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1. Introduction

Cellular Automata have generated much interest [1,2,3] because of their diverse behavior and
usefulness as adiscrete model for many processes. Wolfram's 1984 paper on universality and
complexity in cellular automata [3,4] described four classes of behavior for automata: class 1 for
homogeneous stable behavior, class 2 for simple periodic patterns, class 3 for chaotic aperiodic
behavior and class 4 for complex behavior which generateslocal structures. Recent work by
Cattaneo, Flocchini, Mauri, Quaranta V ogliotti, and Santoro [5] introduced an aternate classification
scheme that can be obtained by generalizing Boolean cellular automata to afuzzy automata and then
observing the qualitative behavior of a Boolean window embedded in afuzzy domain. These
automata can be classified according to whether the Boolean behavior dominates, a mixture of
Boolean and Fuzzy behavior appears, or purely fuzzy behavior appears. The fuzzy behavior can
further be divided into subclasses with homogeneous and nonhomogeneous behavior.

In this paper we further investigate these fuzzy extensions of one-dimensional automata and
we a so consider two-dimensiona automata. We investigate the impact of using several choicesfor
the fuzzy logic functions including the unusual logic used in [5]. The choice of different fuzzy logics
lead to significantly different behaviors. We a so introduce and use the one-dimensional continuous
dynamics of the response functions to explain much of the qualitative behavior of these fuzzy
automata. Lastly, we consider two-dimensional automata giving the Game of Life. We will seethe
greatest common divisor/least common multiple trivalent logic seemsto be remarkably ableto
nurture the generation of Life without dominating it; the Game of Life appears even more complex
in this context. The situation is somewhat analogous to a wave tank with expanding walls generating
waves with the interference controlled by the rules of the Game of Life.

The authors of [5] defined a quantity they call rule entropy in asimple manner based upon
the defining Boolean rule. While of limited capacity compared to more classical measures of entropy
[3,6], the simplicity of this entropy comes from the fact that it does not depend upon the
configuration of states. They observed that this entropy was bounded between 0 and 6 for their
automata and that class 3 (chaotic) behavior appeared to be limited to their fuzzy classes and
associated with intermediate or high values of rule entropy, thus connecting the qualitative behaviors
with this simple quantitative measure. In the Appendix we examine rule entropy noting corrections
to the tables of [5] and examining anatural extension to the Game of Life.

This paper shows that the generalization of ordinary automata to fuzzy automata can be
accomplished using awide variety of fuzzy logica systems. The qudlitative behaviors are
remarkably different although the dynamics of response functions offers considerable insight into
the long term behavior. While the fuzzy automata discussed here are intriguing in their own right, it
is hoped that thiswork provokes further interest in investigating how to best use the continuous
dynamics available from these fuzzy automata and exploring which fuzzy logics best capture the
qualitative behavior of their Boolean forerunners.



2. Fuzzy Automata

Classical cellular automata consist of an array of states, typically selected from afinite set, along
with local rulesfor updating the array of states. Some of the smplest automata are defined on a one-
dimensional lattice of cells, are Boolean (two state), and base the future state of a cell upon the states

in a3-cell neighborhood consisting of the cell and its |eft and right neighbors. Let a denote the

value, O or 1, of thecell at positioni at timet. Table | shows the behavior of an example automaton.
Itiscalled Rule 17 sincethelist of resuits, a'™*, givesthe binary digits of 17.

Rule 17 can be readily transformed into digunctive normal form by selecting avariable or its
negation for each of the three input states for each possible 1 output. Thus, we get

a-itJr1 = (at—l A g-it A 5111) Vv (a'it—l A g-it A 5111)
where we denote logical "not" with an overbar. Note that we can capture the essential details of this

000
representation with the matrix (1 0 OJ . Therows of the matrix are the two input rowsin Table|

that have output vaue 1.

