

 1

 Infix, Cut and Finite Automata

 Clifford A. Reiter
 Department of Mathematics
 Lafayette College
 Easton, PA 18042 USA
 reiterc@lafcol.lafayette.edu

Abstract
The behavior of one and two dimensional automata are
displayed in two and three dimensions and via
animations. Implementations of finite automata in J
using "infix" and "cut" to distribute local definitions of
finite automata are compared. Abstract automata are
considered along with applications to image processing
and surface plotting.

Introduction
A finite automaton or cellular automaton is an infinite
array of cells where each cell can assume a value from
a finite set along with rules for progressing from one
configuration of cell values to another. The set of
possible values could just be the set of Boolean values
0 and 1 or it could be a huge set like the set of all
allowed RGB-triples used to describe the value of a
pixel in a color image. The values in the array are
updated in each generation by some local rule. That is,
there is a rule that depends only on the values of the
cells within some finite neighborhood of each cell and
that rule is applied to determine the state of each cell at
the next generation. In practice, finite arrays of cells
are used and the method selected for handling the
boundary cells can have a considerable impact on the
observed behavior. For convenience, we will only
consider periodic boundary conditions since these are
easy to implement and this choice usually has the least
impact on the qualitative behavior.
 Automata are used to simulate various
processes and there is a rich literature of the theory and
application of automata, see [4,10]. We will see there
is a wonderful variety of qualitative behaviors.
Readers familiar with J [2,3] ought to be able to follow
all of the details of the examples given herein. Others
should be able to get a feeling for the qualitative
behavior of automata (and J). We will

compare one of the constructions in [8] to alternatives
and see the convenience of J for implementing local
rules. All examples are given in J Release 2.03 for
windows.

One Dimensional Automata
For a first example, consider an automaton that consists
of a Boolean vector along with the rule that adds
modulo 2 the value of each cell with the value of the
cell on its left. Addition modulo 2 is the same as the
"not-equals" function, ~:. The function rotr
rotates each cell in its argument one position to the
right. We then implement the automata described
above as auto1.

 rotr=._1&|.
 rotr i.8
7 0 1 2 3 4 5 6

 auto1=.~: rotr
 u
0 0 1 0 0 1 1 0 0
 auto1 u
0 0 1 1 0 1 0 1 0

]v=.0=i.8
1 0 0 0 0 0 0 0
 auto1 v
1 1 0 0 0 0 0 0

We can view several iterates of this automaton on the
input which has a single initial cell lit.

 auto1^:(i.8) v
1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

 2

The result is a finite version of the Sierpinski triangle.
We can easily increase the size of this experiment and
view the results.

 z=.auto1^:(i.128) 0=i.128
 pal=.255,:0 0 0
 (pal;z) writebmp8 'auto.bmp'
 viewbmp 'auto.bmp'

There we defined a black and white two color palette:
pal. We also used two utilities defined in the script
isigraph\bmp.js. The first is writebmp8 which is
used to create a windows bitmap file called auto.bmp.
That file is then viewed with viewbmp. The result is
shown in Figure 1. This makes the self-similarity of
this finite array more apparent.

 Next, the same construction is used on random
input.

 8 8{.z=.auto1^:(i.128) ?128#2
0 0 1 0 1 1 0 1
0 0 1 1 1 0 1 1
0 0 1 0 0 1 1 0
0 0 1 1 0 1 0 1
1 0 1 0 1 1 1 1
1 1 1 1 1 0 0 0
1 0 0 0 0 1 0 0
1 1 0 0 0 1 1 0

As before, this can be saved and viewed; the resulting
image is shown in Figure 2. The image has a random
feel but there are triangles appearing opening
southwest throughout. Also notice near the bottom of

the image there is some synchronization occurring.
 We next look at more general automata. In
particular, we will consider Boolean valued automata
that depend only on the cell to the left of the given cell,
the given cell, and the cell to the right of the given cell.
 Since this depends on just three boolean values there
are just eight possible configurations and each needs to
have a defined result. Here is a table representing the
definition of the automaton auto1.

