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Abstract

The behavior of one and two dimensional automata are
displayed in two and three dimensions and via
animations. Implementations of finite automata in J
using "infix" and "cut" to distribute local definitions of
finite automata are compared. Abstract automata are
considered along with applications to image processing
and surface plotting.

Introduction

A finite automaton or cellular automaton is an infinite
array of cells where each cell can assume a vaue from
a finite sat along with rules for progressing from one
configuration of cell values to another. The set of
possible values could just be the set of Boolean vaues
0 and 1 or it could be a huge set like the set of al
alowed RGB-triples used to describe the value of a
pixel in a color image. The values in the array are
updated in each generation by somelocal rule. That is,
there is a rule that depends only on the values of the
cells within some finite neighborhood of each cell and
that rule is applied to determine the state of each cell at
the next generation. |In practice, finite arrays of cells
are used and the method selected for handling the
boundary cells can have a considerable impact on the
observed behavior. For convenience, we will only
consider periodic boundary conditions since these are
easy to implement and this choice usually has the least
impact on the qualitative behavior.

Automata are used to sSimulate various
processes and there is arich literature of the theory and
application of automata, see [4,10]. We will see there
is a wonderful variety of qualitative behaviors.
Readers familiar with J[2,3] ought to be able to follow
al of the details of the examples given herein. Others
should be able to get a feding for the qualitative
behavior of automata (and J). Wewill

compare one of the constructions in [8] to aternatives
and see the convenience of J for implementing local
rules. All examples are given in J Release 2.03 for
windows.

One Dimensional Automata

For afirst example, consider an automaton that consists
of a Boolean vector along with the rule that adds
modulo 2 the value of each cell with the value of the
cell on its left. Addition modulo 2 is the same as the
"not-equals’ function, ~:. The function rotr
rotates each cell in its argument one position to the
right. We then implement the automata described
aboveas autol.

rotr=. 1&|.
rotr i.8
70123456

autol=.~: rotr
u
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autol u
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We can view several iterates of this automaton on the
input which hasasingleinitial cell lit.
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The result is a finite version of the Sierpinski triangle.
We can easily increase the size of this experiment and
view the results.
z=.autol”: (1.128) 0=1i.128
pal=.255,:0 0 O
(pal;z) writebmps8
viewbmp 'auto.bmp'

'auto.bmp'

There we defined a black and white two color paette:
pal. We aso used two utilities defined in the script
isigraph\bmp.js. The first is writebmp8 which is
used to create a windows bitmap file called auto.bmp.
That file is then viewed with viewbmp. Theresultis
shown in Figure 1. This makes the self-similarity of
thisfinite array more apparent.
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Figure 1. Rule 60 onasingleinput
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Next, the same construction is used on random

input.
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As before, this can be saved and viewed; the resulting
image is shown in Figure 2. The image has a random
feed but there are triangles appearing opening
southwest throughout. Also notice near the bottom of

the image there is some synchronization occurring.

We next look at more general automata. In
particular, we will consider Boolean valued automata
that depend only on the cell to the left of the given cdll,
the given cdll, and the cell to the right of the given cell.
Since this depends on just three boolean values there
are just eight possible configurations and each needs to
have a defined result. Here is a table representing the
definition of the automaton autol.

Output
0
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Since the part of the table beneath 1., c and R will be
the same for each automaton, each automaton can be
associated with the column Output which specifiesa
Boolean length 8 vector. Here 0 0 1 1 1 1 0 0.
Below, the function auto implements these genera
automata. First, the input vector is extended at both
ends by one element to maintain the periodic boundary
conditions. The key idea is to identify which of the
rows of the table above applies to each group of three
cells. Thisisdone with length 3 infixes.

Figure 3. Rule 149 on isolated input.
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It is bulky to list each automata with 8 binary
digits, so we can refer to the automata by reinterpreting
the 8 digit binary as a number. Thus, some output of
rules and their numbers are:

Output Rule Number
0000O0O0O0CO 0
00000101 5
00111100 60

Thus, Figures 1 and 2 showed the results of Rule 60 on
isolated input and random input. The result of Rule
149 is shown in Figures 3 and 4 on isolated input and
random input. These figures show a behavior that
clearly contains considerable repetition yet thereis ill
achaotic or jumbled fed to the figures.

Trying out various rules on a random input
gives afeel for the qualitative variations possible. For
examples, try Rules 0, 1, 5, 26, 60, 74, 90, 135, 149,
179, 251 and 255. Of course, in Rule O everything
dies, in Rule 255, everything lives, but for certain
automata in between there is a real and wonderful
tension between those behaviors.

One dimensional automata can be generalized
by considering larger neighborhoods and by allowing
more states. Both of these changes can add to the
richness of the observed behaviors. For example,
Figure 5 shows a 3 state automata on random inpuit.