Now we turn thisinto afuzzy rule by reinterpreting the logical functionsin that formula. In
all of our versions of fuzzy automata we will imagine 0 as false (or
dead), 1 astrue (or aive) and hencelogical "not x " is consistent with al, a a, a™
1-x. In[5], logical "x or y " was replaced by min{ 1, x+y} while"x
andy " isgiven by multiplication: x* y. Thisallows usto view the
digunctive normal form for Rule 17 as aformulawhere cells have
values from theinterval [0,1] in away that is consistent with the
Boolean interpretation on the endpoints 0 and 1. Hence, we have a
fuzzy automaton. We discuss several other fuzzy automatain Section
4 and [7] offer adiscussion and visual presentation of some other
fuzzy logics.

The time evolution of these fuzzy automata can be visualized
graphicaly. In Figure 1 we see our first four examples of automata of
these type. In particular, we haveillustrations of the behavior of
Rules 17, 125, 73, and 146 on arandom Boolean window embedded 11 1 O
in an infinite fuzzy background with value one-half. The Boolean L
window is 64 units wide and the specific random choices used can be Teblel. The definition
duplicated with the J[8] command ? . 64 $2 . Implementation of the of Rule 17.
automata appearsin [9] and additional rules appear on [10]. The
initial values are thefirst row in the figure and the states of subsequent stages of the automaton
appear in subsequent rows. The pal ette scheme used for our automatais shown in Figure 2. Whiteis
used for value O (dead cells), black isused for value 1 (alive cells) and intermediate values are
shown in hues that dternate, for contrast, but generally move from lighter hues (cyan, magenta,
yellow) to darker hues (red, green, blue) asthe fuzzy value gets nearer to one.
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3. Repeated Input Response Function

If welet f : R* — R denotetheloca rule on afuzzy one dimensional automata, we can define a
diagonal map that we will call the repeated input response function, or ssimply the response function,
by r(x) =f(x, x,x).Since r: R — R we can investigate the real dynamics of this response
function. The response function is undoubtedly too ssimple to capture al the dynamicsof f(x,y, z) ;

nonetheless, we will seeit is remarkably useful for predicting the long term behavior of our fuzzy
automata.



Figure 3 shows the response map for severa fuzzy automaton rules using the fuzzy logic
described in the previous section. Notice the functions show gresat variety. The intersection with the
line y = x givesthefixed points. We see Rule 17 has arepelling fixed point near 0.4 whileO and 1

form an attractive two cycle. The oscillations near 0 and 1 appearing in Figure 1 for Rule 17 are
expected. The response function for Rule 125 has avery dowly attracting fixed point near 0.6, hence
the damped oscillations near 0.6 observed in Figure 1. The response function for Rule 73 hasa
strongly attractive fixed point near 0.4 and hence the homogeneous fuzzy region stabilizes quickly.
The response function for Rule 146 has three fixed points, 0, /3 and 1. While the uniform fuzzy
background quickly convergesto 1/3, the complexity of the fuzzy rule is reasonable.

In Table Il we see the qualitative behavior of these fuzzy automata are enumerated with a
summary of the dynamics of the response function and alist of the automata with those given
characteristics. The classes are organized outermost by whether the background convergesin the
long term to homogeneous va ue equal to 0, an oscillation between 0 and 1, a homogeneous value
between 0 and 1 or homogeneous value equal to 1. These situations are further divided into whether
there is a Boolean window (BW), whether the window travels (trav), whether there is an expanding
window (exp), or whether there is an expanding fuzzy window on one side (exp fz1) or two sides
(exp fz). The behavior at 0 and 1 is described by the values of the response function at those points
with aplus sign next to attractive fixed points. Thus 01+ denotes fixed pointsat 0 and 1 with 1 being
atractive. Also +(10) denotes an attractive 2-cycle on those values and +F and -F denote attracting
and repelling intermediate (fuzzy) fixed points. The categories"al" and "all2" occur when all fuzzy
values arefixed points or in a 2-cycle, respectively.