 L C R Output
 0 0 0 0
 0 0 1 0
 0 1 0 1
 0 1 1 1
 1 0 0 1
 1 0 1 1
 1 1 0 0
 1 1 1 0

Since the part of the table beneath L, C and R will be
the same for each automaton, each automaton can be
associated with the column Output which specifies a
Boolean length 8 vector. Here 0 0 1 1 1 1 0 0.
Below, the function auto implements these general
automata. First, the input vector is extended at both
ends by one element to maintain the periodic boundary
conditions. The key idea is to identify which of the
rows of the table above applies to each group of three
cells. This is done with length 3 infixes.

 perext=.{: ,] , {.
 perext i.8

Figure 1. Rule 60 on a single input

Figu

Figure 3. Rule 149 on isolated input.

 3

7 0 1 2 3 4 5 6 7 0
 u
0 0 1 0 0 1 1 0 0
 3 <\ u
┌─────┬─────┬─────┬─────┬─────┬─────┬─────┐
│0 0 1│0 1 0│1 0 0│0 0 1│0 1 1│1 1 0│1 0 0│
└─────┴─────┴─────┴─────┴─────┴─────┴─────┘
 3 #.\u
1 2 4 1 3 6 4
 v=.0 0 1 1 1 1 0 0
 v {~ 3 #.\ perext u
0 0 1 1 0 1 0 1 0
 auto1 u
0 0 1 1 0 1 0 1 0
 auto=.{~ 3&(#.\)@perext
 v&auto^:(i.8) 0=i.8
1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

 It is bulky to list each automata with 8 binary
digits, so we can refer to the automata by reinterpreting
the 8 digit binary as a number. Thus, some output of
rules and their numbers are:

Output Rule Number
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 5
0 0 1 1 1 1 0 0 60

Thus, Figures 1 and 2 showed the results of Rule 60 on
isolated input and random input. The result of Rule
149 is shown in Figures 3 and 4 on isolated input and
random input. These figures show a behavior that
clearly contains considerable repetition yet there is still
a chaotic or jumbled feel to the figures.
 Trying out various rules on a random input
gives a feel for the qualitative variations possible. For
examples, try Rules 0, 1, 5, 26, 60, 74, 90, 135, 149,
179, 251 and 255. Of course, in Rule 0 everything
dies, in Rule 255, everything lives, but for certain
automata in between there is a real and wonderful
tension between those behaviors.
 One dimensional automata can be generalized
by considering larger neighborhoods and by allowing
more states. Both of these changes can add to the
richness of the observed behaviors. For example,
Figure 5 shows a 3 state automata on random input.

 Here there is an underlying pattern of white
surrounding gray triangles - much as was the case for
Rule 60, yet there are also black "growths" that persist
for a considerable number of iterations but eventually
die out.

The Game of Life
Finite automata in two dimensions can be defined in a
manner analogous to the one dimensional case. An
automaton contains a two dimensional array of states
and gives local rules for changing from one generation
to the next. Here we will consider the most famous 2-
dimensional automata that is often called Conway's
game of life [1,6]. This automaton uses 3 by 3
neighborhoods and binary states. A cell is alive at the
next stage if at the previous stage either:
 • the cell is alive and 2 or 3 of its eight
neighbors are alive.
 • the cell is dead and exactly 3 of its eight
neighbors are alive.

All other cells are dead at the next generation.
 We describe this game on a 3 by 3 array and
then organize work appropriately to apply this to each
cell in the array. We need to identify a function, which
we will call filt (in deference to its image

Figure 4. Rule 149 on random input.

Figure 5. A three state automata on random input

 4

processing analogue) that applies to 3 by 3
neighborhoods and which describes life. Consider the
matrix L below and some test neighborhoods.

