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 Abstract.  Tilings are created from root lattices using canonical 

projection. Like diffraction images, these tilings make the 
quasicrystaline or crystalline nature of many of these structures clear. 
These tilings may also be viewed as shadows of lattice sphere packings 
in n-dimensions. The atlas gives many new intriguing quasicrystalline 
tilings in a systematic way.  
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1. Introduction 
The classification of the crystallographic symmetry groups in 3-dimensional space in the 
19th century was a remarkable achievement that was essential to understanding the x-ray 
diffraction patterns of materials studied in the early part of the 20th century. That, in turn, 
facilitated the development of molecular chemistry. There was great shock when 
diffraction patterns that were impossible for crystalline structures were discovered in real 
materials in 1984 [1]. These materials have become known as quasicrystals. The 
existence of quasicrystalline materials has increased interest in the mathematical 
understanding sets of points structured more loosely than in the regular, periodic pattern 
of lattices. For example, canonical projection from the 5-dimensional integer lattice can 
be used to give a thorough analysis of Penrose tilings [2]. When Penrose tilings were 
introduced [3-5], their remarkable aperiodic properties were recognized, but it was not 
immediately clear that they were not merely a mathematical curiosity. 

Our goal is to provide an atlas of tilings resulting from canonical projection for a 
much broader class of lattices. Such tilings display shadows of the symmetries of the 
higher dimensional lattices with a visual representation in the plane. Many of these 
tilings are new and wonderful quasicrystalline patterns. The lattices can also be visually 
studied by their diffraction patterns; however, apart from translational and forbidden 
rotation symmetry, it is difficult to directly observe information from the diffraction 
pattern. The tilings have considerable inherent interest beyond any obvious lattice and 
rotational structure. Our focus is upon using canonical projection from the root lattices to 
obtain nonperiodic tilings. Not surprisingly, the integer lattices in other dimensions 
behave most like the lattice that generates Penrose tilings while the other root lattice 
produce quite different, but equally remarkable tilings.  

In recent years, root lattices have become more important because of their relation 
to codes and sphere packings [6]. Modern theories of fractal space-time have highlighted 
the importance of irregular structures and high dimensional lattices have played an 
important role in modern physics [7-11]. Thus, we expect the atlas presented here to not 
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only be of interest to investigators of tilings but also to those interested in studying 
sphere packings and other applications of high dimensional lattices themselves. 

We understand that in many ways our task is hopeless. There are infinitely many 
root lattices and even for a single one, say the 5-dimensional integer lattice commonly 
used to produce Penrose tilings, it is well known that uncountably many such tilings may 
be created [2]. Moreover, special cases and new generic types appear for special types of 
"offset" used in the canonical projection. However, the same local configurations appear 
in many of the variations. The forbidden crystalline symmetries which appear are 
highlighted by the projection used; so while they are a feature of the lattice, the fact that 
that aspect of the lattice symmetry is visible depends upon the choice of projection. In 
any case, the tilings give visual shadows of the higher dimensional lattices which are 
worthwhile, even while we recognize the impossibility of conveying all the features of 
such a lattice with a planar tiling. 

Quasicrystals are recognized by their diffraction patterns which exhibit symmetry 
impossible for a crystallographic pattern. The 3-dimensional crystallographic groups and 
diffraction theory are described in [12-14] and generalizations to 4-dimesions are given 
in [15]. A wonderful visual atlas of diffraction patterns appears in [16]. That atlas 
provides a guide to the diffraction patterns produced by simple masks as well as 
exploring complex masks including those related to crystallographic patterns. A chapter 
in [2] considers diffraction patterns for tilings, including a few nonperiodic tilings. 

An important general introduction to tilings is [17]; however, that book was 
written before physical quasicrystals were discovered. Radin [18] discusses the theory of 
tilings from a post quasicrystalline viewpoint. Nonetheless, [17] does discuss nonperiodic 
tilings and aperiodic tilings. Aperiodic tilings are tilings whose tiles only give 
nonperiodic tilings. While aperiodic tilings are remarkable, see also [2, 19], we are 
interested in the nonperiodic tilings arising from canonical projection, which we call 
quasicrystalline tilings. 

We note that a handful of quasicrytalline tilings, created from integer lattices, 
appear at [20]. Patterns arising from the A4 root lattice are analyzed in [21]. 
Generalizations of Voronoi tilings and their duals have also been used to create 
remarkable quasicrystalline tilings [22-23] and a substantial theory for the tilings that 
arise when the projections are quadratic has been developed [24-25].  

