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With Mathematica  
and J:  

Gasoline Inventory 
Simulation 

 

Cliff Reiter 
 
Computational exercises and demonstrations 

appear frequently in the classes that I teach at 
Lafayette College. The software that I use for in-class 
demonstrations is usually Mathematica [4] or J [3]. I 
focus on one language or the other throughout the 
course when I expect the students to develop the 
ability to make substantial explorations and do 
independent experimentation. There is an ongoing 
expectation at Lafayette that Mathematica be used in 
Calculus Classes [2]; I also use Mathematica for my 
Numerical Analysis and Techniques of Math 
Modeling classes. I use J for teaching Number Theory 
and Linear Algebra and it is central to my 
mathematical visualization course that follows the text 
[6]. However, I always have interest in how the 
explorations that I do in one language would be done 
in the other.  

I recently asked my math modeling students to 
explore an inventory simulation. While this is a toy 
problem, it involves a substantial data set, the need to 
develop a Monte Carlo Simulation of demands, and 
exploration of the behaviors that appear with various 
choices of parameters. After the exercise, one student 
mentioned that her family runs a fuel oil business and 
they have software to determine likely demand and 
they input data similar to what we used in the 
simulation. Her family was surprised and pleased to 
know she was learning something useful in college.  

That encouraged me to share the exercise here. In 
particular, in this note we compare the Mathematica 
template solution for this simulation presented in class 
with an analogous effort in J. 

 

Simulation Overview  
The inventory demand simulation from our 

Techniques of Math Modeling text [1] is premised on 
having data for the number of gallons of gasoline sold 

by a station for a thousand weeks. The pattern involves 
demands of between 1000 and 2000 gallons per week 
broken into categories of size 100, with the most 
frequently occurring categories being toward the 
middle. We understand that there may be various costs 
associated with the delivery and storage of the 
gasoline and we desire not to run out of gasoline or 
exceed the station's storage capacity. The idea is to use 
the data to generate a realistic Monte Carlo simulation 
of demand, so that we might experiment with delivery 
strategies.  

 

Random Reals, Linear Interpolation, 
Monte Carlo Simulation: 
Mathematica 

We can easily generate random "real" numbers 
between 0 and 1. Timing the creation of a million 
random numbers of this type (ten times) shows that 
these sizable samples can typically be generated in 
about 0.2 seconds.  

 

In[1]:= Random@D
Out[1]= 0.874221

In[2]:= Table@Random@D, 85<D
Out[2]= 80.292129, 0.728089, 0.342794, 0.961358, 0.307707<
In[3]:= t= Table@Timing@x= Table@Random@D, 81000000<D;D,810<D

Out[3]=
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0.22Second Null
0.21Second Null
0.211Second Null
0.2Second Null
0.22Second Null
0.211Second Null
0.21Second Null
0.21Second Null
0.21Second Null
0.211Second Null

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
In[4]:= Mean@First@Transpose@tDDD

Out[4]= 0.2113Second  
 

In order to simulate demands so that they appear in the 
categories with some specified frequencies, we first 
consider a small data set. Suppose that we want to be 
able to generate a random number from the intervals 
[0,100), [100,200), and [200,300) with frequencies 0.2, 
0.5 and 0.3 respectively. That is, we assume that 20% 
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of the time the demand will be between 0 and 100. See 
Table I below. We then compute the cumulative sums 
as follows. 
 

Demand Frequency Cumulative 
0 ≤  x < 100 0.2 0.2 

100 ≤  x < 200 0.5 0.7 
200 ≤  x < 300 0.3 1.0 
Table I. Simplified Demand and Cumulative Frequency 

 

In[5]:= <<Statistics̀ DataManipulatioǹ

In[6]:= x= 80, 100, 200, 300<
Out[6]= 80, 100, 200, 300<
In[7]:= y= 80, 0.2, 0.5, 0.3<

Out[7]= 80, 0.2, 0.5, 0.3<
In[8]:= cy= CumulativeSums@yD

Out[8]= 80, 0.2, 0.7, 1.<  
 

We select a random real from [0,1) and use that to 
select a random demand. For example, whenever the 
random real is between 0.7 and 1 we recognize that as 
from the third interval, which occurs with the 
appropriate frequency 0.3 and linearly interpolate in 
order to simulate a specific demand. Thus, to produce 
a random demand, we produce a random real and then 
apply the piecewise linear function through the points 
given by cumulative frequencies (with a leading 0 pre-
pended) paired with the demand interval endpoints.  