 L N1 N2 N3
1 1 1 1 0 0 0 0 1 0 1 0
1 9 1 0 1 1 0 0 0 0 1 0
1 1 1 1 0 1 0 1 1 0 0 1

 +/,L*N1
13
 +/,L*N2
3
 +/,L*N3
11

Notice that by the rules for life, N1 should give 0
while N2 and N3 should give 1. That is, we only get
life if the product of L with the 3 by 3 neighborhood
has nonzero entries including a nine and 2 or 3 ones or
no nine and exactly 3 ones. Thus, the cell will be lit if
an 11, 12 or 3 results from the sum of the product of L
with the neighborhood. Hence, we can define filt
to test for that.

 filt=.e.&3 11 12@(+/)@,@(L&*)
 filt N1
0
 filt N2
1
 filt N3
1

We now need to decide on a method for distributing
the application of filt to all the 3 by 3
neighborhoods.

Cut or Infix
There are two methods that immediately suggest
themselves. One is to use cut, ;._3 to directly apply
filt to the 3 by 3 tessellations, the other is to apply
the length 3 infixes as we did in the one dimensional
case, but to apply the infixes along two axes. Below
are examples of those two strategies. First consider
creating the boxed 3 by 3 tessellations on a sample test
array t.

 t
0 0 0 1 0
1 1 1 0 0
0 0 0 1 0
0 1 0 0 1

0 0 0 0 0
 3 3 <;._3 t
┌─────┬─────┬─────┐
│0 0 0│0 0 1│0 1 0│
│1 1 1│1 1 0│1 0 0│
│0 0 0│0 0 1│0 1 0│
├─────┼─────┼─────┤
│1 1 1│1 1 0│1 0 0│
│0 0 0│0 0 1│0 1 0│
│0 1 0│1 0 0│0 0 1│
├─────┼─────┼─────┤
│0 0 0│0 0 1│0 1 0│
│0 1 0│1 0 0│0 0 1│
│0 0 0│0 0 0│0 0 0│
└─────┴─────┴─────┘
 3 <\"2 (|:"2) 3]\ t
┌─────┬─────┬─────┐
│0 1 0│0 1 0│0 1 0│
│0 1 0│0 1 0│1 0 1│
│0 1 0│1 0 1│0 0 0│
├─────┼─────┼─────┤
│1 0 0│1 0 1│1 0 0│
│1 0 1│1 0 0│0 1 0│
│1 0 0│0 1 0│0 0 1│
├─────┼─────┼─────┤
│0 0 0│0 1 0│0 0 0│
│0 1 0│0 0 0│1 0 0│
│0 0 0│1 0 0│0 1 0│
└─────┴─────┴─────┘

Clearly the code for using cut was shorter. Also, the
two applications of infix resulted in the transpose of the
3 by 3 neighborhoods - which can be fixed, but the
result of filt is the same on the transpose, so we can
save the time instead of introducing another transpose.

 The functions filter1 and filter2
given below implement the cut and infix based
strategies applying filt to each 3 by 3 neighborhood
instead of box.

 filter1=. 3 3&(filt;._3)

Figure 6. An initial configuration.

 5

 filter2=. 3&(filt\)@|:"2@(3&(]\))
 filter1 t
1 1 1
0 0 1
0 0 0
 filter2 t
1 1 1
0 0 1
0 0 0

The following table gives the time and space required
for applying these filters on sample n by n arrays.

┌────┬───────────────┬─────────────┐
│ │ filter1 │ filter2 │
│ n │ time space │ time space │
├────┼──────┬────────┼──────┬──────┤
│ 5 │ 0.32 │ 8344 │ 0.12 │ 2212 │
│ 10 │ 1.66 │ 45684 │ 0.75 │ 2812 │
│ 20 │ 8.34 │ 266248 │ 3.57 │ 4564 │
│ 40 │44.1 │1679530 │15.65 │12972 │
└────┴──────┴────────┴──────┴──────┘

Notice that filter2 is more efficient in time and
dramatically better in space. In fact, if we have as a
goal of applying these filters to arrays that are images,
we want to be able to deal with arrays that have several
hundred entries in each direction. Thus, filter1,
while very succinct, isn't yet practical for very large
arrays.
 In order to implement life, we need to apply
both the filter above and the periodic extension of
boundary conditions. Of course, we need to extend
those boundary conditions in two dimensions. Thus
we get:

 life=.filter2@perext@:(perext"1)
 life t
0 1 1 0 0
0 1 1 1 1
0 0 0 1 1
0 0 0 0 0

0 0 0 0 0

 Now we look at one step of life on a larger
array. Consider the initial configuration in Figure 6.
The result of applying life is shown in Figure 7. Notice
the stable 2 by 2 blocks on the left and right. These
static images don't give a very good feeling for the
dynamic behavior of life. Thus, we turn to showing
steps of life via an animation.