 
2. Canonical Projection 
The Voronoi cell around a point in a collection of points is the set of points in space that 
are at least as close to the given point as any other point in the collection. The Voronoi 
cells decompose space into neighborhoods around the collection of points in a natural 
way. Figure 1 shows the Voronoi cells around a Penrose configuration of points. Notice 
each point is surrounded by a polygon forming its Voronoi cell and each edge is a 
segment on a bisector between two points. The Voronoi cells for a lattice must be 
congruent since each point in a lattice has a neighborhood looking like any other. Thus, 
the Voronoi cells for a lattice are a polytope that tile space. Since the point set in Figure 1 
is not a lattice, the Voronoi tiling seen there is more complicated.  

Canonical projection of a lattice in nℜ  is based upon the idea of decomposing nℜ  
in terms of orthogonal spaces E and ⊥E  and projecting select portions of the lattice in 
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nℜ  onto E. In particular, some compact set, C, in ⊥E  is chosen. The "canonical" choice 
for C is the projection of Voronoi cell of the origin in nℜ , relative to the lattice, as 
projected onto ⊥E . We also shift (translate) the points before we project and test them; 
one can equivalently describe the compact set C as shifted, but for convenience, we do 
our shift in nℜ . The points which are projected onto E are the points of the lattice which 
map to C under shift and projection to ⊥E . In other words, the preimage of C 
corresponds to a cylinder in nℜ , compact in some directions and unbounded in others. 
The points of the lattice in nℜ  which are in that cylinder are projected onto E.  

Figure 2 illustrates canonical projection in a simpler situation than we will use, 
but it serves as a useful overview of the process. In the figure, the orthogonal spaces E 
and ⊥E  are the marked lines and together they generate 2ℜ . A compact set C in ⊥E  is 
marked in black. The set C defines a cylinder in 2ℜ  which lies between the dashed lines. 
Some of the integer lattice points lie in the cylinder—these are marked as points with 
gray centers. Others lattice points lie outside the cylinder—these are marked as points 
with hollow centers. Those that are in the cylinder are projected onto E along dotted lines 
to points marked with black circles. The result of canonical projection of the lattice is that 
point set in E.  

The projections we use are not as simple. We are interested in the case when E is 
2-dimensional and seek to connect the projected points with edges to give a tiling. 
Moreover, the compact sets we use tend to be quite complex. Our last example involves a 
polytope with more than 40,000 facets as the compact set C. 

Usually the shift used in the projection and the subspaces E and ⊥E are chosen so 
that E does not meet any faces of the shifted Voronoi cell; this avoid singular cases. 
When singular cases are avoided and the lattice is integral, there is a general theory that 
concludes that the projected point set is nonperiodic [2, 26].  

In order to obtain a tiling, we connect two projected vertices in E by an edge if the 
corresponding vertices in the cylinder (in nℜ ) differ by a facet vector of the Voronoi cell. 
That is, we can imagine the selected lattices points in the cylinder giving a vertex set; 
vertices are connected by an edge if they differ by a facet vector of the Voronoi cell; the 
set of vertices and edges gives a graph with a particular geometric representation in nℜ . 
The tiling we seek is the projection of that geometric graph onto E. There is no reason to 
believe ahead of time that the tiling will only use a small number of distinct tiles; nor 
have we specified enough to guarantee that edges won't cross. Thus, additional vertices, 
corresponding to the intersections, would need to be introduced in order to make some of 
the images we create into formal tilings. As we have noted, in the nonsingular integral 
cases we expect nonperiodic tilings, we call these quasicrystalline tilings. In many cases 
even the nonperiodic tilings are quite regular, but in every case they are a shadow of the 
generating lattice in nℜ  and exhibit some of its symmetry.  
 
3. Root Lattices 
The root lattices may be characterized various ways, but they consist of three infinite 
families, Z n, Dn and An, where n denotes the dimension of the lattice, along with three 
special lattices in a family: E6, E7, and E8. For a detailed enumeration of many of their 
properties, see [6]; the classic book [27] also describes many of their properties, 
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especially those related to the polytopes related to these constructions. We will content 
ourselves to describing the properties we will use and focus our examples on 83 ≤≤ n , 
although we will consider some slightly higher dimensional cases for Z n.  

The integer lattice Z n is generated by the rows of the n by n identity matrix and 
the Voronoi cell around the origin has 2n facets, half a unit from the origin, and 
orthogonal to the generators and their opposites. The covering radius for a lattice is the 
minimal radius such that the union of the spheres of that radius centered at the lattice 

points will cover space. The covering radius for Z n is 
2
nR = . 

