
Chapter 8

150

 L2=:L1-<./,L1

 L3=:<.L2*255%>./,L2

 view_image BW256;3 spix L3

Notice that the Laplacian also marks the edges with a
kind of up down pattern that can be seen in Figure 8.3.2.
Adding the Laplacian to the original image data smooths
the noisy parts and can sometimes clarify edges. The
expression below compares the original image with the
image with its Laplacian added to it.

 view_image BW256;3 spix Y,.Y+round L1

 The result is shown in Figure 8.3.3.

8.4 Experiment: Color Spaces
So far we have limited our attention to the RGB color model that we explicitly discussed in Section 5.1.
The RGB model is especially convenient for monitor and LCD displays since the phosphors
(respectively lcds) are usually red, green and blue. Figure 8.4.1 repeats the geometric view of the RGB
model. Other color models may be better suited to printing, image compression, or other types of image
manipulation. In looking at the RGB model, we can imagine moving along the central diagonal from
black (0 0 0) to white (255 255 255) with the diagonal being intermediate grayscales. As we move from
corner to corner along that diagonal the brightness (or intensity) increases. The angle around the
diagonal gives the hue, which basically determines the color. The saturation measures how pure (or
muddy) the color is, with colors on the surface of the cube being fully saturated, and the diagonal being
totally unsaturated (grayscale). All these descriptions are imprecise and different color models include
various choices for the coordinates and the details of how they are implemented varies considerably.

Figure 8.3.2 The Laplacian Filter

Figure 8.3.3 Original Image and with Addition of the Laplacian

Image Processing

151

We will briefly describe three models that are
useful and illustrative. Reiter (2004b) gives some
further examples. One of the simplest ways to
modify RGB image data is to transform the data
according to an affine transformation. That is, a
map of the form BAxxT )(where A is a 3 by
3 matrix and B and x are vectors with 3
coordinates. The color space YUV is close to the
color space used for color TV. In particular, the Y
component is brightness which is what is seen on
black and white (PAL) television sets. The U and
V components together describe hue and
saturation with U being bluish and V being
reddish. If we load the script color_space.ijs, we
will have conversion utilities defined. We will use
the convention that upper case letters are used for
a color space components if they are integers
between 0 and 255. If they are real values between
0 and 1, we use lower case letters.

 load '~addons/media/imagekit/color_space.ijs'

 RGB_to_yuv 0 0 0 conversion function applied
0.0627451 0.501961 0.501961

 RGB_to_yuv 255 255 255
0.921745 0.501961 0.501961

 RGB_to_yuv 0 255 0
0.566745 0.210961 0.133961

 RGB_to_YUV 0 255 0
145 54 34

So we see that the RGB triple 255 255 255 is near full brightness (Y) and neutral in U and V. Next we
consider a sample image that can be improved various ways. The image is of Chawne Kimber discussing
Angela Coxe's poster with her at a mathematics meeting. It was taken under adverse conditions. Below
we see that if we use yuv coordinates, an example image can be exactly recovered, but if we use YUV
coordinates, a small amount of change occurs.

 fn=: jpath '~addons/media/imagekit/poster.jpg'

 $b=:read_image fn
1280 960 3

 b-: yuv_to_RGB RGB_to_yuv b completely reversible
1

 >./|,suub-YUV_to_RGB RGB_to_YUV b almost reversible
3

Since this conversion is rapid and give a more sophisticated sense of brightness than averaging RGB
triples, it can be used as a method for obtaining a grayscale image.

 'Y U V'=:0 1|: RGB_to_YUV b

 view_image 3#"0 Y

Next, we turn to considering the HSV model. Figure 8.4.2 shows a geometric model for HSV space. This
space can be thought of as a hexagonal cone with black at the vertex and white at the center of the

Figure 8.4.1 The RGB Color Model

Chapter 8

152

hexagonal face. Saturation and hue are
determined by a sort of polar coordinate
conversion around the diagonal. The value V,
which measures brightness, is determined by the
maximum of the RGB components. It is not
necessary, but traditional to allow the integer
version of hues to vary from 0 to 359,
corresponding to degrees when using the HSV
model. Since value V is not as natural a parameter
as intensity, often one prefers to use HSI space
where the parameters are hue, saturation and
intensity. Details of the conversions vary in the
literature, although the basic idea is to provide
parameters that give color as one parameter
(hue), the purity of the color as another
(saturation), and intensity as the last. We create a
histogram of these parameters for our sample
image above; it is shown in Figure 8.4.3. Notice
that the distribution of intensities has few entries above 196. This suggests that the image is slightly
underexposed. A standard way to adjust that might be to replace the intensity i by something such as
i^0.8; however, here we will try a linear adjustment of intensity.

 'h s i'=:0 1|: RGB_to_hsi b

 view_image c=:hsi_to_RGB 0|:h,s,:(255%196)*i

 hsi_hist c

A look at the histogram shows intensities spread more uniformly through their range. While the
saturations in the image are probably correct, we also observe that they are low. We can make the image
more vibrant by raising the saturation levels too.

 view_image c=:hsi_to_RGB 0|:h,(s^0.7),:(255%196)*i

 hsi_hist c

The resulting histogram showing the raised saturation and spread intensities is shown in Figure 8.4.4.
The resulting image is shown in Figure 8.4.5.

Now load an image of your choice as b and experiment as follows with changes in intensity and
saturation. Use your own filename for fn.

 fn=:'your_image.jpg'

 view_image b=:read_image fn

Figure 8.4.3 HSI Histograms

Figure 8.4.4 Modified HSI Histograms

Figure 8.4.2 The HSV Color Model

Image Processing

153

 'h s i'=:0 1|: RGB_to_hsi b

 view_image hsi_to_RGB 0|:h,s,:i^0.7

 view_image hsi_to_RGB 0|:h,s,:i^1.3

 view_image hsi_to_RGB 0|:h,(s^0.7),:i

 view_image hsi_to_RGB 0|:h,(s^1.3),:i

 view_image hsi_to_RGB 0|:h,(s^0.7),:i^0.7

Do any of these improve the image? What
happens if you adjust hue in a similar manner?

8.5 Rotation, Tilt and Barrel
Distortion
Images can also have various sorts of distortions
that can be corrected or mitigated with
mathematical transformations. Each of the
distortions we will discuss may be corrected using
a GUI interface using functions from the script
~addons/media/imagekit/transform_m.ijs.
Additional advice may be found at Reiter (2003a)
and by looking at the help for the
transform_image form. However, here we
briefly discuss the mathematics and refer to
functions from that script.

Consider a digital image where the horizon is not
horizontal. This can be corrected using a rotation.
For example, Figure 8.5.1 shows the keys.jpg
image with two points near the horizon marked by
clicking with the shift key. The image was tilted
because the camera was set on a log and a timer
used.

 load '~addons/media/imagekit/transform_m.ijs'

 transform_image jpath,'~addons/graphics/fvj4/keys.jpg'
450 300

 SEL_pts
59 118
341 97

 get_sel_pts_angle
3 : '12 o. j./(**@{.)-/SEL_pts_mkit_'

]X=:get_sel_pts_angle ''
_0.0743309

Figure 8.4.5 The Modified Image