Animated Life
A nice experiment to try is to create a random array
and to iterate life on the array. This can done with the
following.

 a=.?32 32$2
 aa=.life^:(i.32) a
 animate2 aa

Where the function animate2 is defined by the
following.

animate2=.3 : 0

256 256 1 animate2 y.

:

pal=.255,:0 0 0

a=.y.

NB. open window for picture

wc=.'pc Animation;xywh 0 0 ',": 0.4*|.2{.x.

wc=.wc,';cc g isipicture;pas 0 0;pscale;'

wd wc,'pcloseok;'

k=.0 NB. frame counter

r=.{:x. NB. rep's each picture

n=.(#a)*r NB. total number of frames

while. k<n do.

 (pal;(<.k%r){a) writebmp8 'temp9999.bmp'

 wd 'ctext temp9999.bmp;pshow;'

 k=.>:k

end.

)

You can specify the window size and show each frame
more than once if the animation runs too quickly. For
example 512 512 2 animate2 aa will create a
window about 512 by 512 pixels and show each frame
twice.

Figure 7. One step of life.

 6

 The animation on random input shows features
that are called "blocks", "blinkers" and sometimes
"gliders" appear. See [1]. The configuration shown in
Figure 6 is quite special because it replicates itself
while generating a sequence of gliders. Figure 8 shows
the result of 120 iterations of life on the configuration
in Figure 6. Four gliders have been produced at this
point. Thus, the configuration in Figure 6 is known as
a "glider gun".

The Glider Gun in 3-D
Animating the glider gun is nicest way to view the
dynamics involved, but we can think of the iterates of a
2-dimensional automaton as forming a 3-dimensional
Boolean array. Then the cells that are lit can be plotted
in 3-D. The appendix gives a complete J script for
generating the glider gun, its iterates, finding the
indices of the lit positions in three space and writing
the positions of to a file in a format that can be utilized
by the POVRAY raytracing program [9]. The result is
shown in black and white in Figure 9.

 In this figure, time is shown in the upward
direction. The 2 by 2 blocks persisting from state to
state appear as guide rails but they do interfere with the
growth every 30 iterations. A glider is produced every
thirty iterations and they can be seen moving upward
and toward the left in the image.

Image Processing as an Automaton
We begin with a grayscale image (for simplicity and
printing) that associates with each pixel a graylevel
between 0 and 255. Black corresponds to 0 and white
to 255. Figure 10 shows a (contrast enhanced) digital
grayscale image of the author's family and two research
students. The first automaton we will consider is a
simple averaging scheme:

Consider the filter mask:

 M
0.1 0.1 0.1
0.1 0.2 0.1
0.1 0.1 0.1

Since the entries add to 1, multiplying a 3 by 3
neighborhood by M and summing the results will give
a weighted average of the values at the 9 positions.
Thus, if b is the array containing the 695 by 798
bitmap in Figure 10, then we can apply this scheme as
follows.

 round=.<.@(0.5&+)
 filt=.round@(+/)@,@(M&*)
 smooth=.3&(filt\)@|:"2@(3&([\))
 s=.smooth b

Figure 11 shows the bitmap s. Notice that the detail
is averaged - there is a bit less contrast and the image
looks somewhat blurred. How many iterates of
smooth would it take to result in a gray blur with no
objects visible?
 A kind of opposite processing goal is to
attempt to highlight edges rather than smooth things.
Simple differencing strategies can be used [7], but we
suggest here a method that is not direction dependent.
This is know as the Sobel edge detector which is a

nonlinear detector given by y+x 22 ∆∆ 1 where
x∆ 2 and y∆ 3 are given by the linear filters

corresponding to the matrices dx and dy shown
below.