The lattice Dn is { }evenis|),,,( 2121 n
n

n xxxZxxx +++∈ LL . This lattice is 
called the checkerboard lattice since every alternate vertex of Z n is included. It is 
generated by the rows of the following matrix. 
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The Voronoi cells are generated by the 2n(n + 1) permutations of )0,,0,1,1( L±±  and the 

covering radius is 
2
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The Voronoi cells are generated by the (n + 1)(n + 2) vectors that consist of the 

permutations of  )0,,0,1,1( L− . The covering radius is 
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2
1n  is the floor of the quotient. 

 The lattice E8 is  
{ }2mod0andallorall|),,,( 8212

1
821 ≡++++∈∈ xxxZxZxxxx ii LL . It is generated 

by the rows of the following matrix. 
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In computational practice, we use a rescaled version of the lattice in order to maintain 
integral entries.  

The E6 and E7 lattices appear as sublattices of E8; E7 may be described by 
{ }0|),,,( 82188217 =+++∈= xxxExxxE LL  and E6 may be described by 
{ }0|),,,( 728188216 =++=+∈= xxxxExxxE LL . The generating matrices for these 

lattices may be found in [6]. The Voronoi cells of the E6, E7 and E8 lattices have 72, 
126, and 240 facets. The projections are far more complex as we will see in Section 10. 

The covering radii for these lattices are 
2
3,

3
4=R , and 1, respectively. 

 
4. Quasicrystalline Projection 
In order to obtain local symmetry in our tilings we select the canonical projection in a 
way so that certain symmetrically related lattice points remain related. In particular, we 
select E in nℜ  so that it is preserved by a certain n-fold rotation. 

The most commonly used subspaces E and ⊥E  that generate Penrose tilings are 
defined as follows. The subspace E of 5ℜ  is generated by the two vectors:  

))5/8cos(),5/6cos(),5/4cos(),5/2cos(),5/0(cos(1 πππππ=ur , 
))5/8sin(),5/6sin(),5/4sin(),5/2sin(),5/0(sin(2 πππππ=ur . 

The subspace ⊥E  is generated by the three vectors: 
))5/16cos(),5/12cos(),5/8cos(),5/4cos(),5/0(cos(3 πππππ=ur , 

))5/16sin(),5/12sin(),5/8sin(),5/4sin(),5/0(sin(4 πππππ=ur , and 
)1,1,1,1,1(5 =ur . 

The five vectors taken together, },,,{ 521 uuu r
L

rr , form an orthogonal coordinate system. 
We generalize the above choice of subspaces and coordinate system to nℜ , for 

3≥n , as follows. Let E be generated by the two vectors: 
))/)1(2cos(,),/4cos(),/2cos(),/0(cos(1 nnnnnu π−πππ= L

r  
))/)1(2sin(,),/4sin(),/2sin(),/0(sin(2 nnnnnu π−πππ= L

r . 
Furthermore, let ⊥E  be generated by the vectors:  

))/)1(2cos(,),/4cos(),/2cos(),/0(cos(12 nnjnjnjnju j π−πππ=− L
r ,  

))/)1(2sin(,),/4sin(),/2sin(),/0(sin(2 nnjnjnjnju j π−πππ= L
r
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for ⎥⎥
⎤

⎢⎢
⎡ −≤≤

2
22 nj . Also )1,,1,1,1( L

r =nu  and when n is even we also use 

)1,1,,1,1,1,1(1 −−−=− L
r

nu . 
 We can check that },,,{ 21 nuuu r

L
rr  forms an orthogonal coordinate system. Now 

let ),,,,(),,,r( 13221 xxxxxxx nn LL =  which is a function that gives an n-fold rotation of 
coordinates. We see that r fixes the last vector in that basis, nn uu rr =)r(  and we claim that 

EE =)r( . We show the claim by observing the linearity of r and showing that the image 
of 1ur  and 2ur  under r is a linear combination of 1ur  and 2ur  and hence in E. If we write 

10
1 )2cos(

−≤≤

π=
nkn

kur  and likewise 
10

2 )2sin(
−≤≤

π=
nkn

kur , we see the image of 1ur under 

r is: 

 
10

1 ))1(2cos()(
−≤≤

π+=
nkn

kur r  

  
10

)22cos(
−≤≤

π+π=
nknn

k  

  
10

)2sin()2sin()2cos()2cos(
−≤≤

ππ−ππ=
nknn

k
nn

k  

  21 )2sin()2cos( u
n

u
n

rr π−π=  

which is in E as claimed. A similar argument shows the same for the image of 2ur . Thus 
we have chosen E so that if it contains a lattice point, then the rotations of the lattice 
point under r will also be in E. If the lattice is mapped to itself by r, and the compact set 
is symmetric under r, then this is enough to give global n-fold symmetry to the tiling. 
Even without C being completely symmetric, there are fragments of the symmetry given 
locally that form the quasicrystalline nature of the structure. 

