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 Abstract --- Chaotic attractors with planar symmetries have been 
 the focus of much recent study.  We establish a general method to 

create attractors with crystallographic symmetry in ℜn .  Using this 
technique we provide a uniform approach to creating chaotic attractors 
in ℜ2  and generate provocative illustrations in ℜ3 with 
crystallographic symmetry.  

 
 

1. INTRODUCTION 
 

Symmetry is associated with structure and order. In [1], Weyl says symmetry “is one idea 
by which man through the ages has tried to comprehend and create order, beauty and 
perfection”. On the other hand, chaos is associated with disorder and randomness. Gleick 
[2] has popularized the butterfly effect which illustrates the sensitivity to initial 
conditions inherent in chaotic behavior and observed in the weather model of Lorenz [3]. 
Remarkably, symmetry is compatible with chaos. One sees turbulence with symmetry in 
Couette-Taylor flows [4] and structure with randomness in snowflakes [5]. A wide range 
of patterns with underlying chaos is discussed in [6]. 

Much recent work has been done creating chaotic attractors with planar and point  
group symmetry. Various techniques for creating such attractors are explored in [7-15]. A 
simple and elegant group summation technique was developed in [12] to create chaotic 
attractors with cyclic and dihedral symmetry. When such point group symmetry is 
compatible with a lattice, similar methods are used to create chaotic attractors with that 
symmetry [10]. However, not all planar crystallographic groups can be generated using 
the constructions from that paper. This paper develops general techniques that allow 
chaotic attractors with any crystallographic symmetry to be created. In contrast to the 
various innovations used to handle different kinds of planar symmetry groups in [8], this 
paper provides a general unified method (described in Theorem 6 and Porism 7) for 
creating chaotic attractors with the symmetry of all of the planar crystallographic groups. 
Moreover, this technique works well for creating chaotic attractors with three-
dimensional crystallographic space group symmetry and could be used in any dimension.  
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The diversity of the three-dimensional space groups is remarkable. They are  
enumerated in the International Tables for Crystallography [16] and exposited upon in [17]. 
It is intriguing that, because of the importance of these groups in studying crystals, the 230 
space groups were determined before the 17 planar groups were enumerated [18]. In addition 
to illustrating our techniques in the plane, our investigation explores the 24 examples of 
space groups given in the teaching edition of the International Tables [19].  This paper 
highlights five of these 24 space group examples. Animations for these 24 space groups may 
be found at the web address http://www.lafayette.edu/~reiterc/cacs.   
 

2.  Functions with Crystallographic Symmetry 
 
Symmetries of an object in ℜn  are isometries, that is, distance preserving maps. A group of 
symmetries is crystallographic if its subgroup of translation vectors is a lattice in nℜ . In this 
section we develop the mathematical theory required to allow us to construct functions 
with any desired crystallographic symmetry. The following definition gives the property 
required for a function to have a desired symmetry.  
 
Definition. A function nn ℜ→ℜ:f is equivariant with respect to a symmetryσ  if  
f( ( )) (f( ))σ σr rx x= for all rx n∈ℜ . 
 
If a function is equivariant with respect to the symmetries in a group, the attractor associated 
with the iteration of that function may degenerate and have more symmetry. On the other 
hand, the attractor may only form one component from a collection of conjugate attractors 
and hence have less symmetry. However, nontrivial attractors created by such equivariant 
functions typically demonstrate the desired symmetry. We are content to visually verify that 
our attractors have the specified symmetry. However, computational techniques for 
determining the symmetry of attractors have been studied [20].  
 Our theory develops in stages. The first three propositions generalize results in [10]. 
The first proposition gives a construction providing equivariance with respect to the 
translational symmetries of a lattice. We next consider point group symmetry and then 
combine that symmetry with translational symmetry where the point group is compatible 
with the lattice. Our main results (Theorem 6 and Porism 7) deal with the more general 
situation where the crystallographic group does not preserve the lattice. 

We begin by constructing functions equivariant with respect to the translational 
symmetries of a lattice L which is generated by n linearly independent n-dimensional 
vectors. With L given, we can determine a dual lattice L* such that if Lu ∈r  and *Lv ∈r , 
then Z∈⋅ vu rr . If instead we choose vr  from *2 Lπ , then Zπ2∈⋅ vu rr .  In this case, 

)cos())(cos( xvuxv rrrrr ⋅=+⋅  since r rv u⋅  is an integer multiple of 2π . The corresponding 
statement is also true for the sine function.  
 
