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Image processing includes techniques that are used 

to correct defects in images and to enhance the 
visibility of features of interest. In this note we will 
look at several different methods for smoothing 
images in order to remove specks of dust and artifacts 
from scanning. In future notes we plan to discuss other 
techniques for enhancing images in the spatial domain 
including the removal of orientation and lighting 
defects. Previous discussions [6,7] considered the 
removal of motion blur in frequency domain using 
Fast Fourier Transforms.  

Figure 1 shows a grayscale image of a snowflake 
and a zoom into the image that shows individual 
pixels. The image was scanned from Bentley and 
Humphreys' classic book of snowflake images [1]. We 
have recently used images from that book as figures in 
papers on snowflake growth [2,3]. The zoom into the 
image makes dust and undesirable artifacts of scanning 
the half-toned image apparent. Notice the textured, 
almost periodic gray points appearing in what should 
be white regions. We aim in this note to remove or 
diminish the appearance of the dust and texture while 
maintaining a clear image of the snowflake.  

When correcting defects in an image, there is a 
presumption that the features of interest in the image 
are somehow different from the defects to be 
diminished; otherwise, features can not be 
distinguished from defects. We often assume that the 
features of interest are larger than the defects; thus, the 
image can be corrected by using suitable averages. We 
will also look at rank based methods including an ad 
hoc technique we used for creating black and white 
images for [3]. For those filters the presumptions are 
somewhat different. 

While we will consider several methods in this 
note, there are many techniques for removing defects 
of this type, each with its own merits. Excellent 
references to digital image processing include Russ [9] 
and Gonzalez and Woods [5]. Packages implementing 
images processing techniques include commercial 
packages, such as Photoshoptm and gnu software, such 
as GIMP[4]. A script giving the J definitions used in 
this note, and the sample image, is available from [8]. 

Multiplicative Filters 
The simplest filters replace each pixel by an 

average of the nearby pixels. A three by three matrix 
of ones is often used to represent the average obtained 

 
Figure 1. Scan and Zoom of a Snowflake Picture 
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from averaging a pixel value with the values of its 
nearest neighbors.  
 

1 1 1 
1 1 1 
1 1 1 

 

Often one wants the pixels nearest the center to be 
weighed more heavily than the distant pixels. These 
non-uniform averages can be represented by a matrix 
of the weights. It is understood that the pixel being 
updated is replaced by a sum of the nearby pixel 
values times the weights shown in the matrix and 
divided by the sum of the coefficients in the matrix. 
The pixel itself corresponds to the central entry in the 
matrix, such as the 4 in the weights below.  
 

1 2 1 
2 4 2 
1 2 1 

 

A systematic way to choose the weights is to use a 
normal distribution (also called a Gaussian 
distribution) with a specified standard deviation and 
width of the sample. By making a multiplication table 
and rescaling so the entries sum to 1, we get an 
approximation to the binormal distribution function. 
This can be implemented as follows where the left 
argument is the (1-dimensional) standard deviation 
and the right argument is the number of sample points 
(pixels) to be used in each direction. 

  
   gauss=:1 : 0 
[:(%+/)^@-@*:@-:@(%&m.)@:(i.--:@<:) 
) 
    
   gauss2d=:1 : '[: */~ m. gauss' 
 
   1 gauss 5 
0.11170 0.23648 0.30364 0.23648 0.11170 
 
   1 gauss2d 5 
0.01248 0.02642 0.03392 0.02642 0.01248 
0.02642 0.05592 0.07180 0.05592 0.02642 
0.03392 0.07180 0.09220 0.07180 0.03392 
0.02642 0.05592 0.07180 0.05592 0.02642 
0.01248 0.02642 0.03392 0.02642 0.01248 
 

We can apply the binormal weights on all 5 by 5 
neighborhoods (using the adverb MFilt2d) or apply 
a horizontal and vertical pass of the 1 dimensional 

filter in blocks of size 5 (using the adverb 
MFilt1d2), obtaining the same result in both cases.  

 
   round=:<.@(0.5&+) 
 
   MFilt2d=: 1 : 0 
[: round ($ m.)"_ +/@,@:(m.&*);._3 ] 
) 
 
   MFilt1d2=: 1 : 0 
[: round (# m.)"_ +/@:(m.&*)\"1 (# m.)"_ 
+/@:(m.&*)\ ]  NB. one line 
) 
 
   require 'addons\image3\image3.ijs' 
 
   $b=: {."1 read_image 'snowflake.png' 
700 780 
 
   time=:6!:2 
 
   time 'm=:(2 gauss 25) MFilt1d2 b' 
3.36238 
 
   time 'n=:(2 gauss2d 25) MFilt2d b' 
11.3965 
 
   m-:n 
1 
 

In the above experiment, the array b is a matrix 
giving the gray levels of the image as integers between 
0 and 255. We see that using the two passes of width 
25 is significantly faster than single filter of size 25 by 
25. There is little difference between these two 
implementations for small neighborhood size, but it is 
clearly advantageous for large neighborhood sizes to 
separate the filter into two 1-dimensional passes.  

