with one of the following types
of shifts. We describe each shift relative to the basis of unit vectors (0j, Uy, ..., U, ) Where



U isthe unit vector in the U. direction. That is, pointsin R" are shifted by addition of
Z 0,0, before they are projected to E*, where we test whether the imageisin the
i=1

compact set (canonically the image of the Voronoi cell around the origin). Table | shows
the six types of shifts. The covering radius of the lattice is denoted by Rand v isthe
expansion factor of the Voronoi cell (usually v =1). The"*"s correspond to random
decimal numbers created with afixed seed. Further details are given in Section 10, but
for now a"*" should be considered a generic, and hence nonsingular, shift.

S (00,00, 0ty )

S <0,0,* *ok 1*>

St (0,0 * - *Rv)

2 <010’* 1* oo ’* 1&>

2

(0,0,0,-,0,Rv)

S <0’0’0’. .. ’0’&>

S (0,0,0;-,0,0)

Tablel. Six types of shifts used on Voronoi cells.

The Penrose tiling shown in Figure 4 was created using a shift of type s;. Since
the covering radiusis @ and that is half the length of the body diagonal of the 5-cube,

this corresponds to "sum condition being one-half" that is used to distinguish Penrose
projections from some of its generalizations [2]. The choice of o, = o, =0 inal cases
corresponds to the fact that these coordinates correspond to trandations in E and don't
affect the underlying tiling.

Figure 5 shows the diminished tiling that occurs when the VVoronoi cell used for
Figure 4 is contracted by afactor of 0.9. Likewise, Figure 6 shows the enlarged tiling
corresponding to expansion factor of 1.1. Notice the large number of crossing edges
visible and various substantial portions of hypercubes (recall Figure 3) may be observed.
An animation showing the evolution of thetiling as the expansion factor variesis
available at [28].

We may also consider test sets which have nothing to do with the Voronoi cells.
For example, if we use aunit 3-cubein E* that is contracted by afactor of 0.7251 asthe
compact test set, the resulting tiling is shown in Figure 7. Notice the unattached edges.
However, if aunit 3-sphere that is contracted by afactor of 0.861 is used as the compact

setin E*, theresulting tiling is shown in Figure 8. Notice the similarities to Figure 5,
except that awider range vertex configurations are allowed. Animations corresponding to
the changes in contraction factor may be found at [28].

We now consider the result of different shifts corresponding to the ordinary
Voronoi cell. Figure 9 shows the result of an s, shift. Notice the large number of 10-fold



vertex configurations (forbidden in Penrose tilings). Like the tiling produced by most of
the shifts, thisis ageneralization of a Penrose tiling. The rhombic tiles are shown in
different colors depending upon their shape and orientation in the plane. Notice the
striking appearance of the regions consisting of the thinner rhombs. The result of an s,
shift is shown in Figure 10. Again, Penrose-tiling forbidden configurations appear,
although 10-fold configurations are not visible. The result of an s; shift isshownin
Figure 11. Here the shift allows more edges than produce rhombs; thus there are many
crossing edges and the tiling appears less regular than for the other shifts. However, there
isa10-fold rotational symmetry.

Werecall that the last o.-coordinate of the shift corresponds to the unit vector in
the U, = (1,14,1---,1) direction that is preserved by permutations of coordinates, including

rotations of coordinates such as r(x;, X,,-+, X,) = (X,, X3, -+, X, %) . If &l the other o-

coordinates of the shift are zero, then the compact set will be symmetric with respect to r
(describing the geometry as though the set C is shifted). The shifts s;, &, and s; al have
that property and hence give globally symmetric tilingsiif the lattice also is symmetric
with respect to r. All of the root lattices have the symmetry with respect to r except Es.

Theresult of an s, shift is shown in Figure 12. There the global 5-fold symmetry
isfairly apparent; look along the 5 lines emanating from the center, where 5-rhombs
meet. Thisis aPenrose tiling with global rotational symmetry. The result of an s shift is
shown in Figure 13. It corresponds to no shift and the extra symmetry results. In
particular, 10-fold vertex configurations appear as does a global 10-fold symmetry. The
site [28] also shows animations of tilings morphing from one shift type to another.

