
Exact Horadam Numbers with a Chebyshevish Accent

by Clifford A. Reiter (reiterc@lafayette.edu)

A recent paper by Joseph De Kerf illustrated the use of Binet type formulas for computing

Horadam numbers [1]. This was an effective demonstration of the power of those formulas and

the grace of APL for implementation. That article spurred my interest in the Horadam numbers –

a long neglected interest. One of my earlier related interests was in computing very large

Fibonacci numbers [6]. That work takes advantage of identities involving Fibonacci numbers but

does not directly use the Binet formula. Since the Binet formulas are most naturally implemented

with floating point computations, the computations are rapid, but of finite precision, on most

systems. Thus, my goal in this note is to describe a very different way of computing Horadam

numbers and to implement those ideas in J where exact rational computations are available.

Moreover, we will see several additional examples of the pervasive nature of the Horadam

numbers including a glance at Chebyshev polynomials. The recursive algorithm that we will use

also illustrates a powerful J programming style. While matrix constructions of the Fibonacci

numbers are well known [2], the corresponding matrix constructions for Horadam numbers are

not nearly as well known, but they do appear [9].

Matrix View of Horadam Numbers.

Following the notation in [1], we will define the Horadam sequence by

H p H q H sH rHn n n1 2 1 1    , , .

However, the notation for these numbers varies greatly. For example, Horadam [3] and

Rabinowitz [5] use a notation where the recursion contains a minus sign and in many contexts it

would be more convenient to begin the sequences with H0 . Notice that Hn as defined above

depends upon p, q, r, and s in addition to n. When we need to emphasize some or all of that

dependency, we can write pq
rs

nH or pq nH for Hn .

We rewrite the above recursion in matrix form as

H

H r s

H

H
n

n

n

n







 
















1

10 1
.

Iterating this n-1 times, we see

 2

H

H r s

H

H
n

n

n










 

















1

1
1

2

0 1
.

Considering the initial condition, H p H q1 21 0   , , we see

10

10 1

10 1 1

0

H

H r s
n

n

n










 














 .

Likewise, when H p H q1 20 1   , , we see

01

01 1

10 1 0

1

H

H r s
n

n

n










 














 .

Putting these together, we have

10 01

10 1 01 1

10 1H H

H H r s
n n

n n

n

 








 







 .

Since pq n n nH p H q H () ()10 01 , we can compute general Horadam numbers by computing

powers of the matrix W
r s










0 1
. In particular, pq nH is the dot product of the vector  p q,

with the first row of W n1 .

Moreover, the matrix identities  W Wmn n m
 and W W Wm n m n  give rise to powerful

identities that allow one to skip many intermediate steps in computing Horadam numbers.

Indeed, in the Fibonacci case, identities arising from those matrix relations give methods for

rapid computation of very large Fibonacci numbers [6]. The identities for the Horadam numbers

may be written explicitly and implemented (a worthwhile diversion – see Appendix B).

However, we will use the graceful array capabilities of J to utilize the matrix relations directly.

In particular, we will recursively compute even powers of W by  W Wn n2 2
 and compute the

odd powers of W using W W Wn n2 1 2  . In the next section we will implement these ideas.

 3

Horadam Numbers in J

We first define functions that give the 0th and 1st powers of W. In all the functions we define for

giving powers of W, we will let the left argument be the list r,s and the right argument be the

ultimately desired power – even though some of that information is unused for these low powers.

 w0=:(=i.2)"_
 2 3 w0 50 0th power of W
1 0
0 1
 w1=:0 1&,:@x:@[
]W=.2 3 w1 50 1st power of W
0 1
2 3
 x=:+/ . * Matrix product

 W x W W 2
2 3
6 11

Next we consider the general cases for computing nonnegative powers of W. There are 4 cases

according to whether the power is 0, 1, a general even power, or a general odd power. The

function case distinguishes between these cases by adding the power mod 2 to twice the result

of the Boolean test: “is the power greater than 1?”.

 case=: 2&| + +:@(1&<)
 (,:case)i.8 We see how the four cases depend on the power
0 1 2 3 4 5 6 7
0 1 2 3 2 3 2 3

 we=:[x~@:w -:@] Even powers of W : the square of the half power

 wo=:w1 x [w <:@] Odd powers of W : W times the previous power

 w=: w0`w1`we`wo@.(case@]) Agenda on the four cases gives general powers

 2 3 w 2 W 2
2 3
6 11
 2 3 w 50 W50
 520158358287556133051137142 926285732032534439103474303
1852571464065068878206948606 3299015554385159450361560051

 4

Recall that the Horadam numbers are the dot product of the list p,q with the first row of W n1 .

We will follow [1] and take the left argument of our Horadam function to be the list p,q,r,s. Thus

2&{.@[gives p,q and _2&{.@[gives r,s. The definition of horadam may be read as p,q dot

product with the first row of W n1 . We apply rank 1 0 since we expect the left argument to be a

vector and the right argument to be the number of the desired term in the sequence.

 horadam=:(2&{.@[x _2&{.@[{.@w <:@])"1 0

 1 0 2 3 horadam 51
520158358287556133051137142

The following exact integers are consistent with the correct entries in the table in the appendix of

[1].

