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Polynomial functions in three space that are equivariant with respect to the symmetries of a 

dodecahedron are determined.  These are constructed using a sum of functions under changes of 

coordinates with respect to the group.  Monte Carlo searches through parameter space lead to 

functions that are experimentally chaotic and which have visually appealing attractors. Ray tracing 

techniques allow for the three dimensional attractors to be rendered so that both their complexity and 

symmetry may be observed.  
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1. Introduction 

Chaotic attractors have arisen in the study of physical dynamics and remain fascinating because of 

their complex behavior.  One intriguing aspect of chaotic attractors is that they can have much 

symmetry without losing their chaotic nature.  Recent work includes [4] which explains how to 

construct attractors with dihedral and cyclic symmetry and some of the planar wallpaper symmetries. 

 Chaotic attractors with the symmetry of each of the discrete planar symmetry groups are illustrated 

in [2].  Attractors with the symmetry of point groups in higher dimensional space have included 

those with the symmetry of the cube [1], hypercube [7] and tetrahedron [8].  This short note 

describes the construction of chaotic attractors with the remaining 3-dimensional point group 

symmetry.  Namely, with the symmetry group of the dodecahedron and icosahedron. This group has 

remained elusive because of the complexity of restricting maps to respect the symmetry of fifth turns 

in three space.  Moreover, unlike those previous illustrations in 3 space, the images here are rendered 

using ray tracing and an animation is created. 

The technique described in this short note utilizes sums of polynomials under the transformations of 

coordinates arising from the symmetry group in 3-dimensions.  This bypasses the difficulty in 
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finding the restricting maps. While a variant of this idea is implicit in techniques used for finding 

chaotic attractors with the symmetry of various hexagonal lattices, this application to a point group 

appears to be unlike earlier experimental explorations of chaotic attractors with the symmetry of a 

point group. Originally we attempted to use restriction techniques like those used for other point 

groups in space as in [8].  However, for that approach it was natural to embed the problem in at least 

dimension 5 in order to realize the symmetry group of the dodecahedron using only permutations of 

coordinates and sign changes.  While direct determination of the polynomials with the required 

symmetry in this way is possible, the constructions are complex and projecting attractors from 

higher dimensions to 3-dimensions in a manner that visually preserves the symmetry remains a 

serious difficulty.  The author had greatest preliminary success in dimension 6, where involution 

through the origin was natural, and this led to somewhat fruitful experiments. However, the 

approach we will follow in this note has been much more successful.  Moreover, the success of this 

technique on a point group in space provokes the question, currently under investigation, of whether 

similar techniques would lead to qualitatively more interesting illustrations of attractors for other 

point groups. 

 

2. Functions with the symmetry of a dodecahedron 

The symmetry group of the dodecahedron is the same as that of the icosahedron and is often denoted 

by Ι .  This rotation group has 60 elements [5] and one can check that if the vertices of the 

icosahedron are chosen in the style of [3] to be (0, , 1)± ±τ 1, ( 1,0, )± ±τ 2 and ( , 1,0)± ±τ 3 where 

τ = (1+ 5 ) / 2  is the golden ratio4, then the transformations 1T (x) =
1
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6 generate Ι .  If one desires the symmetry to also include reflections, 
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then one can add 3
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 as a generator as well.  This full symmetry group that 

includes reflections has 120 elements and we designate it by Ι . 

In order to construct chaotic attractors with specified symmetry, we seek classes of simple, but 

nonlinear functions that are equivariant with respect to the desired symmetry.  That is, we want 

nontrivial functions f: 3 3ℜ → ℜ 7 satisfying f T T f1 1o o= 8 and f T T f2 2o o=  and perhaps 

f T T fo o3 3=  in order to generate the symmetries in Ι or Ι 9.  This can be accomplished by taking 

functions of the form described in the following lemma: 

Lemma 1: Let P: n nℜ → ℜ be an arbitrary function and let G be a finite group realized by n by n 

matrices acting on ℜn  by multiplication on the right, then f (P( ( )))(x)= x
G

r r

σ
σ σ

∈

−∑ 1 is equivariant 

with respect to G. 