Here there is an underlying pattern of white
surrounding gray triangles - much as was the case for
Rule 60, yet there are also black "growths' that persist
for a considerable number of iterations but eventually
die out.

The Gameof Life
Finite automata in two dimensions can be defined in a
manner analogous to the one dimensional case. An
automaton contains a two dimensional array of states
and gives locd rules for changing from one generation
to the next. Here we will consider the most famous 2-
dimensional automata that is often called Conway's
game of life [1,6]. This automaton uses 3 by 3
neighborhoods and binary states. A cdll is dive at the
next stageif at the previous stage either:

* the cel is dive and 2 or 3 of its eight
neighbors are aive.

* the cell is dead and exactly 3 of its eight
neighbors are aive.

All other cells are dead at the next generation.

We describe this game on a 3 by 3 array and
then organize work appropriately to apply this to each
cell inthe array. We need to identify afunction, which
we will cal filt (in deference to its image



processing andogue) that applies to 3 by 3
neighborhoods and which describes life. Consider the
matrix L below and some test neighborhoods.

L N1 N2 N3
111 100 001 010
191 011 000 010
111 101 011 001
+/,L*N1
13
+/, L*N2
3
+/,L*N3
11

Notice that by the rules for life, N1 should give 0
while N2 and N3 should give 1. That is, we only get
life if the product of L with the 3 by 3 neighborhood
has nonzero entries including a nine and 2 or 3 ones or
no nine and exactly 3 ones. Thus, the cell will be lit if
an 11, 12 or 3 results from the sum of the product of I,
with the neighborhood. Hence, we can define filt
to test for that.

filt=.e.&3 11 12@(+/)@, @ (L&*)

filt N1
0

filt N2
1

filt N3
1

We now need to decide on a method for distributing
the application of filt to al the 3 by 3

neighborhoods.

Cut or Infix

There are two methods that immediately suggest
themselves. Oneistousecut, ;. 3 todirectly apply

filt to the 3 by 3 tessdllations, the other is to apply
the length 3 infixes as we did in the one dimensional
case, but to apply the infixes along two axes. Below
are examples of those two strategies. First consider
creating the boxed 3 by 3 tessellations on a sample test
aray t.
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Clearly the code for using cut was shorter. Also, the
two applications of infix resulted in the transpose of the
3 by 3 neighborhoods - which can be fixed, but the
result of f£ilt isthe same on the transpose, so we can
save the time instead of introducing another transpose.

Figure6. Aninitial configuration.

The functions filterl and filter2
given below implement the cut and infix based
drategies applying £ilt to each 3 by 3 neighborhood
instead of box.

filterl=. 3 3&(filt;. 3)



filter2=. 3&(filt\)@|:"2@(3&(1\))
filterl t
1
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The following table gives the time and space required
for applying thesefilters on sample n by n arrays.

filterl filter2
n time space time space
5 0.32 8344 0.12 2212
10 1.66 45684 0.75 2812
20 8.34 266248 3.57 4564
40 |44.1 1679530 |15.65 |12972

Notice that filter2 is more efficient in time and
dramatically better in space. In fact, if we have as a
goa of applying these filters to arrays that are images,
we want to be able to deal with arraysthat have severa
hundred entries in each direction. Thus, filterl,
while very succinct, isn't yet practical for very large
arrays.

In order to implement life, we need to apply
both the filter above and the periodic extension of
boundary conditions. Of course, we need to extend
those boundary conditions in two dimensions. Thus
we get:

- :'::'l:h- .

Figure 7. One step of life.

life=.filter2@perext@: (perext"1l)

life t
01100
01111
00011
0 00O0O0

000O0O

Now we look at one step of life on a larger
array. Consider the initial configuration in Figure 6.
The result of applying lifeisshown in Figure 7. Notice
the stable 2 by 2 blocks on the left and right. These
static images don't give a very good feeling for the
dynamic behavior of life. Thus, we turn to showing
steps of life viaan animation.

Animated Life

A nice experiment to try is to create a random array
and to iterate life on the array. This can done with the
following.

a=.?32 3282
aa=.life”: (i.32) a
animate2 aa

Where the function animate2 is defined by the
following.

animate2=.3 : 0
256 256 1 animate2 vy.

pal=.255,:0 0 0

a=.y.

NB. open window for picture

0.4%].2{.x.
wc=.wc, ';cc g isipicture;pas 0 0;pscale;’

wc=.'pc Animation;xywh 0 0 ', ":

wd wc, 'pcloseok;’

k=.0 NB. frame counter
r=.{:x. NB. rep's each picture
n=. (#a) *r NB. total number of frames

while. k<n do.
(pal; (<.k%r) {a) writebmp8 'temp9999.bmp'’
wd 'ctext temp9999.bmp;pshow; '
k=.>:k

end.