The projection of a unit hypercube in 5ℜ  onto E is shown in Figure 3. Notice that 
31 vertices appear; only the central pair of vertices corresponds to a duplicate. Edges 
which could be used as a local configuration in a Penrose tiling are shown emboldened.  

Figure 4 shows a portion of a typical Penrose tiling (its set of vertices is the same 
as appeared in Figure 1). This is constructed using the standard Voronoi cell around the 
origin as the compact set with a suitable shift—along with our standard spaces E and ⊥E , 
described above. The shift used to generate Figure 4 is special in that only certain vertex 
configurations are possible. In the next section we discuss several different types of shifts 
that we will use, along with briefly exploring other variations.  
 
5. Variation of the Compact Set 
We have already mentioned that shifting is an important way to change the compact set 
in ⊥E  used to create the tiling. In addition, we can increase or decrease the diameter of 
the Voronoi cell and even choose the compact set to have nothing to do with projected 
Voronoi cells. We will primarily utilize the Voronoi cell with one of the following types 
of shifts. We describe each shift relative to the basis of unit vectors nuuu ))) ...,,, 21  where 
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iu)  is the unit vector in the iur  direction. That is, points in nℜ  are shifted by addition of 

∑
=

α
n

i
iiu

1

) before they are projected to ⊥E , where we test whether the image is in the 

compact set (canonically the image of the Voronoi cell around the origin). Table I shows 
the six types of shifts. The covering radius of the lattice is denoted by R and ν  is the 
expansion factor of the Voronoi cell (usually 1=ν ). The "*"s correspond to random 
decimal numbers created with a fixed seed. Further details are given in Section 10, but 
for now a "*" should be considered a generic, and hence nonsingular, shift. 
 

si nααα ,,, 21 L  
s0 **,,*,*,,0,0 L  
s1 νR*,,*,*,,0,0 L  
s2 

2
*,,*,*,,0,0 νR

L  

s3 νR,0,,0,0,0 L  
s4 

2
,0,,0,0,0 νR

L  

s5 0,0,,0,0,0 L  
Table I. Six types of shifts used on Voronoi cells. 

  
 The Penrose tiling shown in Figure 4 was created using a shift of type s1. Since 
the covering radius is 2

5  and that is half the length of the body diagonal of the 5-cube, 
this corresponds to "sum condition being one-half" that is used to distinguish Penrose 
projections from some of its generalizations [2]. The choice of 021 =α=α  in all cases 
corresponds to the fact that these coordinates correspond to translations in E and don't 
affect the underlying tiling.  

Figure 5 shows the diminished tiling that occurs when the Voronoi cell used for 
Figure 4 is contracted by a factor of 0.9. Likewise, Figure 6 shows the enlarged tiling 
corresponding to expansion factor of 1.1. Notice the large number of crossing edges 
visible and various substantial portions of hypercubes (recall Figure 3) may be observed. 
An animation showing the evolution of the tiling as the expansion factor varies is 
available at [28].  

We may also consider test sets which have nothing to do with the Voronoi cells. 
For example, if we use a unit 3-cube in ⊥E  that is contracted by a factor of 0.7251 as the 
compact test set, the resulting tiling is shown in Figure 7. Notice the unattached edges. 
However, if a unit 3-sphere that is contracted by a factor of 0.861 is used as the compact 
set in ⊥E , the resulting tiling is shown in Figure 8. Notice the similarities to Figure 5, 
except that a wider range vertex configurations are allowed. Animations corresponding to 
the changes in contraction factor may be found at [28].  

We now consider the result of different shifts corresponding to the ordinary 
Voronoi cell. Figure 9 shows the result of an s0 shift. Notice the large number of 10-fold 
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vertex configurations (forbidden in Penrose tilings). Like the tiling produced by most of 
the shifts, this is a generalization of a Penrose tiling. The rhombic tiles are shown in 
different colors depending upon their shape and orientation in the plane. Notice the 
striking appearance of the regions consisting of the thinner rhombs. The result of an s2 
shift is shown in Figure 10. Again, Penrose-tiling forbidden configurations appear, 
although 10-fold configurations are not visible. The result of an s3 shift is shown in 
Figure 11. Here the shift allows more edges than produce rhombs; thus there are many 
crossing edges and the tiling appears less regular than for the other shifts. However, there 
is a 10-fold rotational symmetry.  