Proposition 1. Let L be a lattice in ℜn , L* be the dual lattice for L and V be any finite 
subset of *2 Lπ . Also for all Vv ∈r  let there be associated constant parameter vectors 

n
vv ℜ∈rs

rr βα , . Then the function Vf  defined by 
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))sin()cos(()(f xvxvx v
Vv

vV
rrrrrrr

r
r

r ⋅+⋅=∑
∈

βα  

 is equivariant with respect to the translational symmetries of L.   
Proof.  We need to show that for any Lu ∈r  we have .mod)(f)(f Luxux VV

rrrr +≡+  
Clearly Lxux VV mod)(f)(f rrr ≡+ , while 

f ( ) ( cos( ( )) sin( ( ))) ( cos( ) sin( ) f ( )V v v v v
v Vv V

Vx u v x u v x u v x v x xr r r r r r r r r r r r r r r r r
r r r r

rr
+ = ⋅ + + ⋅ + = ⋅ + ⋅ =

∈∈
∑∑ α β α β

by the remarks preceding this proposition. Hence f ( ) f( ) modV x u x u Lr r r r+ ≡ + , as 
required.  
 Figure 1 gives an illustration of a chaotic attractor in 2ℜ  created by a function of the 
form defined in Proposition 1. This figure will be further explained in Section 4. For 
now, notice that the only symmetry in the illustration is the symmetry of horizontal and 
vertical translations. 
 

Proposition 2.  Let f:ℜ → ℜn n  be an arbitrary function and let G be a finite group 
realized by n by n matrices acting on ℜn  by multiplication on the right.  Then  

)))((f()(h 1
f, xx

G
G

rr σσ
σ
∑

∈

−=  

 is equivariant with respect to the elements of G. 
Proof.  Let G∈γ .  We need to show that ))((h))((h f,f, xx GG

rr γγ = . We see that  

)))((f()()))((f())))(((f())((h 1111
f, xxxx

GGG
G

rrrr σγσγγσγσγγγσσγ
σσσ
∑∑∑

∈

−

∈

−−

∈

− ===  

= −

∈
∑γ σγ σγ
σ

( ) (f( ( ))1 rx
G

, since matrix multiplication is distributive.  Also, σγ  runs 

through all of the elements of G as σ  does, so the above is equal to 
∑

∈

− =
G

G xhx
σ

γσσγ ))(())((f( f,
1 rr  as required.  

 
Figure 2 gives an illustration of a chaotic attractor in 2ℜ  created by a function of 

the form defined in Proposition 2 with G D= 7 .  This dihedral group contains 7-fold 
rotational symmetry, as well as 7 mirrors through the center of rotation. Notice that the 
illustration does not contain translational symmetry in either direction, only the rotations 
and mirrors. This figure will be further explained in Section 4.  
 Corollary 3 will follow as a special case of Porism 7, but we state it here because it is 
a natural step of combining translational and rotational symmetry. 

 
Corollary 3.  If )(f xV

r  is defined as in Proposition 1, and G maps the lattice L back onto 
itself, then )(h ,f xGV

r  mod L as defined in Proposition 2 is equivariant with respect to both 
the lattice and the symmetries of G mod L.  
 

Figure 3 is created by a combination of functions as described in Corollary 3. 
Notice the 3-fold rotational symmetry, the mirrors, as well as the hexagonal translational 
symmetry. 



 4

To deal with the general crystallographic groups, we need to be able to handle 
symmetries that do not preserve the lattice but which have enough structure so that we 
can create functions with the desired equivariance property. The following example 
illustrates such a symmetry. 

 
Example. In space group 19 in the International Tables [11], the second listed symmetry 

is written as 
x

y
z

+

+

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1 2

1 2
. That symmetry is the map p

x
y
z

x
y

z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=
−

−
+

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1 2

1 2
mod L, which sends 

0
0
0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

, a point in the lattice, to 
1 2
0

1 2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

, which is not a point on the integer lattice. Notice 

that this symmetry is the composition of the maps μ
x
y
z

x
y
z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=
−

−
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1 0 0
0 1 0
0 0 1

 and 

τ
x
y
z

x
y
z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

+
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1 2
0

1 2
. That is, p = τμ . Indeed, affine transformations are exactly those 

maps that can be decomposed into a linear and translational part. 
 To simplify the implementation of functions with these symmetries, we can 

represent such symmetries via a single matrix in homogeneous coordinates.  For 

example, 
x
y
z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 would become 

x
y
z
1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 in homogenous coordinates. We see  

−
−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1 0 0 1 2
0 1 0 0
0 0 1 1 2
0 0 0 1

x
y
z
1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

1 2

1 2
1

−
−

+

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

x
y

z , which shows that, after switching back to ordinary 

coordinates,  
x
y
z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 is sent to 
1 2

1 2

−
−

+

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

x
y

z
, as required.  Thus, the symmetry p can be 

represented by the matrix 

−
−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1 0 0 1 2
0 1 0 0
0 0 1 1 2
0 0 0 1

 in homogeneous coordinates. This is the 

form we use in our implementation. 
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The following definition captures properties of crystallographic groups mod L, 

where L is a lattice. These properties hold for the representations given for the two and 
three dimensional crystallographic groups in [16] and the four dimensional 
crystallographic groups in [21].  