Figure 2 shows the result of applying a Gaussian 
filter with standard deviation 2 on 9 by 9 
neighborhoods which can be created with the 
following.  
 
   f2=:(2 gauss 9) MFilt1d2 b 
 

Notice the dust and texture are almost gone, but 
there is considerable blurring. Using smaller 
neighborhoods gives less blurring, but is less effective 
at removing the defects. One can adjust both the 
number of pixels used and the standard deviation in 
order to attempt to remove the defects with a minimum 
amount of blurring, but the technique has a 
fundamental blurring effect. Interestingly, in other 
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applications the blurring produced by this filter is a 
valuable feature. For example, when portions of an 
image have different lighting, averages over very wide 
neighborhoods can establish average lighting levels for 
that portion of the image which then can be used to 
balance the perceived illumination throughout the 
image. Nonetheless, in our application, blurring, 
especially of the snowflake edges, is not desired.  

The Savitsky-Golay filter is another multiplicative 
filter. For this filter, the weights are chosen so that a 
least square fit of a polynomial to the data is used to 
interpolate the new pixel value. These weights may 
easily be computed in J as shown below. The left 
argument is the degree of the polynomial fit (default 4) 
and the right argument is the size of the neighborhood. 

 
   sav_gol=: 4&$: : ([: {.@%. i:@-:@<:@] 
^/ i.@>:@[)  NB. one line 
 
   sav_gol 7 
0.021645 _0.12987 0.324675 0.5671 
0.324675 _0.12987 0.021645 

 
Notice that the Savisky-Golay filter has negative 

coefficients for high enough degrees and hence could 
lead to out of range grayscales. Nonetheless, it is an 
averaging technique that may be desirable because it 
does not blur edges as the Gaussian filter does. In fact, 
the edges are somewhat enhanced. Figure 3 shows the 
result of applying a Savitsky-Golay filter using a least 

 
Figure 3. Application of Savitsky-Golay Filter 
 

 
Figure 2. Application of a Gaussian Filter 
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square quadratic fit to 9 pixel values nearest each 
point. Since this is a multiplicative filter, it can be 
applied either in a 2-dimensional pass or in two 1-
dimensional passes. For example, we would obtain the 
grayscales in the figure, f3, using the following, 
where clamp forces the values to be legitimate 
grayscales values between 0 and 255. 

 
   clamp=:0&>.@(255&<.) 
 
   f3=:clamp (2 sav_gol 9)MFilt1d2 b 

 
In Figure 3, notice that the dust and texture are 

diminished, but that the edges are much clearer than 
for the Gaussian filter—however, some blurring is 
apparent. 

Rank Order Based Filters 
Another type of local filter is based upon taking 

median (or some other rank order) values from a 
neighborhood of each pixel. The idea is that outlying 
values will be discarded; if most of the pixels near a 
certain pixel have a certain value, then that is the value 
that will be used. Multiplicative filters tend to 
introduce many more intermediate gray pixels as they 
blur the image, but rank based techniques use actual 
values appearing in the image. These rank based filters 
are generally computationally involved since each 2-
dimensional neighborhood needs to be ordered. We 
implement this below with the adverb medianf whose 
left argument gives the neighborhood size. Note in the 
example below, each 3 by 3 neighborhood is replaced 
by its median element. 
 
   medianf=: 1 : 0 
(2#m.)"_ (<.-:*:m.)&{@:(/:~)@,;._3 ] 
) 
 
  ]b=.?.2+i.5 _5 
 0  3  1  1  0 
 0  6  6  7  2 
 8 12  0  0  6 
14  0  7  1  7 
17 14 22 19 11 
 
   3 medianf b 
 3 3 1 
 6 6 6 

12 7 7 
 
   f4=:3 medianf b 
 

Figure 4 shows the result of the median filter on 3 
by 3 neighborhoods. Notice the edges are relatively 
clear and the texture and dust are greatly diminished. 