We recall that the last α -coordinate of the shift corresponds to the unit vector in 
the )1,,1,1,1( L

r =nu  direction that is preserved by permutations of coordinates, including 
rotations of coordinates such as ),,,,(),,,r( 13221 xxxxxxx nn LL = . If all the other α -
coordinates of the shift are zero, then the compact set will be symmetric with respect to r 
(describing the geometry as though the set C is shifted). The shifts s3, s4 and s5 all have 
that property and hence give globally symmetric tilings if the lattice also is symmetric 
with respect to r. All of the root lattices have the symmetry with respect to r  except E6.  

The result of an s4 shift is shown in Figure 12. There the global 5-fold symmetry 
is fairly apparent; look along the 5 lines emanating from the center, where 5-rhombs 
meet. This is a Penrose tiling with global rotational symmetry. The result of an s5 shift is 
shown in Figure 13. It corresponds to no shift and the extra symmetry results. In 
particular, 10-fold vertex configurations appear as does a global 10-fold symmetry. The 
site [28] also shows animations of tilings morphing from one shift type to another. 

Before turning to our atlas which forms the main body of the paper, we 
reemphasize the significance of the choice of spaces E and ⊥E . Figure 14 shows the 
projection of the lattice points from Z 5 using a random choice for the subspaces E and 

⊥E , so there is no reason to expect 5-fold local symmetry. Notice the tiling is 
complicated, but appears to be periodic. This is quite different from Figures 3-13 that 
arise from the same lattice. Figure 15 shows the diffraction pattern for the tiling in Figure 
4. Notice the 10-fold symmetry which is forbidden for crystalline structures; hence the 
Penrose tiling we saw in Figure 4 is quasicrystalline. The diffraction pattern in Figure 15 
is shown with contrast optimized, as described for diffraction experiments in [29], in 
order to highlight the symmetry. If linear contrast is used instead, the discreteness of the 
pattern becomes apparent but it is more difficult to observe the forbidden symmetry. In 
contrast, Figure 16 shows the diffraction pattern for the tiling in Figure 14. We see that 
while the diffraction pattern shows a distinct pattern, there is not forbidden rotational 
symmetry. Thus our standard choice of E and ⊥E described in the previous section plays 
an important role the quasicrytalline nature of our tilings. 
 
6. Tilings from the Integer Lattice, Z n, 103 ≤≤ n . 
The tilings that arise via canonical projection are most regular for the integer lattice. 
Low, "crystalline" dimensions, n = 3, 4, 6, give rise to periodic structures, but non-
periodic tilings are typical for higher dimensions.  

Using our standard projections, we see the tiling arising from Z 3 is either a 
periodic 6-fold symmetric rhomb tiling (s0, s2, s4, s5) or a periodic equilateral triangular 
tiling obtained by dividing each rhomb in half. Figure 17 shows the rhomb tiling 
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associated with s0. The tilings that arise from the Z 4 lattice give rise to a ordinary square 
tiling for all the shifts. In the previous section we considered the rich variety of non-
periodic tilings that arise from the Z 5 lattice and will say no more about them here.  

The Z 6 lattice gives rise to several different periodic tilings. These include regular 
tiling by equilateral triangles (s3), the rhomb tiling like that seen in Figure 17 (s2, s4), and 
a tiling which is a decomposition of that tiling by a factor of two (s1, s5) and a slightly 
more complicated periodic rhomb tiling from an s0 shift; see Figure 18. 
 The integer lattice Z 7 gives nonperiodic tilings. Figure 19 shows a generic tiling 
from a shift of type s0.  Figure 20 shows an nonperiodic tiling arising from an s0 shift on 
the Z8 lattice. The simplicity of the tiling is in contrast to its irregularity. The tiling 
arising from an s4 shift is even more subtle; it gives a 8-fold symmetric tiling that must be 
non-periodic. However, notice how periodic it appears to be at a glance; see Figure 21. 
 The Z 9 lattice also give rise to nonperiodic tilings. Figure 22 shows striking 9-
fold central symmetry arising from an s4 shift. Figure 23 shows a generic nonperiodic 
tiling arising from an s4 shift on Z 10.  
 