 

Definition. Given a lattice L in ℜn , we define a position group P on L as a finite group 
of affine transformations mod L such that for all elements p of P, when we write p = τμ  
where τ  is a translation and μ  is a linear transformation, then μ  sends all elements of L 
back to L and Pτ ( )

r r
0 0≡  mod L where P  denotes the order of P. 

 
Remark: In particular, crystallographic groups modulo their lattice can be presented in 
the form of a position group. Basically, the condition that Pτ ( )

r r
0 0≡  guarantees that the 

denominators appearing in the translational part divide the order of the position group. It 
is known that any crystallographic group is isomorphic to a group which is generated by 
affine transformations with the linear part coming from a finite group of unimodular 
transformations and the corresponding translational components satisfying Pτ ( )

r r
0 0≡  

mod Z. In this situation, we think of the position group as described in terms of 
coordinates with respect to a basis; hence mod Z corresponds to what we previously 
denoted mod L. See Speiser’s Theorem in [22, p161] or [23]. The presentations of the 
two and three dimensional crystallographic groups in [16] and the four dimensional 
crystallographic groups in [21] are expressed in the form of position groups and hence 
may be used directly in our constructions. 
 

The following two lemmas allow us to begin to make explicit the effects of the 
translational parts of symmetries of position groups. 
 
Lemma 4.  Let L be a lattice in ℜn , let P be a position group on L, let p P∈  and let 
p = τμ  be the decomposition where τ  is a translation and μ  is a linear transformation .  
Then 
(i) τ τ( ) ( )r r r

x x= + 0  for all rx  in ℜn , 
(ii) )0()0p(

rr
τ= , 

(iii)  if rw L∈ , p( ) p( ) .r r
w L− ∈0  

 
Proof. (i) Since τ  is a translation, it moves every point the same amount as it moves 

r
0 . 

(ii) p( ) ( ( )) ( )
r r r
0 0 0= =τ μ τ since μ( )

r r
0 0=  by the linearity of μ . 

(iii) Using (ii), we see p( ) p( ) ( ) ( ) ( ' ) ( )r r r r r r
w w w− = − = −0 0 0τμ τ τ τ , where rw'  is an 

element of L since our definition of a position group requires μ  to send elements of L to 
L. By (i), p( ) p( ) ' ( ) ( ) 'r r r r r rw w w L− = + − = ∈0 0 0τ τ .  
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Lemma 5.  Let L be a lattice in ℜn , let P be a position group on L and let p P∈ .  Then 

)0p()1()p()(p
11

rrr −−⎟
⎠

⎞
⎜
⎝

⎛=⎟
⎠

⎞
⎜
⎝

⎛ ∑∑
==

mxx
m

i
i

m

i
i . 

 
Proof.  Since p is an element of a position group, we know that τμ=p , where τ  is a 
translation and μ  is a linear transformation. We see that  

p ( ) p( ) ( ) ( )r r r
L

r r r
L

r r r
L

r r
x x x x x x x x x xi

i

m

m m m
=
∑⎛⎝⎜

⎞
⎠⎟ = + + + = + + + = + + + +

1
1 2 1 2 1 2 0τ μ μ μ μ μ μ τ  

by the linearity of μ  and Lemma 4 (i). Also, 

p( ) p( ) p( ) p( ) ( ) ( ) ( )r r r
L

r r r r r
L

r r
x x x x x x xi m m

i

m
= + + + = + + + + + +∑

=
1 2 1 2

1
0 0 0μ τ μ τ μ τ  

= + + + +μ μ μ τr r
L

r r
x x x mm1 2 0( )  using Lemma 4(i) on each term.  Since p( ) ( )

r r
0 0= τ , as 

shown in Lemma 4(ii),  the desired result follows.  
 

 We are now prepared to prove our main theorem which gives a construction that may 
be used to create functions with the symmetry of any crystallographic group. 
 
Theorem 6.  Let P be a position group on L, a lattice in ℜn , and let f be a periodic 
function mod L.  Then the function ∑

∈

−+=
P

xxx
p

1 )))(f(p(p)i( rrr  mod L is equivariant with 

respect to the translational symmetries of L and the symmetries of P. 
 