)

Y ou can specify the window size and show each frame
more than once if the animation runs too quickly. For
example 512 512 2 animate2 aa will createa
window about 512 by 512 pixels and show each frame
twice.
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Figure 8. The glider gun configuration after 120
iterations.

The animation on random input shows features
that are caled "blocks', "blinkers' and sometimes
"gliders’ appear. See[1]. The configuration shown in
Figure 6 is quite special because it replicates itself
while generating a sequence of gliders. Figure 8 shows
the result of 120 iterations of life on the configuration
in Figure 6. Four gliders have been produced at this
point. Thus, the configuration in Figure 6 is known as
a"glider gun".

TheGlider Gunin 3-D

Animating the glider gun is nicest way to view the
dynamics involved, but we can think of the iterates of a
2-dimensional automaton as forming a 3-dimensional
Boolean array. Then the cells that are lit can be plotted
in 3-D. The appendix gives a complete J script for
generating the glider gun, its iterates, finding the
indices of the lit positions in three space and writing
the positions of to afile in aformat that can be utilized
by the POVRAY raytracing program [9]. Theresult is
shown in black and white in Figure 9.

In this figure, time is shown in the upward
direction. The 2 by 2 blocks persisting from state to
state appear as guide rails but they do interfere with the
growth every 30 iterations. A glider is produced every
thirty iterations and they can be seen moving upward
and toward the |eft in theimage.

Image Processing as an Automaton

We begin with a grayscale image (for smplicity and
printing) that associates with each pixel a grayleve
between 0 and 255. Black corresponds to 0 and white
to 255. Figure 10 shows a (contrast enhanced) digital
grayscale image of the author's family and two research
students. The first automaton we will consider is a
simple averaging scheme:

Consider the filter mask:

M
0.1 0.1 0.1
0.1 0.2 0.1
0.1 0.1 0.1

Since the entries add to 1, multiplying a 3 by 3
neighborhood by M and summing the results will give
a weighted average of the values at the 9 positions.
Thus, if b is the array containing the 695 by 798
bitmap in Figure 10, then we can apply this scheme as
follows.

round=.<.@(0.5&+)
filt=.rounde (+/)@, @ (M&*)
smooth=.3& (filt\)@|:"2@(3&([\))
s=.smooth b

Figure 11 shows the bitmap s. Notice that the detail
is averaged - there is a bit less contrast and the image
looks somewhat blurred. How many iterates of
smooth would it take to result in a gray blur with no
objectsvisible?

A kind of opposite processing god is to
attempt to highlight edges rather than smooth things.
Simple differencing strategies can be used [7], but we
suggest here a method that is not direction dependent.
This is know as the Sobel edge detector which is a

nonlinear detector given by +/Ax?+ Ay’ 1 where
AXx2 and Ay3 ae given by the linear filters

corresponding to the matrices dx and dy shown
below.

Fig
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This can be implemented as shown. We create two
linear filters DX and DY. These are put together into
filt that processes 3 by 3 neighborhoods. The result
sobel applies £ilt to al the 3 by 3 neighborhoods
-in fact, it isidentical to filter2 used for life
and smooth.

DX=.+/@, @ (dx&*)
DY=.+/@, @ (dy&*)

filt=.DX +&.*: DY
sobel=.3&(filt\)@|:"2@(3&([\))
e=.sobel b

Now the result of the Sobel edge detector on the
bitmap in Figure 10 is not an integer matrix. The
square root gives floating point results. We could
rescale and round to show the results - but we will take
advantage of a fairly smple utility, cile, that
classifies the entries into discrete groups by the order
of the elements by their size. Thus, 255 cile e
will be a matrix of entries from i.256 where the
smallest entries will be marked with a 0. Equa
numbers of Os, 1s, ... 255s will appear. Finaly, we can
produce our Sobel edge detected image.

cile=.3@]s((/:@/:@]<.@* (% #)),)
E=.255-255 cile e

Figure 12 shows the result of that edge detection with
colors reversed since we usualy draw edges with
black. Compared to differencing schemes this does
quite well at identifying edges regardless of whether
the differences appear on a horizontal or vertical edge.

Organizing Polygonsfor Surface Plots

While it is clear that the kind of local processing we
have considered is useful for games, like life, and
image processing, we want to make the point that this
local processing redly arises in many contexts. In
particular, we look at the problem of plotting a surface
described in 3-D on a computer screen. We will only
consider the part of this problem relevant to local rules;
for complete examples of surface plotting, see[8].