The Mathematica function Interpolation 
with an appropriate option can be used to create the 
piecewise linear interpolating function. It is the inverse 
to the cumulative frequency function and given a 
number from [0,1) results in the simulated demand. 

 

In[9]:= f= Interpolation@Transpose@8cy, x<D,
InterpolationOrder→ 1D

Out[9]= InterpolatingFunction@H 0. 1. L, <>D
In[10]:= f@0D

Out[10]= 0.

In[11]:= f@0.2D
Out[11]= 100.

In[12]:= f@0.6D
Out[12]= 180.  

The random demand function can then be defined and 
the fact that it produces the expected frequencies of 
numbers in the specified categories is illustrated as 
follows. 

 

In[13]:= randd@n_D:= Table@f@Random@DD, 8n<D
In[14]:= randd@2D

Out[14]= 8191.488, 260.732<
In[15]:= Timing@s= randd@1000000D;D

Out[15]= 84.667Second, Null<
In[16]:= Frequencies@Floor@sê100DD

Out[16]=
ikjjjjjj 199693 0

500428 1
299879 2

y{zzzzzz  
 

Notice that creating a million random numbers with 
the desired distribution took less than 5 seconds. 
 

Random Reals, Linear Interpolation, 
Monte Carlo Simulation: J 

We can likewise easily generate random "real" 
numbers between 0 and 1 in J. Timing the creation of a 
million random numbers of this type (ten times) shows 
that a million such numbers can typically be generated 
in about 0.06 seconds, more than 3 times faster than 
Mathematica.  

 
   ? 0 
0.971379 
    
   ? 5 $ 0 
0.0466292 0.330109 0.01346 0.220004 
0.600044 
    
   timing=:6!:2 
    
   10 timing 'x=: 1000000 ?@:$ 0' 
0.0559868 

 
Creating the small data set, including cumulative 

sums is straightforward; we use plus insert infixes for 
the cumulative sum. 
 
   x=:0 100 200 300 
    
   y=:0 0.2 0.5 0.3 
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   ]cy=:+/\y 
0 0.2 0.7 1 

 
Creating the piecewise linear function that fits the 

cy and x data can be done in various ways. One is to 
use the piecewise linear function from raster5.ijs, a 
script associated with the old (edition 2) of scripts 
associated with Fractals, Visualization and J [5]. 
Another, inspired by the cubic spline functions in the J 
script spline.ijs, is discussed below. We define the 
function xy_to_p that takes lists of x and y 
coordinates of the points for which we want the 
piecewise linear function as its arguments (x is 
assumed to be ordered). It produces the list of 
coefficients of the linear functions on the intervening 
subintervals. The adverb lin_spline creates an 
efficient function for evaluating that piecewise linear 
function.  

 
   xy_to_p=:4 : 0 
(2 ]\ y) %."1 2]2 (1&,.)\ x 
) 

    
   lin_spline=:1 : 0 
'X Y'=.m 
p=.X xy_to_p Y 
{&p@:(0>.<:)@:(+/)@:}:@:(X&(<:/))p. ] 
) 
    
   f=:(cy;x) lin_spline 
    
   f 0 0.1 0.2 0.6 0.7 1 1.1 
0 50 100 180 200 300 333.333 

 
Note that we extended the domain of the piecewise 

linear function so that it is extended beyond the 
endpoints of its domain using the linear functions on 
the corresponding ends. Now we define the random 
demand function and verify that it produces values in 
the expected intervals with the expected frequencies. 

 
   randd=: f@:?@:$&0 
 
   randd 2 
206.029 136.503 

    
   10 timing 's=:randd 1000000' 
0.583247 
    

   /:~ (({.,#)/.~)<.s%100 
0 199767 
1 500216 
2 300017 

 

Notice that the expected frequencies appear and 
that J produces the random demands almost ten times 
faster than in Mathematica. 
 

The Text's Problem 
The actual class illustration that we used was to create 
a simulated demand function randd for the data in 
Table II along with a function that runs day-by-day 
simulations of the daily demand. It also keeps track of 
some other information along the way.  
 