Proof.  We first show equivariance with respect to L.  Let rw L∈ .  We want to show that  
i( ) i( )r r r rx w x w+ = + mod L.  Since rw L∈ , i( ) i( )r r rx w x+ = mod L.  We need to show that 
this is equivalent to i( )r rx w+ mod L. 
i( ) p (f(p( ))) p (f(p( ) p( ) p( )))

pp

r r r r r r r r r r
x w x w x w x x w

PP
+ = + + + = + + −− −

∈∈
∑∑ 1 1 0 mod L, using 

Lemma 5 with m=2.  By Lemma 4(iii), p( ) p( ) 'r r rw w L− = ∈0 .  So the above is equal 
to r r r r rx x w x x

PP
+ + = + ∑∑ − −

∈∈
p (f(p( ) ' )) p (f(p( )))

pp

1 1 , since f is periodic mod L.  This is equal 

to )i(xr , hence we have equivariance with respect to the lattice. 
We now need to show equivariance with respect to the elements of P. Let P∈σ . 

We need to show that )i()))((i(1 xx rr =− σσ . By the definition of i( )rx  and Lemma 5 we see 

(*) σ σ σ σ σ− − −

∈
= +

⎛

⎝
⎜

⎞

⎠
⎟∑1 1 1( ( ( ))) ( ) p (f(p( ( )))

p
i x x x

P

r r r

= + −− − −

∈

−∑σ σ σ σ σ1 1 1 1 0( ( )) (p (f(p( ( )))) ( )
p

r r r
x x P

P

. 

One term of  − −σ 1 0( )
r

 results from the distribution of σ −1 over the plus sign while 
− − −( ) ( )P 1 01σ

r
 results from the distribution of σ −1 over the sigma summation. Notice 
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that P σ − ≡1 0 0( )
r r

 by the definition of position group. Thus equation (*) simplifies to 

∑
∈

−+
P

xx
p

1 )))((f(p)(p rr σσ mod L which is )i(xr  since σp  runs through P as p does.  

 Notice that i( )rx  depends on f and P even though the notation does not indicate that 
fact. 
 As mentioned before, if the position group maps all of the elements of the lattice L 
back to L, the function )(hf, xG

r as defined in Proposition 2 is equivariant with respect to 
that group, even without the addition of the auxiliary term xr  which was used in )i(xr .  If 
that auxiliary term xr  was missing, then the rightmost term of equation (*) would be 
− − −( ) ( )P 1 01σ

r
. This would be 

r
0  because all of the group elements can be represented 

with only linear transformations, hence σ − =1 0 0( )
r r

. This establishes Corollary 3. 
We further note that the auxiliary term may be modified in certain situations. The 

addition of a coordinate from the auxiliary term xr  in )i(xr  is only necessary if there 
exists some element p = τμ  such that τ  involves a nonzero translation in that coordinate.  
This is not always necessary, as there are many position groups that involve translations 
in less than all coordinates. For these groups, it is only necessary to add the coordinates 
of xr  for which there is a translation in that coordinate.  In the coordinates involving no 
translations, we will get zero from the zero in − − −( ) ( )P 1 01σ

r
 in those coordinates while 

if there is a translation, we will get the zero in that coordinate from the corresponding 
coordinate in P σ − ≡1 0 0( )

r r
.  

For example, space group 53 as listed in [16] does not involve any non-lattice 

translations in the y direction, so the function ∑
∈

−+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

P
x

z

x
x

p

1 )))(f(p(p0)(i' rr  is equivariant 

to the symmetries of P, where P is space group 53 on the standard orthonormal lattice, 

and 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

z
y
x

xr .  This result is presented in the following Porism, which allows us to use a 

function with the least variation from that appearing in Corollary 3. That is, when P 
preserves L a function of the type in Corollary 3 is used; when P preserves no 
coordinates, a function of the type in Theorem 6 is used; and when P preserves an 
intermediate number of coordinates, an intermediate function is used. 

 
Porism 7.  Let L be a lattice in ℜn , P be a position group on that lattice,  f be a periodic 

function mod L, r
M

x

x
x

xn

=

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1

2 , and let x xi i' =  if the i th  coordinate of p( )
r
0  is something 

other than 0 for some p ∈ P , otherwise let x i'  be 0 .  Then the function 
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i' ( )

'
'

'

p (f(p( )))
p

r

M

rx

x
x

x

x

n

P
=

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ ∑ −

∈

1

2 1  is equivariant with respect to the translational symmetries 

of the lattice and the symmetries of P. 
 The proof follows from the proof of Theorem 6 in light of the preceding remarks. 
 
 

3.  Implementation 
 
 In order to find functions with the symmetries of a given crystallographic group we 
need to have an explicit representation of the position group. From the International 
Tables [16], we obtain the generators for the symmetries of a given planar or space 
group, as in our example in Section 2. Representing these symmetries as matrices in 
homogeneous coordinates, we compute the group closure using matrix multiplication 
with the translational part taken mod 1; we thereby enumerate the elements of the 
position group. We then use this position group to create our functions defined in Porism 
7. We have the freedom to select the finite set V L⊂ 2π *  and the parameters 

r r
s rα βv v

n, ∈ℜ  
for all rv V∈ .  