The idea is that we want to plot a surface that
is described by some function of two variables
z = f(x,y)4. We can create vectors x and vy that
contain the points we want to sample and we want to
project the x-y-z coordinates of the vertices of
quadrilaterals to the screen.  That is, suppose



x=.y=.1.10, then, if we consider the neighboring x-
values 3 and 4 and the neighboring y-values 7 and 8,
this gives a 2 by 2 neighborhood of points in the x-y
plane. Catenating the z vaues, we would get a
quadrilateral with vertices:

X Yy z
3 7 £(3,7)
3 8 £(3,8)
4 8 f(4,8)
4 7 £(4,7)

With a suitable projection, this quadrilateral can be
plotted on the computer screen. Since we want to
project these x-y-z triples, it is convenient to create an
array of points with shape (#x), (#y),3. Then 2
by 2 neighborhoods in this array will correspond to
quadrilaterals.

x=.y=.1.4
sin=.1&0.
f=.sine[ + sine@] NB. test func.
$xyz=.x ([ , 1 , £)"0/ y
4 4 3

{.xyz NB. points with

0.9092974
0.14112

file=.{. , |.e{:

g=. (2&(filt\)"3)@(1

3&|:)@(2&(1\))

0
0
1 0.841471
2
3

Thefunction £ilt takesa?2 by 2 by 3 array and turns
it into the desired quadrilateral. The function g
distributes filt over al 2 by 2 neighborhoods.
Notice we don't need to worry about the transposes
since we don't care whether the quadrilaterals are listed
clockwise or counterclockwise. After projection to
screen coordinates, we get an image of the surface.
Figure 13 shows this surface on a 16 by 16 mesh.

<"2 g xyz
[ ! I 1
o o 0 J]o1 0.841471|0 2 0.9092974]|
|1 0 0.841471 |1 1  1.68294|1 2 1.75077]|
[1 1 1.68294 |12 1.75077|1 3 0.982591]
|0 1 0.841471 |0 2 0.9092974|0 3 0.14112]
| | | |
[ ! ! 1
|1 0 0.841471|1 1 1.68294 |1 2 1.75077 |
|2 0 0.9092974]|2 1 1.75077 |2 2 1.81859 |
[2 1 1.75077|2 2 1.81859 |2 3 1.05042 |

[1 1 1.68294|1 2 1.75077 |1 3 0.982591 |
| ] ] |
I I I 1
|2 0 0.9092974|2 1 1.75077 |2 2 1.81859 |
[3 0 0.14112|3 1 0.982591 |3 2 1.05042 |
[3 1 0.982591|3 2 1.05042 |3 3 0.28224 |
|2 1 2 1.81859 |2 3 1.05042 |
| | ]

1.75077]2
]

Figure 13. A surface created from quadrilaterals.
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Appendix. J Script for Creating the Glider Gun in 3D

NB. Initial configuration for Glider Gun
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NB. Iterates of the Glider Gun - uses life defined in text
GGG=.1life™: (i.121) GG

NB. Indices of 1lit positions
i=. ($GGG) #: (,GGG) #1.*/3SGGG

NB. Output Utilities
outfile=.'gg3d.pov'
write=.[ 1!:2 <@]
append=.[ 1!:3 <@]
eol=.13 10{a. NB. DOS end of line marker
''" write outfile NB. Create empty output file
output=.append&outfile@,@(, &eol"1)

NB. Name output file

NB. Create Povray header
povheader=.0 : 0
camera{
location <200,200,30>
direction <0,0,1.6>
up <0,1,0>
right <1,0,0>
look at<20,75,30>}
#declare white=color rgb<l,1,1>
object{light source{<200,200,200> color white}}
object{light source{<-10,200,200> color white}}
object{light source{<200,200,-10> color white}}
background {color rgb<1l,1,1>}
)
NB. end of povray header

output povheader

NB. formatting utilities

chsw=.3 : (': '",:'"(a.i.y){({:x.) (a.i.
fmtvec=.,&'>'@('<'&,)@((2 23"
1 1 to l,l

fmtbox=. 3 : 0

z=.1 0 2{y.

O O O O O O o o o

O O O O O O o o o

O O O O O O o o o

_,-')&chsw)@": NB. vector format

O O O O O O o o o

O O O O O O o o o

O OoOFrHBEH OOO OO

O OoOFrHBEH OOO OO

to

{.x.)}a.") NB. character switch

and



z=.'object{box{', (fmtvec z),',', (fmtvec 1+z)
z=.z, ' }pigment{rgb<l,0,1>}}"
)

NB. Output the formatted 1lit positions
#output fmtbox"1l i

Once the J script has been run, the raytracing program POVRAY can be used to change the resulting file
gg3d.pov into an image. For more information on POVRAY, see [5,8,9]. POVRAY is available by
anonymous ftp from alfred.ccs.carleton.ca.
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