Figure 8. The glider gun configuration after 120
iterations.

Figu

 7

 dx dy
1 0 _1 1 2 1
2 0 _2 0 0 0

1 0 _1 _1 _2 _1

This can be implemented as shown. We create two
linear filters DX and DY. These are put together into
filt that processes 3 by 3 neighborhoods. The result
sobel applies filt to all the 3 by 3 neighborhoods
- in fact, it is identical to filter2 used for life
and smooth.

 DX=.+/@,@(dx&*)
 DY=.+/@,@(dy&*)
 filt=.DX +&.*: DY
 sobel=.3&(filt\)@|:"2@(3&([\))
 e=.sobel b

Now the result of the Sobel edge detector on the
bitmap in Figure 10 is not an integer matrix. The
square root gives floating point results. We could
rescale and round to show the results - but we will take
advantage of a fairly simple utility, cile, that
classifies the entries into discrete groups by the order
of the elements by their size. Thus, 255 cile e
will be a matrix of entries from i.256 where the
smallest entries will be marked with a 0. Equal
numbers of 0s, 1s, ... 255s will appear. Finally, we can
produce our Sobel edge detected image.

 cile=.$@]$((/:@/:@]<.@*(% #)),)
 E=.255-255 cile e

Figure 12 shows the result of that edge detection with
colors reversed since we usually draw edges with
black. Compared to differencing schemes this does
quite well at identifying edges regardless of whether
the differences appear on a horizontal or vertical edge.

Organizing Polygons for Surface Plots
While it is clear that the kind of local processing we
have considered is useful for games, like life, and
image processing, we want to make the point that this
local processing really arises in many contexts. In
particular, we look at the problem of plotting a surface
described in 3-D on a computer screen. We will only
consider the part of this problem relevant to local rules;
for complete examples of surface plotting, see [8].
 The idea is that we want to plot a surface that
is described by some function of two variables

y)f(x, =z 4. We can create vectors x and y that
contain the points we want to sample and we want to
project the x-y-z coordinates of the vertices of
quadrilaterals to the screen. That is, suppose

Figure 10. A grayscale image.

Figure 11. The image with smoothing.

Figure 12. Image after Sobel edge detection.

 8

x=.y=.i.10, then, if we consider the neighboring x-
values 3 and 4 and the neighboring y-values 7 and 8,
this gives a 2 by 2 neighborhood of points in the x-y
plane. Catenating the z values, we would get a
quadrilateral with vertices:

 x y z
 3 7 f(3,7)
 3 8 f(3,8)
 4 8 f(4,8)
 4 7 f(4,7)

With a suitable projection, this quadrilateral can be
plotted on the computer screen. Since we want to
project these x-y-z triples, it is convenient to create an
array of points with shape (#x),(#y),3. Then 2
by 2 neighborhoods in this array will correspond to
quadrilaterals.

 x=.y=.i.4
 sin=.1&o.
 f=.sin@[+ sin@] NB. test func.
 $xyz=.x ([,] , f)"0/ y
4 4 3
 {.xyz NB. points with
x=0
0 0 0
0 1 0.841471
0 2 0.9092974
0 3 0.14112
 filt=.{. , |.@{:
 q=.(2&(filt\)"3)@(1
3&|:)@(2&(]\))

The function filt takes a 2 by 2 by 3 array and turns
it into the desired quadrilateral. The function q
distributes filt over all 2 by 2 neighborhoods.
Notice we don't need to worry about the transposes
since we don't care whether the quadrilaterals are listed
clockwise or counterclockwise. After projection to
screen coordinates, we get an image of the surface.
Figure 13 shows this surface on a 16 by 16 mesh.