For the planar groups we selected the parameters at random from between ± 0 5.  
while for the space groups we tuned the parameter selection and ended up using ranges 
between ± 0 002.  and ± 0 2. . For the planar groups we used { }V = 2 1 0 0 1 11π , , , , , . 
Note that our attractors are defined in position group coordinates and hence when we 

required a hexagonal lattice we post-multiplied by the matrix 
1 0
2
3

2
3

cos sinπ π⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟  to 

obtain the absolute coordinates used for plotting.  
For the space groups, we used two different sets of vectors as the set V in 

Proposition 1.  For most of the three-dimensional symmetry groups we used 
{ }V0 2 1 0 0 0 1 0 0 0 1 111= π , , , , , , , , , , , . In some cases that set was inadequate because the 

attractors had degenerate behavior (such as being attracted to a fixed plane). In those 
cases, we successfully used a set with 26 elements: 

{ }{ } { }V i j k i j k1 2 0 1 2 0 0 0= ∈π , , | , , , , \ , , .  Some of the space groups also required a 
hexagonal lattice. In that case, we post-multiplied by an extension of the above matrix 
that added trailing zeros and a row 0 0 1.  

We required our functions to pass certain tests before we would consider creating 
images of their attractors. We checked the first few iterates of our functions to avoid 
unboundedness, periodicity and  collinearity of points before performing higher iteration. 
For the planar groups we also required the first Ljapunov exponent to be between 0.05 
and 0.6. For the space groups, we demanded the first Ljapunov exponent to be between 
0.01 and 0.6 and the sum of the first and the second to be negative. This requirement on 
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the first two Ljapunov exponents is indicative of chaos and a fairly low Ljapunov 
dimension which was intended to make rendering in three dimensions plausible. 

These functions were iterated in J. For the planar groups the resulting attractor 
was rendered using J. For the space groups the J results were formatted and piped to the 
raytracing program POVRAY [24] which may be obtained at the web address 
http://www.povray.org. The Appendix contains the J expressions, including the 
parameters, used to generate our function with the symmetry of space group 92.  

We wanted to make sure our images had a feel of connectedness and nontriviality, 
thus we checked that there were no empty rows, columns, or planes after resolving the 
points on the attractor into discrete positions in space. Further, we wanted to avoid the 
appearance of a repeating isolated motif under the symmetry operations. This led us to 
the following notion. 
 
Definition.  An attractor is cell-connected with respect to a lattice if we can get from any 
cell of the lattice to any other cell by traveling along some part of the attractor. 
 
This property would seem difficult to prove analytically for any nontrivial attractor; 
however we tried visually to require it. After checking our images for cell-connectedness, 
we ran prospective images at higher iteration. Even with these tests we note that on very 
careful inspection of some of our animations, the attractor does not appear to be cell-
connected. In order to observe the structure of our attractors in three dimensions, we 
found it necessary to remove points visited with a frequency below a threshold that 
ranged from 0 to 20. Thus an attractor may be cell-connected while the skeleton that we 
rendered might not be cell-connected. 
 
 

4. Our Planar Examples 
 

 Before exploring the examples in ℜ 3 in Section 5, we will highlight attractors 
generated by functions in ℜ2  produced with the general constructions from Section 2. 
This allows us to illustrate attractors with translational symmetry, point group symmetry, 
point group symmetry compatible with the lattice, and general crystallographic 
symmetry. Observing these examples will be helpful because the symmetries are more 
evident at a glance in two dimensions than they are in three dimensions.  
 Figure 1 is an example of an image generated using a function of the form found in 
Proposition 1, where the function is equivariant with respect to the translational 
symmetries on the standard lattice L. Thus, this group has p1 symmetry as designated in 
[16]. The colors are based on the number of times the pixels are hit.  Points hit the least 
number of times by the function are colored red while those hit most often are shaded 
magenta. The color variation between red and magenta uses a logarithmic bias hence the 
appearance of more red than magenta. The same scheme was used for the palette in all 
our images. 
 Figure 2 was created by summing a function over the symmetries of D7 as in 
Proposition 2. The initial function before summing over these symmetries has the form of 
a bump function in two variables as in [12].  The i-th output of our bump function B is 
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given by B( ) e ( / )rx ai ij
x j

j

i= − −

≤ ≤
∑ 2 2

0 2

2

 where 0 1≤ ≤i and aij ∈ℜ .  Note that the form of the 

function B that we happened to use has no bearing on the symmetry. 
 Figure 3 is an image showing the attractor of a function of the type in Corollary 3. In 
other words, we first create a function equivariant to the translational symmetries (as in 
Proposition 1) and then we sum over the symmetries of D3.  Note that D3 preserves the 
hexagonal lattice L; hence, our function is equivariant with respect to both the lattice and the 
symmetries of D3  mod L, and we do not need the auxiliary function from Theorem 6 or 
Porism 7. This attractor has p3m1 symmetry. 
 Our last planar image in the plane has p2gg symmetry. It is created from a function 
of the form defined in Porism 7. The generators used to compute the group are 
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⎟⎟

. In Figure 4 we can see glide reflections running 

both horizontally and vertically. 
 