7. Tilings from the Checkerboard Lattice, Dn, 83 ≤≤ n . 
Like the integer lattice, the checkerboard lattice gives rise to periodic tilings when n = 3, 
4, 6. However, the tilings arising from the checkerboard lattice are far less regular in all 
cases. Figure 24 shows the s0 shift tiling arising from D3. Notice the hexagonal regions 
encased in triangular scaffolding. This tiling is close to being a 3-grid with some extra 
edges. 
 Figure 25 shows a square tiling arising from the s0 shift with alternate squares 
bisected diagonally — alternating between left and right diagonals as might be expected 
as the shadow of a checkerboard lattice. All the other shifts give similar results. 
 The D5 lattice gives remarkable tilings that are as rich as those from the Z 5 lattice. 
Here Figure 26 shows the s0 shift tiling, Figure 27 shows the s3 shift, and Figure 28 
shows the s5 shift. In all of these the local 5-fold symmetry is apparent. Figure 26 uses 
color to show the wide variation in the tile shapes in the tiling. The tiles have been 
colored using the techniques in [30]. Figure 27 shows a similar tiling, except stars within 
stars have a dramatic appearance and the tiles are not colored. In Figure 28 paths of 
triangles and rhombs form the low density regions and these are reminiscent of the 
multigrid construction of Penrose tilings, although the gridlines are interrupted and 
intertwine in an intriguing manner. The dense regions in that figure contain many stars 
within pentagons. 

The D6 lattice gives rise to a variety of periodic tilings. This includes rectangles 
with alternate crossovers, rhombs, triangles and other tilings. Figure 29 shows a tiling 
arising from s1 (almost a multi-grid).  

Figure 30 shows the irregular s1 based tiling for D7. The role of 7-gons is 
apparent, but the connections between 7-gons seem tenuous and thin. The D8 based 
tilings are quite varied. Some appear thin and tenuous like Figure 30. Others are rather 
regular; for example, see Figure 31 which is produced by the s3 shift. 

We have seen that the Dn tilings are not as regular as the integer lattices. Those 
that are close to being multi-grids, contain exceptional edges. However the variation in 
density we observe in most of the tilings is not unexpected given the every-other vertex 
configuration and increased complexity of the Voronoi cell for the underlying lattice.  
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8. Tilings from the Lattice An, 83 ≤≤ n . 
The lattice An is embedded in 1+ℜn  and hence we find the expected periodic tilings when 
n = 3, 5. Like Figure 25 which we saw for D4, a bisected square tiling results from A3 
using the s0 shift. Using other shifts on A3 gives similar tilings. 

The A4 lattice gives rise to tilings (nearly multi-grid) with many local 5-fold 
symmetric spots and some pentagons and stars. The s3, s4 and s5 shifts (which are the 
same since the last α -coordinate has not impact for the An tilings) have some global 
rotational symmetry. If we contract the Voronoi cell by a factor of 0.5 and use an s0 shift, 
the tiling shown in Figure 32 results. Notice the 5-fold local symmetry is quite clear. 

Figure 33 shows the hexagonal tiling resulting from A5 using an s0 shift. Simple 
rhomb tilings appear for other shifts. The A6 tilings are very irregular. Figure 34 shows 
the tiling resulting from the s5 shift. Here 14-fold rotational symmetry appears along with 
7-gons. Figure 35 is the tiling using s5 and the expansion factor 1.1 giving rise to a 
remarkably regular 8-fold symmetric tiling. Figure 36 shows an A8 based tiling using an 
s0 shift and 1.2 expansion factor. Note the irregularity and the physical quasicrystal-like 
appearance.  

Like the previous families, the An family of lattices give rise to a wide variety of 
tilings. However, they appear to typically be less regular than those generated by Z n or 
Dn. 
 
9. Tilings from the Lattices E6, E7, and E8. 
The representation of the lattices we use for the En lattices are all embedded in 8ℜ . 
Hence they are expected to typically be nonperiodic tilings. The ordinary Voronoi cells 
are too small to generate a connected set of edges, hence we use an expansion factor in 
order to obtain interesting tilings. Figure 37 shows the tiling for E6 using an s3 shift and 
an expansion factor of 1.9. The tiling with s0 shifts has slightly less symmetry and fewer 
edges. However, the lattice is not symmetric with respect to rotations of coordinates, 
hence the lack of 8-fold rotational symmetry. 
 The E7 lattice does have symmetry with respect to rotation of coordinates. Thus 
we don't have 8-fold rotational symmetry for an s2 shift, see Figure 38. This tiling uses an 
expansion factor of 1.9. 
 The E8 lattice has quite a bit of symmetry, including the rotational symmetry 
when the shift is only in the u8 direction. Figure 39 shows the tiling for for an s3 shift and 
an 2.0 expansion factor. Notice the global symmetry and the rich structure of the tiling. 
The tiles are colored according to [30]. Lastly, Figure 40 shows the E8 tiling for an s2 
shift and an expansion factor of 2.15. Many locally 8-fold symmetric configurations are 
apparent and the physical quasicrystalline quality pervades the image. 
 