Before turning to our atlas which forms the main body of the paper, we
reemphasize the significance of the choice of spaces E and E* . Figure 14 shows the
projection of the lattice points from Z > using a random choice for the subspaces E and
E*, so thereis no reason to expect 5-fold local symmetry. Notice thetiling is
complicated, but appears to be periodic. Thisis quite different from Figures 3-13 that
arise from the same lattice. Figure 15 shows the diffraction pattern for the tiling in Figure
4. Notice the 10-fold symmetry which is forbidden for crystalline structures; hence the
Penrose tiling we saw in Figure 4 is quasicrystalline. The diffraction pattern in Figure 15
is shown with contrast optimized, as described for diffraction experimentsin [29], in
order to highlight the symmetry. If linear contrast is used instead, the discreteness of the
pattern becomes apparent but it is more difficult to observe the forbidden symmetry. In
contrast, Figure 16 shows the diffraction pattern for the tiling in Figure 14. We see that
while the diffraction pattern shows a distinct pattern, there is not forbidden rotational
symmetry. Thus our standard choice of E and E* described in the previous section plays
an important role the quasicrytalline nature of our tilings.

6. Tilingsfrom the Integer Lattice, Z", 3<n<10.
Thetilings that arise via canonical projection are most regular for the integer lattice.
Low, "crystalline” dimensions, n = 3, 4, 6, giverise to periodic structures, but non-
periodic tilings are typical for higher dimensions.

Using our standard projections, we see the tiling arising from Z 3 is either a
periodic 6-fold symmetric rhomb tiling (So, S2, 4, S5) Or aperiodic equilateral triangular
tiling obtained by dividing each rhomb in half. Figure 17 shows the rhomb tiling



associated with s,. The tilings that arise from the Z* lattice give rise to a ordinary square
tiling for al the shifts. In the previous section we considered the rich variety of non-
periodic tilings that arise from the Z° lattice and will say no more about them here.

The Z° lattice gives rise to several different periodic tilings. These include regular
tiling by equilateral triangles (ss), the rhomb tiling like that seen in Figure 17 (s;, ), and
atiling which is a decomposition of that tiling by afactor of two (s;, S5) and aslightly
more complicated periodic rhomb tiling from an s, shift; see Figure 18.

Theinteger lattice Z” gives nonperiodic tilings. Figure 19 shows a generic tiling
from a shift of type sp. Figure 20 shows an nonperiodic tiling arising from an s, shift on
the Z° lattice. The simplicity of thetiling isin contrast to itsirregularity. Thetiling
arising from an s, shift is even more subtle; it gives a 8-fold symmetric tiling that must be
non-periodic. However, notice how periodic it appearsto be at a glance; see Figure 21.

The Z° lattice also give rise to nonperiodic tilings. Figure 22 shows striking 9-
fold central symmetry arising from an s, shift. Figure 23 shows a generic nonperiodic
tiling arising from an s, shift on Z*°.

7. Tilings from the Checkerboard L attice, D,,, 3<n<8.

Like the integer lattice, the checkerboard lattice gives rise to periodic tilingswhen n = 3,
4, 6. However, the tilings arising from the checkerboard lattice are far less regular in all
cases. Figure 24 shows the s, shift tiling arising from D3. Notice the hexagonal regions
encased in triangular scaffolding. Thistiling is close to being a 3-grid with some extra
edges.

Figure 25 shows a square tiling arising from the sy shift with aternate squares
bisected diagonally — alternating between left and right diagonals as might be expected
as the shadow of a checkerboard lattice. All the other shifts give similar results.

The Ds lattice gives remarkable tilings that are asrich as those from the Z° I attice.
Here Figure 26 shows the s, shift tiling, Figure 27 shows the s; shift, and Figure 28
shows the s; shift. In all of these the local 5-fold symmetry is apparent. Figure 26 uses
color to show the wide variation in the tile shapesin the tiling. The tiles have been
colored using the techniquesin [30]. Figure 27 shows a similar tiling, except stars within
stars have a dramatic appearance and the tiles are not colored. In Figure 28 paths of
triangles and rhombs form the low density regions and these are reminiscent of the
multigrid construction of Penrose tilings, although the gridlines are interrupted and
intertwine in an intriguing manner. The dense regionsin that figure contain many stars
within pentagons.

The Dg lattice givesrise to avariety of periodic tilings. This includes rectangles
with aternate crossovers, rhombs, triangles and other tilings. Figure 29 shows atiling
arising from s; (almost a multi-grid).

Figure 30 showstheirregular s; based tiling for D;. The role of 7-gonsis
apparent, but the connections between 7-gons seem tenuous and thin. The Dg based
tilings are quite varied. Some appear thin and tenuous like Figure 30. Others are rather
regular; for example, see Figure 31 which is produced by the s; shift.