Noticethat al the fuzzy automata with -F match those with 2-cycle long term behavior
except for Rule 23 which has an expanding two cycle window in afuzzy background and Rule 232
which has an expanding Boolean window in afuzzy background—which make those barely
exceptional. The automata with no fuzzy fixed points are exactly those with long term homogeneous
0 or 1 behavior. The automata with fuzzy long term behavior are those whose response functions
have attractive fuzzy fixed points, except the two cases 23 & 232 mentioned earlier. Distinguishing
the behaviors of the subcategories of fuzzy behavior is more difficult, but in general having "al" or
"dl2" behavior in the response function is associated with rich behavior. Even in the case when the
homogeneous fuzzy behavior completely dominates, the slope of the response function has
predictive value. Namely, when the response function has a dope near £1 at an attractive fixed point,
then the nonhomogeneous fuzzy behavior tends to persist longer, as one might expect. These slopes
are not apparent from the table.

4. Other Fuzzy Logics

We consider severa other fuzzy logicsin order to discuss their use in fuzzy automata. See[11] for a
discussion of some classica multi-valued logics. Table Il summarizes the five logics that we will
discuss. These logics were chosen because they appear in other literature [5,11,12,13] and they seem
to have interesting fuzzy dynamics. In previous sections, our illustrations have so far considered
only thefuzzy logicused in [5], Logic 1 in our table.



Homogeneous 0
BW

trav

2-Cy 0-1

Fuzzy

exp fz

BwW

exp

trav

expfzl

exp fz

Homogeneous 1

BW

trav

+00

+01

+00

+01

+00

+01

+(10) -F
00 +F
01 +F
10 +F
11 +F
00 +F
01 +F
01 all
10 +F
10 all2
11 +F
00 +F
01 +F
01 all
10 +F
10 all2
11 +F
00 +F
01 +F
+(10) -F
+01+ -F
10 +F
11 +F
01 all
10 all2
00 +F
01 all
11 +F
00 +F
10 all2
11 +F
01+

11+

01+

11+

01+

11+

0,
128,
4x,

132x,

2x,

112x%,
138x,
3,

1,
95x,
61

86,
126,
148,
9,

65,
107,
129,
155,
211,
14,

142,
184,
11,

27,

139,
28x%,
156,
204,
73X,
51,

157x%,

50,
178,
23,
232,
13,
179,
170,
15,
78,
172,
141,
94,
29,
133,
234,
173,
253,
206,
203,
174,
171,
245,