 ,.2 3 _3 3 horadam 249 250 251
_145557834293068928043467566190278008218249525830565939618481
 0
 436673502879206784130402698570834024654748577491697818855443

 sxfmt 2 3 _3 3 horadam 249 250 251 Short exact format
_145557834...(60)...5939618481
0 ...(1)... 0
4366735028...(60)...7818855443”

The function sxfmt is a utility for displaying the beginning and end of exact integers. It is

convenient to use it when the number of digits is very large. These “short exact format”

expressions also include the number of decimal digits of the exact integer in parentheses. The

definitions of sxfmt (short exact format) and a related function, sxmfmt, (short exact matrix

format) are given in Appendix A and are available on-line [7].

 We can also use the horadam function for noninteger p,q,r,s and maintain exact

computations since exact rational arithmetic is built-into J. The experiments below are again

consistent with the correct entries in the appropriate table in [1].

 x: _0.6 0.98 _2.7225 _3.3 Change decimal to exact rational

_3r5 49r50 _1089r400 _33r10

 5

 float=: x:^:_1

 float x: _0.6 0.98 _2.7225 _3.3 Change back to decimal

_0.6 0.98 _2.7225 _3.3

 float (x: _0.6 0.98 _2.7225 _3.30) horadam 100 101 102

0 3.39555e19 _1.12053e20

Some Special Horadam Sequences

De Kerf [1] noted some special cases of Horadam numbers and other special cases are noted in

[3,4]. We consider these to demonstrate the pervasiveness of the Horadam numbers.

 1 3 _1 2 horadam >:i.10 Arthimetic progression starting 1 3
1 3 5 7 9 11 13 15 17 19

 3 8 _1 2 horadam >:i.10 Arthimetic progression starting 3 8
3 8 13 18 23 28 33 38 43 48

 1 3 0 3 horadam >:i.10 Geometric progression
1 3 9 27 81 243 729 2187 6561 19683

 1 1 1 1 horadam >:i.10 Fibonacci numbers
1 1 2 3 5 8 13 21 34 55

 1 3 1 1 horadam >:i.10 Lucas numbers
1 3 4 7 11 18 29 47 76 123

 1 2 1 2 horadam >:i.10 Pell numbers
1 2 5 12 29 70 169 408 985 2378

 1 3 1 2 horadam >:i.10 Pell-Lucas numbers
1 3 7 17 41 99 239 577 1393 3363

 1 1 2 1 horadam >:i.10 Jacobsthal numbers
1 1 3 5 11 21 43 85 171 341

 1 5 2 1 horadam >:i.10 Jacobsthal-Lucas numbers
1 5 7 17 31 65 127 257 511 1025

In fact, because of the two step recursive definition of the Horadam sequence, many other

classical sequences and functions may be obtained from the Horadam numbers. For example, the

Chebyshev Polynomials [8] are recursively defined by

 6

T () T () T ()n n nx x x x  2 1 2 where T ()0 1x  , T ()1 x x , T ()2
22 1x x  .

Thus, the value of T ()n x is the nth Horadam number with p,q,r,s equal to x x x, , ,2 1 1 22   .

 chebyshev=: (, <:@+:@*: , _1: , +:)@]"0 horadam [

 2 chebyshev 0.9 T (.)2 0 9
0.62

 load 'plot'
 $Y=:1 2 3 4 5 chebyshev"0 1 X=:_1++:(i.%<:)100
5 100
 plot X;Y

Figure 1 shows the resulting plot of five Chebyshev polynomials. As one descends just to the left

of x=1, the 1st through the 5th Chebyshev polynomials are crossed in order. Do you notice

properties of these polynomials? Several can be observed.

Figure 1. Five Chebyshev Polynomials

 7

Timing and Efficiency

The efficiency of this matrix approach to computing Horadam numbers is of interest. First, we

can temporarily modify our function w so that we can see which powers were recursively called.

In particular, we change w as follows.

 wrsc=:(1!:2)&2 Write to screen function

 w=: w0`w1`we`wo@.(case@wrsc@]) Modified w

 1 1 1 1 horadam 100
99
98
49
48
24
12
6
3
2
1
354224848179261915075

Since there can never be two or more odd powers in a row, no more than 2 2log ()n recursive

steps are required. Our approach could be improved in a number of ways. We only used the top

row of the highest power of W that we compute; so we ought to be able to speed things up by not

computing the bottom row. Some improvement can also be expected if we use

W W W Wn n n2 1  () in order to compute the odd powers of W. However, more dramatic

improvements (between a factor of 2 and 4) can be obtained by implementing vector/scalar

formulas instead of using matrices. See Appendix B for a brief description and implementation.