Proof: Let γ ∈G .  Then  

f ( ( )) ( ) (P( ( ( )))) ( ( ) (P(( )( )))) (f( ))γ γ σγ σ γ γ σγ σγ γ
σ σ

r r r rx = x x x
G G∈

−

∈

−∑ ∑= =1 1   

by the linearity of γ and the fact that σγ  runs through G10 as σ  does. 

For the illustrations in this short note, we constructed functions of the type in Lemma 1 for G = Ι . 

 

3. Illustrations 

We took the function P described in Lemma 1 to be a three coordinate polynomial with x, y and z 

raised to the powers 0, 1 and 2 in all possible products.  This leads to 81 coefficients a ijkm  where i 

corresponds to the power of z, j to the power of y, k to the power of x and m to the output coordinate. 

In our Monte Carlo search we selected these coefficients randomly between -0.15 an 0.15. These 

parameters were chosen after some experimentation in order to frequently give an attractor with 

Ljapunov exponent between 0.01 and 0.6. A positive Ljapunov exponent is indicative of chaos and 

some literature has suggested Ljapunov exponents in the range 0.01 to 0.6 are aesthetically pleasing 

[9]. We also required our functions to satisfy simple tests for nonperiodicity (iterate 199 does not 

appear in iterates 0-198) and noncollinearity (the iterates 190-199 don’t fall on a line).  We 
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attempted utilizing only the powers 0 and 1 which leads to simpler polynomials that are nonlinear in 

one mixed term.  We did not have success in locating many interesting chaotic attractors with that 

lower degree function. 

Figure 1 shows an attractor with the symmetry of Ι . Our code was implemented in J [6] and the 

parameters for the function used to create Figure 1 are given in Appendix 1.  A few lines of J code 

that would allow readers to duplicate the function are also included there.  We  resolved space 

surrounding the attractor into an 800 by 800 by 800 grid and kept sorted lists of positions visited and 

frequencies. The points were then sorted by frequency and piped from J into an isosurface “blob” 

POVRAY object that adds some coherence not obtained from using spheres or boxes.  POVRAY 

[10] is available from www.povray.org. Color in the image corresponds to the frequency with which 

the position was visited. Colors run through the hues from red to magenta. In particular, red in the 

image corresponds to regions visited only a few times and yellow, green, cyan, blue and magenta 

correspond to increasing frequencies of visitation. Thus the magenta threads which have the 

dodecahedral shape are the regions visited most. This attractor has low probability regimes which 

are cloudlike and dispersed in a manner that obscures the interior.  Thus we have used a threshold of 

ignoring points visited 5 or fewer times out of the approximately 50 million points that we resolved. 

 We ordinarily use a logarithmic bias in determining how quickly to change color [8], but we have 

used a linear scale for this figure in order to accentuate the contrast and the dodecahedral shape.  An 

animation of this attractor may be found at www.lafayette.edu/~reiterc/dodec/index.html. 

Figure 2 shows an attractor with the same symmetry group, but there are twelve “hot spots” 

corresponding to the vertices of an icosahedron.  Note that the attractors have threads appearing on 

and inside twelve ballish regions as well as more complex mixing in the interior.  Notice that ten 

threads appear to cut through each hot spot.  We used our traditional logarithmic bias in color 

changes for this image and again used a frequency threshold, although in this case it was not 

essential. 
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Appendix 1 

The following lines of J code provide a complete implementation of the function used to create the 

attractor in Figure 1. Appendix 2 gives a pseudo-code/mathematical description of this same 

function. The last entries in this appendix give several iterations of the function that can be used as a 

check against alternate implementations. Users can duplicate these experiments using a copy of J 

from www.jsoftware.com. The J code in this appendix is can be found at 

www.lafayette.edu/~reiterc/dodec/index.html. First we create the matrix group I with its 120 entries 

and the corresponding inverses II using group product, prods, repeatedly on the generators T1, T2 

and T3. 

  
   x=:+/ . * 

   prods=:\:~@~.@(* >&1e_14@:|)@(,(,/)@:( x"2/~)) 

   ri=:%r=.-:>:%:5 
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   T1=:-:3 3 $1,r,ri,(-r),ri,1,ri,_1,r 

   T2=:-:3 3$r,ri,_1,ri,1,r,1,(-r),ri 

   T3=:_1 1 1*=i.3 

    

   $I=:prods^:3 T1,T2,:T3 

120 3 3 

   $II=:%. I 

120 3 3 

 

Next we create the dodecahedral function builder DD and input the 81 parameters.  Lastly, we create 

the function G used to create Figure 1 and exhibit iterations 0 to 4. 
    