Many variations on the median filter can be 
considered. A slightly non-intuitive rank filter known 
as the hybrid median technique uses 5 by 5 
neighborhoods and computes three quanities: the 
median of the 9 pixels forming the two diagonals in 
the neighborhood, the median of the 9 pixels in the 
same row and column as the center, and the central 
pixel value. Then the median of those three values is 
computed and utilized. This is implemented below and 
the result is shown in Figure 5. Here the edges are also 
good, but some of the defects remain visible. They can 
be essentially removed by a second application of the 
hybrid median method, but that introduces more 
blurring than the ordinary median filter.  
 
   hmedianf=:3 : 0 
med3=. 1&{@:(/:~) 
med9=. 4&{@:(/:~) 
x=.0 4 6 8 12 16 18 20 24&{ 
p=.2 7 10 11 12 13 14 17 22&{ 
5 5 med3@:(med9@:x,med9@:p,12&{)@:,;._3 y. 
) 
 
   f5=:hmedianf b 
 

As we mentioned at the outset, our study of these 
filters was motivated by our desire to correct defects in 
scanned images. We actually corrected the images that 
we used by running a filter and then selecting a 
threshold to distinguish black from white. On each 2 
by 2 neighborhood we took the item with position 2 in 
the ordered list of the 4 entries in the neighborhood 
and tested whether that value exceeded 180. If so, the 
pixel was white; otherwise, it was black. We designed 
this filter in an ad hoc way after looking at the values 
appearing in the textured defective portion of one 
image. Since then, we have learned that rank order 
filters in general, and median filters in particular, are 
valuable, known tools. Figure 6 shows the application 
of our ad hoc "snowflake cleaning" filter. 
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   sf_filt=:3 : 0 
255*180<2 2((2&{)@:(/:~)@:,);._3 y. 
) 
 
   f6=:sf_filt b 
 

Notice the image in Figure 6 is different from the 
others due to the threshold used to create the black and 
white image. The edges are crisp, but some of the dust 
remains visible and some of the interior detail may 
have been lost.  

Maximum Likelihood Filter 
The maximum likelihood filter attempts to take 

advantage of the idea that an image has a certain 
"correct" value in each neighborhood and the image 
may be viewed as a corrupted version of the true 
image. By identifying values which deviate little from 
neighbors, we have found estimates for the correct 
values, and avoided outlying values arising from the 
corruption.  

In particular, consider the 5 by 5 neighborhoods 
surrounding each pixel. Each 5 by 5 neighborhood 
contains nine 3 by 3 sub-neighborhoods. Compute the 
sum of the square of the deviations of the entries in the 
3 by 3 neighborhoods from their central value, and 

 
Figure 5. The Hybrid-Median Filter 
 

 
Figure 4. A Median Filter 
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select the central value that corresponds to the minimal 
sum. This means that each pixel is replaced either by 
its own value, or by the value of an immediate 
neighbor. When a 3 by 3 neighborhood has small 
deviation, its central value is likely to be chosen for 
each of the 5 by 5 neighborhoods for which it is a sub-
neighborhood. Thus, there should be a tendency for 
values to clump.  

 
   maxlike=:3 : 0 
ic=.,0 5 10+/6 7 8 
i9=.,/3 3 ,;._3 i.5 5 
lfilt=.({~ [: {&ic@:{.@:/: [:(+/)@:*:"1 
i9&{ - ic&{)@:,  NB. one line 
5 5 lfilt;._3 y. 

) 
 
   f7=:maxlike b 

 
Figure 7 shows the result of the maximal 

likelihood filter. Notice the edges are relatively clear 
and the texture and dust are greatly diminished, but 
there is noticeable posterization; that is, clumps of 
similar values appear. 

Conclusion 
 We have seen that image filters are easy to 

implement on grayscale images in J. Multiplicative 
filters may be implemented efficiently using two 1-
dimensional passes. The Savitsky-Golay filter is a 

 
Figure 6. A Rank Order Filter and Threshold 
 

 
Figure 7. The Maximum Likelihood Filter 
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multiplicative filter that does not blur as much as the 
more classical versions. Median and other rank based 
techniques are more computationally involved, but can 
often be used to remove defects with little blurring. 
While none of the techniques is suitable for all 
purposes, these filters are valuable tools for removing 
defects from images.  

Color Images 
Correcting defects in a color image is significantly 

more difficult than correcting a grayscale image. That 
is because color images have three color dimensions 
and most of the filters that we have discussed apply 
only on one color dimension, which risks 
"desynchronizing" the changes. That is, if the image is 
a typical "true color" computer image, its colors are 
given as RGB triples. We can apply filters to each of 
the red, green and blue color planes. However, 
different behavior would usually occur in different 
planes so that color shifts, and other distortions, are a 
serious problem.  

It is often better to change to an alternate color 
space and apply the filters only on the components that 
require correction. For example, one could change to 
HSI (hue, saturation and intensity) color space and 
apply a filter on the intensity plane, leaving color and 
saturation unchanged. We plan to discuss color spaces 
in a future column.  At that point, we can discuss 
correcting defects in color images more specifically. 
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