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Abstract 
The Binet formula gives a natural way for Fibonacci numbers to be viewed as a function 
of a complex variable. We experimentally study the complex dynamics of the Fibonacci 
numbers viewed in that manner. Attracting and repelling fixed points are related to the 
filled Julia set and to regions of escape time images with fascinating behavior. 
 
Introduction 
The Fibonacci numbers are traditionally described as a sequence nF  defined by 00 =F , 

11 =F , and 21 −− += nnn FFF . The sequence begins  
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,.... 

The Fibonacci sequence has many remarkable properties, ranging from routine to 
startling [1-4]. Moreover, the numbers arise in nature, for example, as the number of 
spirals of pinecone petals. They may also be used to construct mathematical quasicrystals 
[5]. 

One of the beautiful formulas of Fibonacci numbers is the Binet formula. Binet 
described a version of the formula in 1843 [6-7]. Its beauty arises from the fact that the 
formula gives a closed form solution to a recursive definition, and from the symmetry of 
the formula itself. The Binet formula my be derived from the theory of difference 
equations, it can be derived by diagonalizing a suitable matrix, or it can be proven by 
induction [1-3]. The Fibonacci recursion has characteristic equation 012 =−− xx  which 

has roots 1.618
2

51 ≈+=τ  and -0.618
2

51 ≈−=τ  where τ  is the golden ratio and τ  

is the conjugate of τ . Choosing constants to satisfy the initial conditions  00 =F  and 

11 =F  gives the Binet formula: 
5
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nF τ−τ= . To obtain the Fibonacci numbers as a 

function of a complex variable, instead of viewing the index n in the Binet formula as an 
integer, we view it as a complex variable z. Thus we define the following complex 
Fibonacci function. 
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zF τ−τ=  

The number τ  is negative and τ  appears as the base of an exponential in the Binet 
formula. Thus, complex numbers will result for fractional real arguments. Nonetheless, 
the Binet form gives a natural generalization of the Fibonacci sequence. It satisfies the 
initial conditions 0)0( =F and 1)1( =F . It also satisfies the recursion 

)2()1()( −+−= zFzFzF  and it is defined for all complex values z.  
 Thus, we can ask questions about the complex dynamics of this function. What are its 
fixed points? Are they attracting or repelling? What happens upon iteration of the 
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function? In this note we take a visual look at those questions and see that the Fibonacci 
numbers have interesting and beautiful complex dynamics. 
 
Fixed Points 
The fixed points of a function )(zF  are the values of z such that zzF =)( . Table I shows 
the values of the Fibonacci numbers at several integer values of z.  
 

z -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 
F(z) -8 5 -3 2 -1 1 0 1 1 2 3 5 8 13 21 
Table I. Values of F(z) at some integer points. 
 
Notice that 5,1,0=z  are all fixed points. It might seem as though there ought to be 
another fixed point between -2 and -1 since F(z) changes from negative to positive, but 
remember that since the definition of F(z) involves an exponential with a negative base, 
we get complex values for F(z) at intermediate values. For example,  

iF 920442.0217287.0)5.1( −≈− . There appear to be many complex fixed points. For 
example, there is a fixed point near i197445.000376.2 −− . 

The fixed points of F(z) correspond to the zeros of zzF −)( . If we look at the 
magnitude of zzF −)(  along the real axis, we get the function shown in Figure 1. Note 
that the figure shows 5,1,0=z  are zeros and hence fixed points of F(z) and that it 
appears that there are no other real fixed points. 

 
Figure 1. The magnitude of zzF −)(  along the real axis. 