 Table 1 shows the required computer time to compute various size Fibonacci numbers

using horadam on a 400MHz Pentium based computer. The 5 milliseconds needed to exactly

compute the 209 digit Fibonacci number F1000 is not as fast as the floating point computations

done in [1], but even accounting for the differences in processor speed, is remarkably close and

very respectable. We see that computations in J with thousands or tens of thousands of digits are

routine while calculations producing a couple million digits take significant amounts of time. We

 8

did not directly measure the space required for these computations, but the J session as a whole

required less than 80M of memory.

n F n10
 time (sec)

1 55 0.001125
2 354224848179261915075 0.002374
3 4346655768...(209)...6849228875 0.005
4 3364476487...(2090)...9947366875 0.0438
5 2597406934...(20899)...3428746875 3.86
6 1953282128...(208988)...8242546875 398.172
7 1129834378...(2089877)...6380546875 62125.9

Table 1. Time required to compute some Fibonacci Numbers.

Appendix A. Definition Summary

We give here a summary of our J functions. Readers may obtain the script horadam.ijs from [7].

 x=:+/ . *
 case=: 2&| + +:@(1&<)
 w0=:(=i.2)"_
 w1=:0 1&,:@x:@[
 we=:[x~@:w -:@]
 wo=:w1 x [w <:@]
 w=: w0`w1`we`wo@.(case@])
 horadam=:(2&{.@[x _2&{.@[{.@w <:@])"1 0
 chebyshev=: (, <:@+:@*: , _1: , +:)@]"0 horadam [

 wrsc=:(1!:2)&2
 sxfmt=:(10&{.,'...('"_,":@(#-'_'&=@{.),')...'"_ , _10&{.)@":"0
 sxmfmt=: ([,' '"_ ,])/"2 @:sxfmt

Appendix B. Direct Implementation Using Identities

In squaring a 2 by 2 matrix we ordinarily compute 8 products. We will see the special nature of

the Horadam numbers is such that we can do this with 3 products. In practice, this leads to

almost a 8r3 fold improvement in efficiency. We will not give detailed derivations of the

requisite identities, but will explain briefly how they may be obtained.

 For convenience, we define

K K K sK rKn n n0 1 1 10 1    , , .

 9

Thus, K r 1 1 / is a reasonable extension and in general K Hn n 1 01 and it isn’t too hard to

show by induction on n that rK Hn n 2 10 . Therefore pq n n nH prK qK  2 1 .

We can verify that

W
rK K

rK sK rK
n n n

n n n
















1

1

using the matrix power expansion of W in terms of the H’s that we saw and then translating its

entries into K’s using the above relations.

Squaring the right side of  W Wn n2 2
 and equating the entries in the first rows yields:

rK r K rKn n n2 1
2

1
2 2

   and K rK K sKn n n n2 1
22 

and hence

K rK Kn n n2 1 1
2 2

   and K K rK sKn n n n2 12 ()

which goes from the pair (,)K Kn n2 1 2 to (,)K Kn n1 using just three “big” multiplications. We

implement this as follows.

horadamb=:4 : 0"1 0
'p q r s'=.x: x.
k0=.((%r),0)"_
k1=.0 1x"_
ke=.((r,1)&x@:*: , {: * ((+:r),s)&x)@:k@-:
ko=.(0 1,:r,s)&x@k@<:
k=.k0`k1`ke`ko@.case
((p*r),q) x k <:y.
)

Lastly, we remark that det()W r  and hence () det() ()     r W rK sK rK rKn n
n n n n1 1

2 .

That identity can be used to modify the formula for K n2 1 into a formula using just one “big”

multiplication if one assumes that () r n 1 is not a “big” computation relative to Kn . Then

(,)K Kn n2 1 2 may be computed from (,)K Kn n1 using just two “big” multiplications. We leave

the implementation of this approach as an exercise.

 10

References

[1] Joseph De Kerf, From Fibonacci to Horadam, Vector 15 3 (1999) 122-130.

[2] Verner E. Hoggart, Jr., Fibonacci and Lucas Numbers, The Fibonacci Association, Santa

Clara, 1969.

[3] A. F. Horadam, Special Properties of the Sequence W a b p qn (, ; ,) , The Fibonacci

Quarterly, 5 5 (1967) 424-434.

[4] A. F. Horadam, Jacobsthal Representation Numbers, The Fibonacci Quarterly, 34 1

(1996) 40-54.

[5] Stanley Rabinowitz, Algorithmic Manipulation of Second Order Linear Recurrences, The

Fibonacci Quarterly, 37 2 (1999) 162-177.

[6] Clifford A. Reiter, Fast Fibonacci Numbers, The Mathematica Journal, 2 3 (1992) 58-60.

[7] Clifford A. Reiter, Horadam Numbers, http://www.lafayette.edu/~reiterc/j/index.html,

1999.

[8] Theodore J. Rivlin, The Chebyshev Polynomials, John Wiley & Sons, New York, 1974.

[9] Marcellus E. Waddill, Matrices and Generalized Fibonacci Sequences, The Fibonacci

Quarterly, 12 4 (1974) 381-386.

Clifford A. Reiter

Department of Mathematics

Lafayette College

Easton, PA 18042 USA