5. Our Three Dimensional Examples 
 

Our first three dimensional example is an attractor with relatively simple 
symmetry, that of space group 19.  The position group contains only four elements. From 
[16], we can see that there should be 2-fold screw rotations in the three axial directions.  

Screw rotations are a rotation of 
2π
n

 about a given axis, followed by a translation along 

the axis.  Moreover, if we project onto any of the coordinate planes, we should see the 
planar crystallographic symmetry group p2gg.  Figure 5 provides an overview of a 3 by 3 
by 3 arrangement of fundamental cells, in which we can see some of the screw rotations.  
Figure 6 provides a closer look at the symmetry within the attractor. Notice a 2-fold 
screw rotation along one of the axes; one can imagine further tipping the attractor to see 
the p2gg symmetry.  Some features of these three dimensional attractors are easier to see 
via animations where perspective varies. Such an animation may be accessed via the 
webpage http://www.lafayette.edu/~reiterc/cacs.  The parameters used for constructing 
this attractor are also available in a script at that site. 
 The second attractor we examine exhibits the symmetries of space group 53.  Figure 
7 provides us with a greater sense of the lattice structure than the previous example.  
Notice the gaps on both the top and bottom of the attractor.  The reason for these gaps is 
that the attractor has slight deformations away from the layer and hence was truncated so 
the top and bottom level together form a complete level. A similar remark applies to the 
sides. While the attractor has a somewhat coarse appearance, one gets a full sense of the 
attractor’s symmetries from this view.  From [16], we see that there should be examples 
of  2-fold screw rotations in one direction and half turns in another direction. The half-
turn symmetry and glide reflections of p2gm are apparent in the roughly horizontal levels 
which is expected. On the completed left/right planes we see the symmetry group c2mm.  
While on the front/back planes, we can find examples of the half-turns and perpendicular 
mirrors of the planar symmetry group p2mm. 
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 The next chaotic attractor provides an example of space group 92 symmetry.  Figure 
8 gives us an overview of the attractor.  Figure 9 lets us see the 4-fold screw rotations 
along one axis and the 2-fold screw rotations along another axis as well as a near p4gm 
projection, all of which are expected from [16]. Figure 10 gives us intriguing glimpses of 
glide reflections and mirrors. Slide 175 in the animation for this group displays the pmg 
symmetry rather nicely.  Figure 11 gives us some sense of the many screw rotations 
involved in the symmetry of space group 92. 
 Our next example, space group 164, involves a hexagonal lattice which is apparent 
in Figure 12.  This space group contains p6mm symmetry when projected along one axis. 
You can see the three fold rotations and six fold rotations of p6mm symmetry in that 
figure.  In Figure 13, one can see the two-fold rotations that are expected. 
 Our last example, space group 227, is the most complicated of our examples.  The 
position group contains 192 elements making computations of the form in Porism 7 
rather substantial. Indeed, finding a visually interesting attractor for this group was most 
challenging because experiments ran slowly: the position group was large and the 
extended set V1  was required. Even though the rendering of the attractor is coarse, Figure 
14 gives us a feel of how complicated the attractor is.  Here we can see some 4-fold 
screw axes, some half turns, and some mirrors.  
 The animations available via http://www.lafayette.edu/~reiterc/cacs include chaotic 
attractors with the symmetry of space groups 2, 4, 12, 14, 15, 18, 19, 35, 43, 53, 62, 64, 
73, 92, 135, 141, 162, 164, 166, 194, 199, 205, 225, and 227. 
 

6. Conclusion 
 

We have seen that we can create functions with the symmetry of the crystallographic groups 
by taking a lattice preserving function, summing over the conjugates of the position group 
for the crystallographic group, and adding the identity function or an auxiliary function. By 
choosing the parameters of the lattice preserving function carefully, we obtain a chaotic 
attractor. This provides a uniform method for creating chaotic attractors with planar 
crystallographic symmetry. The same method gives us attractors with space group symmetry 
and we render these in three dimensions for striking examples of objects with 
crystallographic symmetry in space.  The technique can also be used to create functions with 
crystallographic symmetry in higher dimensions. 
 
Acknowledgments —This work was supported by NSF grant DMS-9805507 and 
Lafayette College. Joachim Neubüser’s reply to an e-mail query was very helpful and 
much appreciated. 
 