8,

20,

25,

32,
136,
12x,

10x,
130,

5x,
119,
22,
90,

150,
33,
67,
111,
131,
159,
215,
18,
146,
226,
43,
39,
143,
70x,
198,

109x,

69,

240,
85,
92,

202,

197,

71,

238,
185,
255,
218,
205,
186x,
175,
247

36,
140x,
16x,

144x,

102,

75,

46,

47,
53,

199x,

77,

40,
160,

77X,
127,
26,

154,
35,
89,
115,
135,
161,
225,
58,
182,

81,
83,
163,
108,

79,

216,

248,
227,

220,

207,
188,

187x%,

56,
44,
164,
24x,
152,
17,

106,

64, 74,
168, 192, 224,
68x, 72, 76,
196x, 200,

34x, 42x%,

88, 96, 98,

100, 104,

48x, 66%, 80x%,
162x%,

19,

176x, 194x,
21x, 31x, b5b5x,

208x%,
63, 87,
30, 38,

110,

52,
118,

54,
120,

60, 62,
122,

82,
124,

158,
37,
91,
121,
137,
165,

166,
41, 45,
97, 99,
123, 125,
145, 147,
167, 169,

180, 210, 214,
49, 57, 59,
101, 103,
134,
149,

181,

61,
105,

151,
193,

153,
195,

84,
212,

114, 1le,

113, 117,

177, 183, 209, 213,

201,

93,

228,

250,
229,

252,
235,

254,

239, 249, 251,
222,
217,

190,

189,

236,

219,
230,
191,

233,
246,
243,

221, 237,
242,

231,

223,
244,
241,

Tablell. Long term behavior of Logic 1 fuzzy automata



XOory xandy
Logic1 CFMQVS min(1, x+y) X*y
Logic 2 Max/Min max(X, Y) min(x, y)
Logic 3 Probabilistic X+y-x*y X*y
Logic4 MV min(1, x+y) max(0, x+ y-1)
Logic5 gcd/lcm ged(x, y) lcm(x, )

Tablelll. Five Fuzzy Logics

Noticethat Logic 1 uses acombination of logical functionsfrom Logics 3 and 4. Table IV
gives some values of these fuzzy logics. Logic 1 hasan "or" that isfairly high valued while the
"and" isfairly low valued. For all the examplesin this paper the only initial valuesare 0, 1/2, and 1.
Notice that when Logic 1 isrestricted to those three values, it is not closed and hence doesn't form a
trivalent logic.

The most classical multivalued logicisLogic 2, which is based on maximum replacing "or"
and minimum replacing "and". When restricted to the three initial values, the classical trivalent
Lukasiewicz Logic results[12]. Logic 3isa probabilistic Logic which does not restrict to atrivaent
logic. It shares "and" with Logic 1, but "or" has valuesthat are sometimes lower. Logic 4 restricts to
atrivaent logic, but not any of those mentioned in [12]. The"or" values are shared with Logic 1 but
there are many more 0 valuesin the evaluation of "and".

Logic 5isnot alogic on theinterval [0,1] since it does not map back to the interval [0,1].
However, itstrivalent restriction is closed which makes it atrivalent logic when restricted to our
initia values. Itslogical "or" isthe same asin the Bochvar trivalent logic while the "and" is not
listed in [12]. We were motivated to consider these gcd/Icm functions as extensions of or/and since
the gcd/lcm extension of or/and is a compatible extension and many of the same identities are
satisfied by these function pairs. We have aso previoudy found some remarkable connections
between classical Sierpinski gaskets, carpets and higher dimensional anal ogues when one extends
or/and to gcd/lcm [13].

The qualitative behavior of the versions of fuzzy automata that are produced by these logics
are diverse. We saw the behavior of rules 17, 125, 73, and 146 with Logic 1 in Figure 1. We believe
the diversity of thisfuzzy automata results in part from two facts. First the logic does not restrict to a
trivalent logic so that values tend to mix. Second, the repeated input response function, as described,
has rich behavior for many of these automata.

While Logic 2 represents avery common multi-valued logic, one-dimensional fuzzy
automata produced with this rule tend to have relatively ssimple behavior. Thisisforced by the fact
that the rule restricts to atrivalent rule. Nonetheless, automata can be classified according to whether
fuzzy behavior dominates or a Boolean region persists. The Boolean regions may have vertical or
diagonal boundaries. Asfor Figure 1, theinitial configuration is arandom Boolean window in a
fuzzy background of level 0.5. The paletteisagain givenin Figure 2.

Figure 4 shows the behavior of these automata using Logic 2 with Rules 17, 125, 73, and
146. Figure 5 shows Logic 3 used for these rules. The behavior of these probabilistic automatais
often quite close to the behavior seen for Logic 1 but there is a greater tendency toward
homogeneous fuzzy behavior. Logic 1 is preferableto Logic 3 if greater qualitative diversity is
sought. On the other hand, Logic 3 has more uniform definitions and would likely be more amenable
to analytic study. Even so, in some cases, Logic 3 behavior is quite interesting. For example, Rule 50
leads to an undramatic expanding Boolean window using Logic 1, and hence represents rel atively
simple behavior. However, Figure 6 shows Rule 50 for Logic 3 where very rich behavior appears.