10. Computations 
We will comment upon three phases of our computations. These are computing the 
projection of the central Voronoi cell, selecting the shifts, and locating the vertices which 
give rise to the tilings.  

In Section 3 we saw generator matrices for the root lattices. The Voronoi cell may 
be computed by finding the closure of the set of generators under the operation of 
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reflection across the hyperplanes defined by the generators. Each of the resulting vectors 
corresponds to a normal to a facet of the Voronoi cell of the origin. The facet is half the 
length of the vector from the origin. Our construction uses the fact that all the generators 
of a root lattice have the same length although this is not essential for canonical 
projection.  

Next, the n-3 dimensional faces of the Voronoi cell are enumerated by 

considering all of the ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
3
n

 ways of selecting three facets. The projection of these faces 

into ⊥E  corresponds either to a n-3 dimensional affine hyperplane in ⊥E  (a facet) or it is 
a degenerate face. We disgard the degenerate faces and select the affine hyperplane 
furthest from the origin in each projected facet direction. For testing purposes, we only 
take one of each opposite pair. Hence, the number shown in the last column of Table II is 
the number of inequalities that must be tested in order to determine whether the 
projection of a point is in the projection of the Voronoi cell for the integer lattice. 
Remember, the projections we are using have special symmetry, so the projected Voronoi 
cells are not expected to be "generic". Table III shows the analogous information for the 
checkerboard lattice, Table IV for the An lattices, and Table V for the En lattices.  

The programming language that we used for our constructions was Jsoftware 
[31]. The shifts that we used were generated with its random number generator using the 
default random seed and generating four digit numbers. For example, the s0 shift used to 
create Figure 9, is, in α -coordinates, given by the following list of 4 decimal place 
random numbers 0 0 0.1315 0.7556 0.4586 (remember, we always take the first two α -
coordinates to be 0). 

 
n # facets in nℜ  # n-3 faces in nℜ  half of # facets in ⊥E  
3 6 20 1 
4 8 56 2 
5 10 120 10 
6 12 220 11 
7 14 364 35 
8 16 560 36 
9 18 816 84 
10 20 1140 85 
11 22 1540 165 
12 24 2024 166 

Table II. The face counts for canonical Voronoi cell for the Z n lattice and its projections. 
 

n # facets in nℜ  # n-3 faces in nℜ  half of # facets in ⊥E  
3 12 220 1 
4 24 2024 4 
5 40 9880 100 
6 60 34220 199 
7 84 95284 2261 
8 112 227920 3180 

Table III. The face counts for canonical Voronoi cell for the Dn
 lattice and its projections. 
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n # facets in 1+ℜn  # n-2 faces in 1+ℜn  half of # facets in ⊥E  
3 12 220 1 
4 20 1140 5 
5 30 4060 34 
6 42 11480 189 
7 56 27720 530 
8 72 59640 1668 

Table IV. The face counts for canonical Voronoi cell for the An
 lattice and its projections. 

  
n # facets in 8ℜ  # 5-faces in 8ℜ  half of # facets in ⊥E  
6 72 59640 579 
7 126 325500 3957 
8 240 2275280 22169 

Table V. The face counts for canonical Voronoi cell for the En
  lattice and its projections. 

 
 Lastly we comment upon our strategy for finding the lattice points that project to 
the compact set in ⊥E . First, testing a single lattice point may require testing many 
inequalities. The most difficult case that we completed was for E8 where more than 
22,000 inequalities must be tested for each considered lattice point. If we simply tested 
each lattice point using a fixed range of integers for coefficients of the generators, the 
computation quickly becomes intractable. Limiting the coefficients to 10±  would lead to 

108 108.321 ×≈  lattice points to test for the eight dimensional case. This is too many 
points and in reality we want more than 10±  for our range. Instead, we begin with a 
brute force search on a very small, 1± , region and identify which lattice points were 
acceptable. We then consider all the neighbors (using the normals to the Voronoi cell) of 
the good points and, after removing those that are duplicates and those that have already 
been tested, we test the remaining neighbors. Note that using a 1±  sense of neighbor 
may gives rise to 656138 =  neighbors for a single point in 8-dimensional space. This 
search strategy can not locate unconnected components of the graph in the lattice space, 
unless the components touch the initial test cell. Nonetheless, this search strategy worked 
well for us in practice and allowed us to avoid brute force testing of lattice points far 
from the cylinder of interest.  
 