We have seen that the D,, tilings are not as regular as the integer lattices. Those
that are close to being multi-grids, contain exceptional edges. However the variation in
density we observe in most of the tilings is not unexpected given the every-other vertex
configuration and increased complexity of the Voronoi cell for the underlying lattice.
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8. Tilingsfrom the Lattice A,, 3<n<8.

The lattice A, is embedded in R™* and hence we find the expected periodic tilings when
n= 3, 5. Like Figure 25 which we saw for D,, a bisected square tiling results from Az
using the s shift. Using other shifts on Ag gives similar tilings.

The A4 lattice gives riseto tilings (nearly multi-grid) with many local 5-fold
symmetric spots and some pentagons and stars. The s;, 4 and s5 shifts (which are the
same since the last o -coordinate has not impact for the A, tilings) have some global
rotational symmetry. If we contract the Voronoi cell by afactor of 0.5 and use an s, shift,
the tiling shown in Figure 32 results. Notice the 5-fold local symmetry is quite clear.

Figure 33 shows the hexagonal tiling resulting from As using an s, shift. Simple
rhomb tilings appear for other shifts. The Ag tilings are very irregular. Figure 34 shows
the tiling resulting from the s; shift. Here 14-fold rotational symmetry appears along with
7-gons. Figure 35 isthe tiling using ss and the expansion factor 1.1 giving riseto a
remarkably regular 8-fold symmetric tiling. Figure 36 shows an Ag based tiling using an
S shift and 1.2 expansion factor. Note the irregularity and the physical quasicrystal-like
appearance.

Like the previous families, the A, family of lattices give rise to awide variety of
tilings. However, they appear to typically be less regular than those generated by Z" or
Dn.

9. Tilingsfrom the Lattices Eg, E7, and Es.

The representation of the lattices we use for the E, lattices are all embedded in R®.
Hence they are expected to typically be nonperiodic tilings. The ordinary Voronoi cells
are too small to generate a connected set of edges, hence we use an expansion factor in
order to obtain interesting tilings. Figure 37 showsthetiling for Es using an sz shift and
an expansion factor of 1.9. Thetiling with s, shifts has slightly less symmetry and fewer
edges. However, the lattice is not symmetric with respect to rotations of coordinates,
hence the lack of 8-fold rotational symmetry.

The E7 lattice does have symmetry with respect to rotation of coordinates. Thus
we don't have 8-fold rotational symmetry for an s, shift, see Figure 38. Thistiling uses an
expansion factor of 1.9.

The Eg lattice has quite a bit of symmetry, including the rotational symmetry
when the shift isonly in the ug direction. Figure 39 shows thetiling for for an s; shift and
an 2.0 expansion factor. Notice the global symmetry and the rich structure of the tiling.
Thetiles are colored according to [30]. Lastly, Figure 40 showsthe Eg tiling for an s,
shift and an expansion factor of 2.15. Many locally 8-fold symmetric configurations are
apparent and the physical quasicrystalline quality pervades the image.

10. Computations
We will comment upon three phases of our computations. These are computing the
projection of the central Voronoi cell, selecting the shifts, and locating the vertices which
giveriseto thetilings.

In Section 3 we saw generator matrices for the root lattices. The Voronoi cell may
be computed by finding the closure of the set of generators under the operation of
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reflection across the hyperplanes defined by the generators. Each of the resulting vectors
corresponds to anormal to afacet of the Voronoi cell of the origin. The facet is half the
length of the vector from the origin. Our construction uses the fact that all the generators
of aroot lattice have the same length although this is not essential for canonical
projection.

Next, the n-3 dimensional faces of the Voronoi cell are enumerated by

n
considering al of the (3] ways of selecting three facets. The projection of these faces

into E* corresponds either to an-3 dimensional affine hyperplanein E* (afacet) or it is
adegenerate face. We disgard the degenerate faces and select the affine hyperplane
furthest from the origin in each projected facet direction. For testing purposes, we only
take one of each opposite pair. Hence, the number shown in the last column of Tablell is
the number of inequalities that must be tested in order to determine whether the
projection of a point isin the projection of the Voronoi cell for the integer lattice.
Remember, the projections we are using have special symmetry, so the projected Voronoi
cells are not expected to be "generic”. Table 11 shows the analogous information for the
checkerboard lattice, Table 1V for the A, lattices, and Table V for the E, lattices.