   DD=:1 : '+/@(II"_ x"2 1 ])@((0&{ x 1&{ x 2&{ x  

m."_)@(^/&(i.#m.))"1@(I&x)) f.' 

    

   pars=:3 3 3 3$,".;._2]0 : 0 
   0.0180157305   0.0903833937  _0.1262988060 
   0.0959720238  _0.0981938805  _0.0445451871 
   0.1290451044  _0.1389270186  _0.0463975410 
  _0.1034676072   0.1199258382  _0.1064360991 
   0.0284841300  _0.0672225822  _0.0099387726 
   0.0590534490   0.1113198750  _0.1468569510 
  _0.1247709900  _0.0260266215  _0.0294227928 
  _0.1088782995   0.0824206119   0.1432259172 
  _0.0020062041  _0.1182703734   0.0298362312 
  _0.1424609703  _0.0415270104  _0.1444622841 
  _0.0776052450   0.0886481373   0.1092472107 
   0.1178740806  _0.0903261324  _0.1113043062 
   0.1085292588   0.0512562201  _0.1367073846 
   0.0589886136  _0.0783689961  _0.1477134882 
  _0.1205961711  _0.0598447191   0.0898105986 
   0.1467316815   0.1193712204  _0.1278978093 
  _0.0784800531   0.0857490972  _0.0149189145 
   0.0578068920  _0.1395622734   0.0768726459 
  _0.1014373995   0.0416295027   0.0670539840 
  _0.1236866562  _0.1016276886   0.1434392721 
  _0.0161524251   0.0261961311  _0.1216222695 
   0.0945181746   0.0669648237  _0.1222031436 
  _0.0682310184   0.1412775246  _0.0486418341 
  _0.0233046243   0.1191796536  _0.0475573362 
  _0.0961468965  _0.1408879608  _0.0039553878 
   0.1218001257  _0.1052849598  _0.1243178283 
   0.0902625387  _0.0575116383   0.0018951813 
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) 
    

   G=:pars DD 

   G^:(i.5) 0.1 0.2 0.3 
0.1      0.2      0.3 
0.253974 0.507183 0.761566 
0.30382  0.527163 0.874296 
0.234707 0.414627 0.717742 
0.313538 0.570422 0.994186 
 

Appendix 2 

In this appendix we describe the function constructed in Appendix 1 using traditional notation. 

We begin by letting I1, I2, and I3 be the three by three matrices used to define the three 

transformations 1T , 2T , and 3T in Section 2. We use matrix multiplication to compose these three 

matrices and repeat that on the resulting matrices until the set stabilizes. The result is the 

dodecahedral symmetry group represented by 120 three by three matrices which we will denote 

Ii  for 1 120≤ ≤i . Now let  a ijkm  denote the 3 by 3 by 3 by 3 four-dimensional array of  parameters 

given in Appendix 1. We can define a polynomial map from P: 3 3ℜ → ℜ  by 

P( , , )x y z a x y zm ijkm
k j i

kji
=

===
∑∑∑

0

2

0

2

0

2

 where the subscript 0 2≤ ≤m  runs through the output 

coordinates in ℜ3 . Then we create our function with the desired symmetry by 

G x I I xn
n

n( ) P( )r r= ⋅ ⋅−

=
∑ 1

1

120

 where the dots indicate a matrix times vector product. 
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Figure 1. A chaotic attractor with the symmetry of a dodecahedron. 
 

 
Figure 2. A chaotic attractor with the symmetry of a dodecahedron and the form of an 
icosahedron. 
 


