
Chapter 4 78

1

 1 e. 0 2 3 4
0
 onein=: 1 e. , test if one is in the array

 (2 2,:2 2) onein;._3 b apply onein to the tesselation;
0 0 1 1 0 0
0 0 1 1 1 0
0 1 1 1 1 0
0 1 1 1 1 1
1 1 1 0 1 1
1 1 1 1 1 1

 N=: [: +/@, (,:~@,~)@[onein;._3]

 2 N b
25

 eps=: % # epsilon

 2 eps b
0.153846

 fd=: (N %&^. %@eps)"0 2 estimate based upon this tesselation

 2 fd b
1.71967

Next we consider a larger version of the Sierpinski triangle.

 VRAWH=:1000 1000

 rtiter 10000
100

 $b=:|.VRA
1000 1000

 1 2 3 4 5 6 7 8 9 10 fd b
1.64822 1.65963 1.66552 1.67062 1.66397 1.67517 1.67752 1.68224 1.68849
1.67705

The fractal dimension is computed to be near 1.68 which is not too far from the theoretic value near
1.58. Larger versions of the image give slightly more accurate estimates.

As a second example, consider the fern shown in Figure 4.4.1. If b denotes the 1000 by 1000 binary
matrix giving that image, we compute the following estimates of fractal dimension.

 1 2 3 4 5 6 7 8 9 10 fd b
1.73172 1.72922 1.72449 1.71946 1.71589 1.71194 1.7081 1.70432 1.70172
1.69914

It appears that the fractal dimension of that image is near 1.7.

4.8 Exercises
1. Implement the following functions using agenda to handle the cases. The domain is real numbers except (a) has
integer domain.

(a)
oddisxif

evenisxif

x

x
xf








51
)(

2

(b)
xif

xif

x

x
xg











3

3

51
)(

2

(c)

xif

xif

xif

x

x

x

xg

















7

73

3

2

1)(
2

2

2

 Iterated Function Systems and Fractals 79

2. Implement the functions in the previous exercise
using explicit control words.

3. Consider the 3x+1 function t(x) from Section 4.1.
(a) Plot the path to 1 for each of the integers from 100 and 109.
(b) Implement a function tn which gives the number of elements in the path to 1 for a given number. Plot tn for
all the integers from 1 to 200.

4. The classic 3x+1 is defined as follows:
oddisxif

evenisxif

x

x
xh








13

2
)(.

Implement that function and create an analog of Figure 4.1.1 for the path to 1 generated by h(x) on 27.

5. Load the script ~addons/graphics/fvj4/smiles.ijs. It defines 12 matrices and transformations. Duplicate the
smiles of smiles image in Figure 4.8.1 by defining a random transformation function rt in the following ways.
(a) Select the random transformations with equal probability.
(b) Find weights to bias the selection so that the image is balanced.

6. A spiral of spirals as in Figure 4.8.2 can be created using the transformations associated with m0 and m1 .

 m0
0.2 0 0
0 0.2 0
0.4 0.8 1

 m1
 0.904498 0.350404 0
_0.350404 0.904498 0
 0.222953 _0.12745 1

(a) Create an image of the iterated function system selecting those transformations with equal probability.
(b) Find weights to bias the selection so that the image is balanced.

7. Identify transformations needed to approximately replicate the spiral of smiles image shown in Figure 4.8.3.
Use the transformations from the previous exercise and the smile transformations in Exercise 5 to build the ones
you need.

8. Identify transformations that allow you to approximately duplicate Figure 4.2.2.

9. We are not restricted using affine maps in iterated function systems. Figure 4.10.3 illustrates a fractal version of
the word CHAOS from [Reiter, B et al, 1998] which uses curved strokes for parts of some of the letters.
(a) Approximately duplicate Figure 4.8.4 using transformations of your own design.
(b) Create a curved stroke fractal version of the word "WORD".

10. Randomly chosen iterated function systems do not have the same appearance as ones that use hand crafted
affine transformations. Figure 4.8.5 shows a fractal resulting from a randomly selected set of six affine

Figure 4.8.1 Smile of Smiles

Figure 4.8.2 A Spiral of Spirals

 Chapter 4 80

transformations. The six coefficients of the matrix in the left two columns were selected at random from
between -1 and 1. Such a matrix was acceptable if it mapped the unit square back into the unit square. Six
acceptable matrices were used to create the random transformation function rt.
(a) Implement that strategy for creating random fractals. Find several different images that way.
(b) Use box counting to estimate the fractal dimension of the fractals you produced in (a).

11. In Section 4.4 we created a weighted random index function which was used to define the function rt based
upon transformation and also an alternate approach that used matrices.
(a) Write a tacit version of the function rmt from the matrix approach.
(b) Use the timing facilities (6!:2) to order the time required by (i) the transformation based approach in Section
4.4 (ii) the matrix based approach in Section 4.4 (iii) approach (ii) modified to use the new rmt from (a).

12. Apply the chaos game (a) to an isosceles right triangle and (b) to a triangle with a large obtuse angle.

13. (a) Create a variant of the chaos game where you move two thirds of the way toward the selected vertex. What
does the image look like when this is applied to a triangle?
(b) Create a variant of the chaos game where you move either one third or two thirds (selected at random) of the
way toward the selected vertex. What does the image look like when applied to a triangle?

14. (a) Find the fractal dimension of the X fractal appearing in Figure 4.8.6.
(b) Find the fractal dimension of the J fractal appearing in Figure 4.8.7.

15. Use the sum of powers equation at the end of Section 4.6 to compute the fractal dimension of the image in
Figure 4.8.8.

Figure 4.8.3 A Spiral of Smiles of Same

Figure 4.8.4 Chaos within Chaos

 Iterated Function Systems and Fractals 81

16. Consider the tessellations
(3 3,:3 3)<;._3 i.6 6 and
(1 1,:3 3)<;._3 i.6 6
(a) How would you describe the second one?
(b) Can you now predict the result of
(1 2,:3 3)<;._3 i.6 6

17. In Section 4.7 non-overlapping tesselations were used to estimate fractal dimension. Use the constructions in
the previous exercise to guide estimation of fractal dimension using overlapping tesselations.

Figure 4.8.6 A Fractal X

Figure 4.8.7 A Fractal J

Figure 4.8.8 A Fractal from Similitudes

Figure 4.8.5 A Random IFS