Demand Frequency Cumulative 
1000 ≤  x < 1100 0.01 0.01 
1100 ≤  x < 1200 0.02 0.03 
1200 ≤  x < 1300 0.05 0.08 
1300 ≤  x < 1400 0.12 0.20 
1400 ≤  x < 1500 0.20 0.40 
1500 ≤  x < 1600 0.27 0.67 
1600 ≤  x < 1700 0.18 0.85 
1700 ≤  x < 1800 0.08 0.93 
1800 ≤  x < 1900 0.04 0.97 
1900 ≤  x < 2000 0.03 1.00 

Table II. Demand and Cumulative Frequencies 
 

We will define a function MCIS that does a Monte 
Carlo Inventory Simulation over a specified period. 
We assume that a certain quantity Q of gasoline is 
delivered with T days between deliveries. The 
simulation begins with day zero and ends with day N; 
At the start, the tanks are empty and a delivery is 
made. We also assume there is a delivery cost d per 
delivery and storage costs s per gallon per day. 
Internal to the function MCIS, n denotes the day, c the 
cumulative cost, In the current inventory level and z 
gives the accumulated values of n, In and c.  

 

Monte Carlos Inventory Simulation: 
Mathematica 

First we obtain the text data and demand function. 
Then we implement and apply the simulation using 
deliveries of 10,000 gallons every week with delivery 
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costs of $500 per delivery, storage costs of one-fifth of 
a penny per gallon per day. The result for the 
simulation to day 10 is shown.  

 

In[17]:= x= Range@1000, 2000, 100D
Out[17]= 81000, 1100, 1200, 1300, 1400,

1500, 1600, 1700, 1800, 1900, 2000<
In[18]:= y= 80, 0.01, 0.02, 0.05, 0.12, 0.2, 0.27,

0.18, 0.08, 0.04, 0.03<
Out[18]= 80, 0.01, 0.02, 0.05, 0.12, 0.2, 0.27, 0.18, 0.08, 0.04, 0.03<
In[19]:= cy= CumulativeSums@yD

Out[19]= 80, 0.01, 0.03, 0.08, 0.2, 0.4, 0.67, 0.85, 0.93, 0.97, 1.<
In[20]:= f= Interpolation@

Transpose@8CumulativeSums@yD, x<D,
InterpolationOrder→ 1D

Out[20]= InterpolatingFunction@H 0. 1. L, <>D
In[21]:= randd@n_D:= Table@f@Random@DD, 8n<D
In[22]:= MCIS@Q_, T_, d_, s_, N_D :=

Block@8In= 0, c= 0, n= 0, z = 8<<,
While@n<= N,
c= c+In∗s;
If@0== Mod@n, TD, In= In+Q;c =c+dD;
In= In−f@Random@DD;
z= Join@z, 88n, In, c<<D;
n= n+1D;

zD
In[23]:= MCIS@10000, 7, 500, 0.002, 10D

Out[23]=

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 8592.07 500
1 7158.11 517.184
2 5670.84 531.5
3 4401.39 542.842
4 2804.81 551.645
5 1258.9 557.254
6 -303.861 559.772
7 8122.42 1059.16
8 6437.06 1075.41
9 4827.97 1088.28
10 3263.11 1097.94

y

{
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Notice that at day 6 the inventory became negative 
and at that point the data becomes invalid since, for 
example, storage cost can not be negative. We are 
primarily interested in designing a delivery strategy 
with reduced cost while minimizing the likelihood of 
having inventory below 0 or above 20,000 (the 

capacity of our system). Thus, we define a function to 
give some summaries over longer runs. We decide that 
we will be pleased with a strategy if when we run the 
plan for a month, there is less than a 5% likelihood of 
falling outside the desired inventory range. Below we 
use the summary function on 31 day simulations with 
the minimum inventory, maximum inventory, last 
inventory and total cost given for each run. 

 

In[25]:= MCISsum@Q_, T_, d_, s_, N_D :=
Block@8In, c, n<,8n, In, c< = Transpose@MCIS@Q, T, d, s, NDD;8Min@@In, Max@@In, Last@InD, Last@cD<D

In[26]:= Table@MCISsum@10000, 6, 500, 0.002, 30D, 83<D
Out[26]=

ikjjjjjj 615.279 12058.1 12058.1 3373.2
331.183 12941.4 12941.4 3361.01
668.671 11967.6 11967.6 3340.73

y{zzzzzz   
 

Notice that there is a delivery on the last day, and 
that the maximum inventory is the same. Thus, it 
appears there is a mild accumulation of gasoline. Thus, 
the class was presented with a reasonable but not 
refined strategy for deliveries. They were asked to 
design a strategy that reduced costs further given the 
availability of larger tanker trucks. Most students had 
no trouble finding cost reductions, and staying within 
the other constraints. A couple students were able to 
give really nice descriptions leading to compelling 
choices.  