Logic 4 istrivalent when restricted to our initial values and it generates some interesting



behaviors asillustrated in Figure 7. Indeed, these behaviors are the most interesting trivalent
extension that we have seen. Logic 4 on 0 and 0.5 seems closely related to the corresponding
Boolean rule. In particular, Rule 146 restricted to 0 and 0.5 behaves the same as Rule 146 on 0 1
except for the case when dl three cellsare 1. So actually, Rule 146 restricted to 0 and 0.5 behaves
the same as Rule 18 on Boolean values and the Sierpinski triangle features are known to arise from
that automaton. Given these remarks, it is perhaps not surprising that the mixture of Logic 3 and 4
used in Logic 1 seemsto create the most diversity. That in turn makesit agood candidate for
classification of quantitative behavior.

Lastly, Logic 5isaso trivaent on our initial values and has relatively modest behavior when
used for one dimensiona automata. The fuzzy values do not dominate and they play little role except
to provide awindow in which the Boolean values can grow. Figure 8 shows Boolean rules
periodically extended and initially exhibiting three periods. Contrast those purely Boolean rules with
the Logic 5 fuzzy rules, shown in Figure 9, exhibiting the evolution of a Boolean window embedded
inan infinite 0.5 domain, as we have studied in our previous examples of fuzzy automata. In Figure
9, the expanding Boolean regions have more of the global feel of the automata, and seem richer than
the purely Boolean examples. Indeed we will see below that Logic 5 provides aremarkable growing
environment for the Game of Life.

5. TheGameof Life

The Game of Life[14,15,16] isatwo dimensional Boolean automaton that has local rule defined on
three by three neighborhoods surrounding acell. A cell isalive at the next generation if it is
currently alive and has two or three of its eight neighbors alive or if it is currently dead and has

exactly three of its eight neighbors alive. Now we can list the eight neighbors of a; ; and writethe

rulefor Lifein digunctive normal form which contains terms like those that follow.

t+1 _ t t t =t =t =t =t =t =t
a = (31-1j—1 AR AR g AR A AR A A A ai+lj+1)

t t =t t =t =t =t =t =t
Vv (31—11—1 AR AN AR NG AR Ay Ay A ai+1j+1)
t t =t =t t =t =t =1 =t
VeV (ai—lj—l ANy AN jg A A A Ay Ay A ai+lj+1)

Ve vi(@ly g ARy AR AR ARG AR AT AR ABL ) Y
Thefirst two terms displayed in that formularequire a/; to be false and hence there must be exactly
three of the other cells without negations. Therefore there are (2} =56 termsof thistype. Thelast
two terms have a;; true and so there can be either 2 or 3 other cells without the bar; hence there are

8) (8
(2} + [3} = 28+ 56 = 84 terms of thistypeyielding 140 termstotal. Using the fuzzy interpretation

for the logical functions described above, we can implement Life embedded in auniformly fuzzy
background.