The programming language that we used for our constructions was Jsoftware
[31]. The shifts that we used were generated with its random number generator using the
default random seed and generating four digit numbers. For example, the s, shift used to
create Figure 9, is, in o.-coordinates, given by the following list of 4 decimal place
random numbers 0 0 0.1315 0.7556 0.4586 (remember, we always take the first two o -
coordinates to be 0).

n #facetsinR" #n-3facesinR" half of # facetsinE*
3 6 20 1
4 8 56 2
5 10 120 10
6 12 220 11
7 14 364 35
8 16 560 36
9 18 816 84
10 20 1140 85
11 22 1540 165
12 24 2024 166

TableI1. The face counts for canonical Voronoi cell for the Z"lattice and its projections.

n #facetsinRk" #n-3facesinR" half of # facetsinE™*
3 12 220 1

4 24 2024 4

5 40 9880 100

6 60 34220 199

7 84 95284 2261

8 112 227920 3180

Tablell1. The face counts for canonical VVoronoi cell for the Dy lattice and its projections.
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n #facetsinR"™* #n-2 facesin®R"* half of # facetsinE™*
3 12 220 1

4 20 1140 5

5 30 4060 34

6 42 11480 189

7 56 27720 530

8 72 59640 1668

Table V. The face counts for canonical VVoronoi cell for the A, lattice and its projections.

n #facetsinR® # 5-facesinR® half of # facetsinE*
6 72 59640 579

7 126 325500 3957

8 240 2275280 22169

Table V. Theface counts for canonical Voronoi cell for the E, lattice and its projections.

Lastly we comment upon our strategy for finding the lattice points that project to
the compact set in E*. First, testing asingle lattice point may require testing many
inequalities. The most difficult case that we completed was for Eg where more than
22,000 inequalities must be tested for each considered lattice point. If we simply tested
each lattice point using afixed range of integers for coefficients of the generators, the
computation quickly becomes intractable. Limiting the coefficientsto +10 would lead to

21% = 3.8x10" lattice points to test for the eight dimensional case. Thisistoo many
points and in reality we want more than =10 for our range. Instead, we begin with a
brute force search on avery small, £1, region and identify which lattice points were
acceptable. We then consider al the neighbors (using the normals to the VVoronoi cell) of
the good points and, after removing those that are duplicates and those that have already
been tested, we test the remaining neighbors. Note that using a £ 1 sense of neighbor
may givesriseto 3* = 6561 neighbors for asingle point in 8-dimensional space. This
search strategy can not locate unconnected components of the graph in the lattice space,
unless the components touch theinitial test cell. Nonetheless, this search strategy worked
well for usin practice and allowed us to avoid brute force testing of |attice points far
from the cylinder of interest.

11. Conclusions

Canonical projection was used create tilings that have local symmetry that is forbidden by
the crystallographic restriction for periodic structures. We have seen that there isanatural
wal to create projections similar to those used for creating Penrose tilingsin any dimension.
We a so have seen severa types of shifts and other variations on compact set that give
different quditative behaviors. We have seen many illustrations of remarkable
quasicrystallinetilings that result from canonical projection for the root lattices: Z", Dy, A,
and E,. These may be viewed as shadows of root |attice packings. We have seen that the
integer lattice givesriseto thetilings most similar to the Penrose tilings, yet the othersyield
equaly intriguing tilings.
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Figure 9. AZ° tiling using an s shift of the Vronoi cell.
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Figure 24. A D3 tiling using an s shift of the VVoronoi cell.



Figure 25. A Dy tiling using an s, shift of the Voronoi cell.

Figure 26. A Ds tiling using an s, shift of the Voronoi cell.
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Figure 28. A Ds tiling using an ss shift of the Voronoi cell.
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Figure 29. A Dg tiling using an s; shift of the Voronoi cell.

Figure 30. A D7 tiling using an s; shift of the Voronoi cell.
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Figure 31. A Dgtiling using an s3
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Figure 32. An A4 tiling using an s, shift and 0.5 contraction of the Voronoi cell.
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Figure 33. An As tiling using an s, shift of the Voronoi cell.
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Figure 34. An Ag tiling usi ng an S shift of the Voronoi ceII.
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Figure 37. An Eg tiling using an s; shift and a 1.9 expansion of the Voronoi cell.
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Figure 38. An E; tiling using an s, shift and a 1.9 expansion of the Voronoi cell.



Figure 39. An Eg tiling using an s shift and a 2.0 expansion of the Voronoi cell.
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Figure 40. An Eg tiling using an s, shift and a 2.15 expansion of the VVoronoi cell.