The class then explored a similar problem 
involving the number of miles run by a runner during a 
week, based upon tabulated daily data. They were 
expected use the same tools, with far less specific 
guidance. 

 

Monte Carlo Inventory Simulation: J 
We update our simulated demand function and 

translate the Mathematica Monte Carlo Simulation 
almost directly into J. 

 
   x=:1000+100*i.11 
    
   y=:0 0.01 0.02 0.05 0.12 0.2 0.27 
0.18 0.08 0.04 0.03 
    
   ]cy=:+/\y 
0 0.01 0.03 0.08 0.2 0.4 0.67 0.85 
0.93 0.97 1 
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   f=:(cy;x) lin_spline 
    
   randd=: f@:?@:$&0 
    
   MCIS=: 3 : 0 
'Q T d s N'=.y 
c=.n=.In=.0 
z=.i.0 3 
while. n<: N do. 
  c=.c+In*s 
  if. 0=T|n do.  
    In=.In+Q 
    c=.c+d 
  end. 
  In=.In-randd 1 
  z=.z,n,In,c 
  n=.n+1 
end. 
z 
) 
 
   MCIS 10000 7 500 0.002 10  
 0  8095.4     500 
 1 6862.15 516.191 
 2 5397.09 529.915 
 3 4279.79 540.709 
 4 2869.79 549.269 
 5  1295.7 555.008 
 6  _142.2   557.6 
 7 7973.12 1057.32 
 8 6246.84 1073.26 
 9 4643.85 1085.76 
10 3063.55 1095.04 

 
Notice that we again see that we run out of 

gasoline on day 6.  We use tacit functions to create the 
summary information. The verb Ip gives the 
inventory information while Lp gives the information 
from the last part. 
    
   Ip=:(<./,>./)@:(1&{)@:|: 
 
   Lp=:_2&{.@{: 
 
   MCISsum=: (Ip,Lp)@:MCIS"1 
    
   MCISsum 3#,:10000 6 500 0.002 30  
1355.22 13483.7 13483.7 3411.46 
451.477 10811.3 10811.3 3323.94 
760.336 12548.4 12548.4 3351.77 

 
Furthermore, we implement a loop-less version of 

MCIS and create the corresponding summary function 
easily enough, and get identical results so long as we 
reset the random seed appropriately. 

    
   MCISa=:3 : 0 
'Q T d s N'=.y 
dd=.0=T|i.N+1 
In=.+/\(Q*dd)-randd N+1 
c=.+/\(d*dd)+s*0,}:In 
(i.N+1),.In,.c 
) 
    
   9!:1]7^5 
 
   MCISa 10000 7 500 0.002 10  
 0  8095.4     500 
 1 6862.15 516.191 
 2 5397.09 529.915 
 3 4279.79 540.709 
 4 2869.79 549.269 
 5  1295.7 555.008 
 6  _142.2   557.6 
 7 7973.12 1057.32 
 8 6246.84 1073.26 
 9 4643.85 1085.76 
10 3063.55 1095.04 
    
   MCISsuma=: (Ip,Lp)@:MCISa"1 
 

Timing tests of 100 repetitions of 31 day 
simulations using MCIS take about 0.12 seconds total 
in both Mathematica and J, making the running time 
fairly insignificant. However, the loop-less J version 
(MCISsuma) is more than 10 times faster. We did not 
try a loop-less implementation of the Mathematica 
function, but we expect it would also be more efficient 
than the loopy version.  

 

Postscript 
We see that demand simulations can be readily 

implemented in Mathematica and J. These run quickly, 
but the J implementations were usually faster on core 
number crunching and its loop-less version ran very 
quickly. I note that both J and Mathematica would 
benefit by better help indices. Finding whether there 
are suitable linear splines does not seem to amount to 
simply typing "linear spline" or "piecewise linear" into 
the help search menu for either language. Readers may 
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want to glance back at the looped Mathematica and J 
implementations of MCIS. The flow of the J 
implementation is easier for my eye to follow. Indeed, 
I do not hesitate to use explicit, loopy functions when 
sharing J models with classes. Students are often more 
comfortable modifying such functions than tacit ones. 
However, regardless of the language, when efficiency 
becomes a driving issue, utilizing array arithmetic 
should be considered and that was easy to implement 
in the simulation that we did in J.   
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