References 
 
 1. Weyl, H., Symmetry, Princeton University, Princeton, NJ, 1952.  
 2. Gleick, J., Chaos: Making a New Science, Penguin Books, New York, 1987. 
 3. Lorenz, E., Deterministic nonperiodic flow. Journal of Atmosphere Science, 1963, 

20, 13-141. 
 4. Stewart, I. and Golubitsky, M., Fearful Symmetry: Is God a Geometer?, Blackwell, 

Oxford, 1992. 



 12

 5. Bentley, W. A. and Humphreys, W. J., Snow Crystals, Dover Publications, New 
York, 1962. 

6. Zaslavsky, G. M., Sagdeev, R. Z., Usikov, D. A., Weak Chaos and Quasi-regular 
Patterns, Cambridge University Press, Cambridge, 1991. 

 7. Brisson, G., Gartz, K., McCune, B., O'Brien, K. and Reiter, C., Symmetric attractors 
in three-dimensional space. Chaos, Solitons & Fractals, 1996, 7, 1033-1051. 

 8. Carter, N., Eagles, R., Grimes, S., Hahn, A. and Reiter, C., Chaotic attractors with 
discrete planar symmetries. Chaos, Solitons & Fractals, 1998, 9, 2031-2054.  

9. Dumont, J., Heiss, F., Jones, K., Reiter, C. and Vislocky, L., Chaotic attractors and 
evolving planar symmetry. Computers & Graphics, 1999, 23, 613-619.  

10. Dumont, J. and Reiter, C., Chaotic attractors near forbidden symmetry. Chaos, 
Solitons & Fractals, to appear.  

11. Field, M. and Golubitsky, M., Symmetry in Chaos, Oxford University Press, New 
York, 1992. 

12. Jones, K. and Reiter, C., Chaotic attractors with cyclic symmetry revisited.  
Computers & Graphics, to appear. 

13. Reiter, C., Attractors with the symmetry of the n-cube. Experimental Mathematics, 
1996, 5, 327-336. 

14. Reiter, C., Chaotic attractors with the symmetry of the tetrahedron. Computers & 
Graphics, 1997, 21, 841-848. 

15. Reiter, C., Chaotic attractors with the symmetry of the dodecahedron. The Visual 
Computer, 1999, 15, 211-215. 

16. Hahn, T., International Tables for Crystallography, Kluwar Academic Publishers, 
Boston, ed. 1996. 

17. Iversen, B., Lectures on Crystallographic Groups, Lecture Note Series no. 60, 
Aarhus: Aarhus Universitet Matematisk Institut, 1995. 

18. Grunbaum, B. and Shepard, G., Tilings and Patterns, W. H. Freeman, New York, 
1987.  

19. Hahn, T., International Tables for Crystallography: Brief Teaching Edition, Volume 
A, Kluwar Academic Publishers, Boston, ed. 1996. 

20. Barany, E., Dellnitz, M. and Golubitsky, M., Detecting the symmetry of attractors. 
Physica D, 1993, 61, 66-87. 

21. Brown, G., Bülow, R., Neubüser, J., Wondratschek, H. and Zassenhaus, H., 
Crystallographic Groups of Four-Dimensional Space, John Wiley & Sons, New 
York, 1978.  

22. Ascher, E. and Janner, A., Algebraic Aspects of Crystallography II Non-primitive 
Translations in Space Groups. Communications in Mathematical Physics, 1968, 11, 
138-167. 

23. Speiser, A., Die Theorie der Gruppen von enlicher Ordnung, mit Anwendungen auf 
algebraische Zahlen und Gleichungen sowie auf die Krystallographie, ed 4, Birkhäuser, 
Basel, 1956. 

24. Wegner, T., Image Lab, Waite Group Press, Corte Madera, CA, 1992. 
25. Hui, R. and Iverson, K., J Dictionary, Iverson Software Inc., Toronto, 1998. 
 



 13

Appendix A 
 Our functions were implemented in J [25] which may be obtained at 
http://www.jsoftware.com. The following J expressions allow one to duplicate the 
construction of one function. This is the function whose attractor is displayed in Figures 
8-11.  A script which includes the expressions, including all parameter values for all the 
functions used to create the 24 animations, can be found at 
http://www.lafayette.edu/~reiterc/cacs.   
 
   sin=:1&o.          Sine function 
 cos=:2&o.         Cosine function 
 x=:+/ . *           Matrix multiplication 