11. Conclusions 
Canonical projection was used create tilings that have local symmetry that is forbidden by 
the crystallographic restriction for periodic structures. We have seen that there is a natural 
way to create projections similar to those used for creating Penrose tilings in any dimension. 
We also have seen several types of shifts and other variations on compact set that give 
different qualitative behaviors. We have seen many illustrations of remarkable 
quasicrystalline tilings that result from canonical projection for the root lattices: Z n, Dn, An 
and En. These may be viewed as shadows of root lattice packings. We have seen that the 
integer lattice gives rise to the tilings most similar to the Penrose tilings, yet the others yield 
equally intriguing tilings.  
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Figure 1. Voronoi Cells around a Penrose point collection.  
 

 
Figure 2. Canonical projection in a simple case.  
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Figure 3. Projection of a 5-dimensional cube.  
 

 
Figure 4. A Penrose tiling using an s1 shift of the Voronoi cell. 
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Figure 5. Tiling when the Voronoi cell is contracted by 0.9. 
 

 
Figure 6. Tiling when the Voronoi cell is expanded by 1.1. 
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Figure 7. A Z 

5 tiling based upon a 3-cube. 
 

 
Figure 8. A Z 

5 tiling based upon a sphere. 
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Figure 9. A Z 

5 tiling using an s0 shift of the Voronoi cell. 
 

 
Figure 10. A Z 

5 tiling using an s2 shift of the Voronoi cell. 
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Figure 11. A Z 

5 tiling using an s3 shift of the Voronoi cell. 
 

 
Figure 12. A Z 

5 tiling using an s4 shift of the Voronoi cell. 
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Figure 13. A Z 

5 tiling using an s5 shift of the Voronoi cell. 
 

 
Figure 14. A Z 

5 tiling using a random choice for subspaces E and ⊥E . 
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Figure 15. The diffraction pattern with optimized contrast for the tiling in Figure 4. 
 

 
Figure 16. The diffraction pattern with optimized contrast for the tiling in Figure 14. 
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Figure 17. A Z 

3 tiling using an s0 shift of the Voronoi cell. 
 

 
Figure 18. A Z 

6 tiling using an s0 shift of the Voronoi cell. 
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Figure 19. A Z 

7 tiling using an s0 shift of the Voronoi cell. 
 

 
Figure 20. A Z 

8 tiling using an s0 shift of the Voronoi cell. 
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Figure 21. A Z 

8 tiling using an s4 shift of the Voronoi cell. 
 

 
Figure 22. A Z 

9 tiling using an s4 shift of the Voronoi cell. 
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Figure 23. A Z 

10 tiling using an s4 shift of the Voronoi cell. 
 

 
Figure 24. A D3 tiling using an s0 shift of the Voronoi cell. 
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Figure 25. A D4 tiling using an s0 shift of the Voronoi cell. 
 

 
Figure 26. A D5 tiling using an s0 shift of the Voronoi cell. 
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Figure 27. A D5 tiling using an s3 shift of the Voronoi cell. 
 

 
Figure 28. A D5 tiling using an s5 shift of the Voronoi cell. 
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Figure 29. A D6 tiling using an s1 shift of the Voronoi cell. 
 

 
Figure 30. A D7 tiling using an s1 shift of the Voronoi cell. 
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Figure 31. A D8 tiling using an s3 shift of the Voronoi cell. 
 

 
Figure 32. An A4 tiling using an s0 shift and 0.5 contraction of the Voronoi cell. 
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Figure 33. An A5 tiling using an s0 shift of the Voronoi cell. 
 

 
Figure 34. An A6 tiling using an s5 shift of the Voronoi cell. 
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Figure 35. An A7 tiling using an s5 shift and a 1.1 expansion of the Voronoi cell. 
 

 
Figure 36. An A8 tiling using an s0 shift and a 1.2 expansion of the Voronoi cell. 
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Figure 37. An E6 tiling using an s3 shift and a 1.9 expansion of the Voronoi cell. 
 

 
Figure 38. An E7 tiling using an s2 shift and a 1.9 expansion of the Voronoi cell. 
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Figure 39. An E8 tiling using an s3 shift and a 2.0 expansion of the Voronoi cell. 
 

 
Figure 40. An E8 tiling using an s2 shift and a 2.15 expansion of the Voronoi cell. 