 The situation off the real axis can be examined by looking at a false colored contour 
plot of the magnitude of zzF −)( . Figure 2 shows such a plot where 36)Re(36 ≤≤− z  
and 36)Im(36 ≤≤− z . The lowest points are shown in black and higher points via hues 
running from red to magenta (highest). Notice there is a large black region near the 
center. There are some black regions appearing in a sequence above the center and others 
in a sequence mostly running to the upper left. This suggests that there are infinitely 
many fixed points in the complex plane in the upper left quadrant. Table II gives the 
values of F(z), its derivative, and the magnitude of that, at the fixed points 5,1,0=z . 
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Figure 2. The magnitude of zzF −)(  in the complex plane for 36)Im(),Re(36 ≤≤− zz . 
 
 
z  )(zF ′  |)(| zF ′  
0  0.430409-1.40496i   1.46941 
1  0.215204+0.868315i  0.894586 
5   2.36725+0.126685i   2.37064 
Table II. Derivatives at Some Fixed Points. 
 

The magnitude of the derivative at 0=z  and 5=z  is greater than 1. That implies 
those are repelling fixed points. However, the magnitude of the derivative at 1=z  is less 
than 1, so this is an attracting fixed point. Thus, we expect some region around 1=z  to 
not diverge to infinity, but instead, remain finite. The points in the complex plane that are 
eventually attracted to 1=z  are called the basin of attraction of 1=z . The set of points 
that do not diverge to infinity are the filled Julia set. When the Julia set is nontrivial, it 
has become common view such sets with an escape time image showing how quickly 
points outside the filled Julia set get large. 
 
Escape Time 
In particular, an escape time image corresponds to some region in the complex plane and 
typically color is used to indicate the number of iterations required before iterates get 
large. Perhaps the most famous illustrations of those occur for the famous quadratic Julia 
and Mandlebrot sets, but escape time images and basins of attraction have been utilized 
to visualize the dynamics of many processes [8-13].  

In order to create an escape time image of a function )(zf , one uses an algorithm of 
the following type.  

 
• Select a maximum iteration bound, N, and a sense of unbounded, M. 
• For all pixels ),( kj  corresponding to points z in a rectangular portion of the 
complex plane, do the following: 
  • let 0=i  
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• While Mz <  and Ni <  do  
  • )(zfz =  
  • 1+= ii  
 end while 
   • If Ni = , mark the pixel ),( kj  black, otherwise, mark the pixel a hue that 

corresponds to i. 
end for all. 
   

 We apply this algorithm to F(z) with 512=N  and 1010=M . Figure 3 shows the 
escape time where 6)Re(6 ≤≤− z  and 6)Im(6 ≤≤− z . Red corresponds to rapid escape 
and other hues, running to magenta, correspond to slow escape. Notice the large black 
region on the right of center and many smaller regions. There are also fans of black 
regions, for example, a sequence of six of them appear to be marching across the red 
region in the lower half of that figure. A J [14] script that duplicates the image shown in 
Figure 3 is available at [15]. 

 
 

Figure 3. Escape time of )(zF  for 6)Im(),Re(6 ≤≤− zz . 

 Figure 4 shows the escape time where 36)Re(36 ≤≤− z  and 36)Im(36 ≤≤− z . 
Notice the huge fans in a vertical sequence and the complex array of black regions in the 
upper left portion of the image. Figure 5 gives an image centered on the origin with width 
1. Notice that there appears to be a spiral of fans, five fans per spiral, approaching the 
origin. An animation zooming toward the origin may be viewed at [15]. It reinforces that 
perception of the spiral. An animation zooming toward 5=z  may also be viewed at [15]; 
it shows that the repelling fixed point appears to be on the lower right edge of the large 
fractal black region that contains 1=z .  
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Figure 4. Escape time of )(zF  for 36)Im(),Re(36 ≤≤− zz . 

 
 

Figure 5. Escape time of )(zF  for 5.0)Im(),Re(5.0 ≤≤− zz . 

Figure 6 shows more detail of the large fan above and to the right of the origin. 
Notice the fan is a fractal array of fans and black regions. The Julia set for this function 
seems quite complicated. 
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Figure 6. Escape time of )(zF  near i512 + . 

 
Conclusions 
By using the Binet formula we have been able to investigate the complex dynamics of the 
Fibonacci numbers. There are integer fixed points that are associated with a large basin of 
attraction, an edge of that basin, and a spiral of fans. There are additional complex fixed 
points, and the escape time images show the Fibonacci numbers have rich complex 
dynamics. 
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