]V=:2p1*#:4 2 1 7        Elements of the dual basis 
6.28319       0       0 
      0 6.28319       0 
      0       0 6.28319 
6.28319 6.28319 6.28319  
 proj=: 1 : '(}:{:"1 +./m.~:0)&*' 
 prop1=:1 : '1&|@:(+/^:2@:(m."_*(sin,:cos)@:(V&x))) f.' 
 prop3a=:2 : 'n. proj 1&|@:+ +/@:(}:"1)@((%.n.)&(x"2 
1)@:(,&1@u.@}:"1@(n.&x@(,&1)))) f.' 
 par           Array of parameters 
_0.00413499 0.00327672 _0.0281041 
_0.0452955  0.0178865   0.0179296 
 0.0434693 _0.0116498   0.00194164 
 0.0330965 _0.0465428  _0.0446538 
 
 0.00297002 0.0171149  _0.0492302 
_0.0116584 _0.0433158  _0.0082514 
 0.0186773  0.00889766  0.0430436 
 0.0346167  0.00269288 _0.0408035 
  
 pos=: \:~@~.@(* >&1e_14@:|)@(, ,/@:((((<: (*. -.@|:)@:=  

]"0/~@i.)@{:@$|])@(+/ .*))"2/~))^:_ 
 h001=:1 0 0 0,  0 1 0 0,  0 0 1 0.5,:0 0 0 1 
 i110=:_1 0 0 0,0 _1 0 0 ,0 0  1 0,:0 0 0 1 
 gen1=:h001 x i110 
 gen2=:_1 0 0 0.5,0 1 0 0.5,0 0 _1 0.25,:0 0 0 1 
 gen3=:0 _1 0 0.5,1 0 0 0.5,0 0 1 0.25,:0 0 0 1 
 $p092=: pos gens=:gen1,gen2,:gen3  Group closure 
8 4 4 



 14

     2 4$<"2 G=:p092       Position group elements 
⁄ƒƒƒƒƒƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒƒƒƒƒø 
≥1  0  0  0.5≥1 0 0 0     ≥ 0 1 0  0.5 ≥0 1  0 0   ≥ 
≥0 _1  0  0.5≥0 1 0 0     ≥_1 0 0  0.5 ≥1 0  0 0   ≥ 
≥0  0 _1 0.75≥0 0 1 0     ≥ 0 0 1 0.75 ≥0 0 _1 0   ≥ 
≥0  0  0    1≥0 0 0 1     ≥ 0 0 0    1 ≥0 0  0 1   ≥ 
√ƒƒƒƒƒƒƒƒƒƒƒƒ≈ƒƒƒƒƒƒƒƒƒƒƒƒ≈ƒƒƒƒƒƒƒƒƒƒƒƒ≈ƒƒƒƒƒƒƒƒƒƒƒ¥ 
≥0 _1 0  0.5 ≥ 0 _1  0   0≥_1 0  0  0.5≥_1  0 0   0≥ 
≥1  0 0  0.5 ≥_1  0  0   0≥ 0 1  0  0.5≥ 0 _1 0   0≥ 
≥0  0 1 0.25 ≥ 0  0 _1 0.5≥ 0 0 _1 0.25≥ 0  0 1 0.5≥ 
≥0  0 0    1 ≥ 0  0  0   1≥ 0 0  0    1≥ 0  0 0   1≥ 
¿ƒƒƒƒƒƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒƒƒƒƒŸ 
 F092=: par prop1 prop3a G     The function definition 
 F092^:(i.5) 0.1 0.2 0.3     The first few iterates 
0.1       0.2       0.3 
0.514702  0.734087  0.877241 
0.670501  0.286339  0.708132 
0.0564265 0.364323  0.175236 
0.86939   0.395658  0.0350441 
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Figure 1.  A chaotic attractor with p1 planar crystallographic symmetry. 
 

 
 
Figure 2.  A chaotic attractor with dihedral D7  symmetry. 
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Figure 3.  A chaotic attractor with p3m1 planar crystallographic symmetry. 
 

 
Figure 4.  A chaotic attractor with p2gg planar crystallograpic symmetry. 
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Figure 5.  An overview of a chaotic attractor with space group 19 symmetry. 
 
 

 
Figure 6. A chaotic attractor with space group 19 symmetry with projection near p2gg 
symmetry. 



 18

 

 
Figure 7.  An overview of a chaotic attractor with space group 53 symmetry. 
 

 
Figure 8.  An overview of a chaotic attractor with space group 92 symmetry 
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Figure 9.  A chaotic attractor with space group 92 symmetry and visible 4-fold screw 
rotations. 
 

 
Figure 10.  A chaotic attractor with space group 92 symmetry and suggestions of mirrors 
and glides. 
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Figure 11.  A chaotic attractor with space group 92 symmetry and visible screw rotations. 
 

 
Figure 12.  A chaotic attractor with space group 164 symmetry and visible third and sixth 
turns. 
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Fig. 13.  A chaotic attractor with space group 164  symmetry and 2-fold rotations. 
 

 
Fig. 14.  A chaotic attractor with space group 227 symmetry
 