 <"2 q xyz
┌─────────────┬─────────────┬─────────────┐
│0 0 0 │0 1 0.841471│0 2 0.9092974│
│1 0 0.841471 │1 1 1.68294│1 2 1.75077│
│1 1 1.68294 │1 2 1.75077│1 3 0.982591│
│0 1 0.841471 │0 2 0.9092974│0 3 0.14112│
├─────────────┼─────────────┼─────────────┤
│1 0 0.841471│1 1 1.68294 │1 2 1.75077 │
│2 0 0.9092974│2 1 1.75077 │2 2 1.81859 │
│2 1 1.75077│2 2 1.81859 │2 3 1.05042 │

│1 1 1.68294│1 2 1.75077 │1 3 0.982591 │
├─────────────┼─────────────┼─────────────┤
│2 0 0.9092974│2 1 1.75077 │2 2 1.81859 │
│3 0 0.14112│3 1 0.982591 │3 2 1.05042 │
│3 1 0.982591│3 2 1.05042 │3 3 0.28224 │
│2 1 1.75077│2 2 1.81859 │2 3 1.05042 │
└─────────────┴─────────────┴─────────────┘

References

[1]E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning

Ways for Your Mathematical Plays, Academic
Press, New York, 1982.

[2]C. Burke, J, User Manual, Iverson Software Inc.,
Toronto, 1994.

[3]K. E. Iverson, J, Introduction and Dictionary, Iverson
Software Inc., Toronto, Canada, 1994.

[4]Y. Kayama, M. Tabuse, H. Nishimura, and T. Horiguchi,
Characteristic Parameters and Classification of
One-dimensional Cellular Automata, Chaos,
Solitons & Fractals, 3 6 (1993), 651-665.

[5]C. Linton, From Pentagons and Plasma Clouds to Cliff
Dwellers (Part 1) Gimme Arrays! 1 6 (1994), 1,7-
10, (Part II) 1 7 (1994), 1,7-8,16.

[6]D. Peak, M. Frame, Chaos Under Control, Freeman, New
York, 1994.

[7]C. A. Reiter, Fractals RYIJ, Vector, [add ref] (1994).
[8]C. A. Reiter, Fractals, Visualization and J, (expected

1995).
[9]T. Wegner, Image Lab, Waite Group Press, Mill Valley,

CA, 1992.
[10]S. Wolfram, Theory and Applications of Cellular

Automata, World Scientific, Singapore, 1986.

Figure 13. A surface created from quadrilaterals.

 9

Appendix. J Script for Creating the Glider Gun in 3D

NB. Initial configuration for Glider Gun

GG=.40 _60{.".;._2] 0 : 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1
0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
)

NB. Iterates of the Glider Gun - uses life defined in text
GGG=.life^:(i.121) GG

NB. Indices of lit positions
i=.($GGG)#:(,GGG)#i.*/$GGG

NB. Output Utilities
outfile=.'gg3d.pov' NB. Name output file
write=.[1!:2 <@]
append=.[1!:3 <@]
eol=.13 10{a. NB. DOS end of line marker
'' write outfile NB. Create empty output file
output=.append&outfile@,@(,&eol"1)

NB. Create Povray header
povheader=.0 : 0
camera{
 location <200,200,30>
 direction <0,0,1.6>
 up <0,1,0>
 right <1,0,0>
 look_at<20,75,30>}
#declare white=color rgb<1,1,1>
object{light_source{<200,200,200> color white}}
object{light_source{<-10,200,200> color white}}
object{light_source{<200,200,-10> color white}}
background {color rgb<1,1,1>}
)
NB. end of povray header

output povheader

NB. formatting utilities
chsw=.3 : (': ',:'(a.i.y.){({:x.) (a.i. {.x.)}a.') NB. character switch
fmtvec=.,&'>'@('<'&,)@((2 2$' _,-')&chsw)@": NB. vector format '_' to '-' and
' ' to ','
fmtbox=. 3 : 0
z=.1 0 2{y.

 10

z=.'object{box{',(fmtvec z),',',(fmtvec 1+z)
z=.z,'}pigment{rgb<1,0,1>}}'
)

NB. Output the formatted lit positions
#output fmtbox"1 i

Once the J script has been run, the raytracing program POVRAY can be used to change the resulting file
gg3d.pov into an image. For more information on POVRAY, see [5,8,9]. POVRAY is available by
anonymous ftp from alfred.ccs.carleton.ca.