Logic 1: CFMQVS
or 0 0.25 0.5 0.75 1 and|0 0.25 0.5 0.75 1
0 0 0.25 0.5 0.75 1 0|0 0 0 0 0
0.25]10.25 0.5 0.75 1 1({[0.25[(0 0.0625 0.125 0.1875 0.25
0.5 0.5 0.75 1 11 0.5(0 0.125 0.25 0.375 0.5
0.75]0.75 1 1 1 1]1]10.75|0 0.1875 0.375 0.5625 0.75
1 1 1 1 11 1{0 0.25 0.5 0.75 1
Logic 2: Max/Min
or 0 0.25 0.5 0.75 1 and|0 0.25 0.5 0.75 1
0 0 0.25 0.5 0.75 1 0|0 0 0 0 0
0.25]0.25 0.25 0.5 0.75 1(|0.25(0 0.25 0.25 0.25 0.25
0.5 0.5 0.5 0.5 0.75 1 0.5(0 0.25 0.5 0.5 0.5
0.75|/0.75 0.75 0.75 0.75 1]]0.75]0 0.25 0.5 0.75 0.75
1 1 1 1 11 110 0.25 0.5 0.75 1
Logic 3: Probabilistic
or 0 0.25 0.5 0.75 1 and|0 0.25 0.5 0.75 1
0 0 0.25 0.5 0.75 1 0|0 0 0 0 0
0.25]0.25 0.4375 0.625 0.8125 1|(0.25|0 0.0625 0.125 0.1875 .25
0.5( 0.5 0.625 0.75 0.875 1 0.5(0 0.125 0.25 0.375 .5
0.75]0.75 0.8125 0.875 0.9375 1|]0.75|0 0.1875 0.375 0.5625 75
1 1 1 1 11 1{0 0.25 0.5 0.75 1
Logic 4: MV
or 0 0.25 0.5 0.75 1 and|0 0.25 0.5 0.75 1
0 0 0.25 0.5 0.75 1 0|0 0 0 0 0
0.25]10.25 0.5 0.75 1 1({]10.25(0 0 0 0 0.25
0.5 0.5 0.75 1 11 0.5(0 0 0 0.25 0.5
0.75]0.75 1 1 1 1]1]10.75]0 0 0.25 0.5 0.75
1 1 1 1 11 1{0 0.25 0.5 0.75 1
Logic 5: gcd/lcm
or 0 0.25 0.5 0.75 1 and|0 0.25 0.5 0.75 1
0 0 0.25 0.5 0.75 1 0|0 0 0 00
0.25]0.25 0.25 0.25 0.25 0.25(]0.25(0 0.25 0.5 0.75 1
0.5 0.5 0.25 0.5 0.25 .5 0.5(0 0.5 0.5 1.5 1
0.75]0.75 0.25 0.25 0.75 0.25(|0.75(0 0.75 1.5 0.75 3
1 1 0.25 0.5 0.25 1 110 1 1 31

Table V. Some Fuzzy Logic Function Values

When we use our five logics to create various fuzzy versions of the Game of Life, we
generally see expected behavior given our experience with one dimensional automata. Logic 1

generates fuzzy automata that tend toward homogeneous fuzzy behavior which in one dimension [5]




was congistent with chaotic or complex behavior. Itisaso truethat Logic 2 leads quickly to
homogeneous fuzzy behavior. Logic 3 leads to homogeneous fuzzy values near 0. Logic 4 becomes
Boolean and the ordinary Game of Life results. Another fuzzy generdization of the Game of Life
appearsin[17].

The most interesting generalization from our viewpoint isLogic 5. It leads to agrowing
Boolean region with fuzzy behavior 1/2 outside the region. The growing edge of the Boolean region
leads to an dternation between on and off which form waves, in the absence of interference, and
ultimately these waves interact with the initial Boolean configuration. In Figure 10 we see this fuzzy
automaton iterated upon a5 by 5 random initia configuration (generated by the J[8] expression
?. 5 552). Noticethat at iterations two to four the alive configuration israther trivid. By
iterations 29 and 30 the behavior seems quite complex. There is some appearance of diagonal
density and the waves near the edges are clearly visible. However, thereis remarkably little
symmetry and the configuration seemsto be rather far from settling into any pattern. Figure 11
shows the status after 100 iterations and [10] has alink to an animation showing the time evolution
of this 2-dimensional automaton.

Much aswe did in the one-dimensional situation, we can define the repeated input response
function for two dimensional automata. For 3 by 3 neighborhoods we need to make all 9 input
values equal. Because of the discontinuous nature of Logic 5, it is unsuitable for constructing a
response function. However, the repeated input response function for the Game of Life for two other
choices of fuzzy logic is shown in Figure 12. The response function for Logic 1 has an attractive
fixed point near 0.37. Fuzzy Logic 3 has what appears to be afixed point near 0.25 that is
tantalizingly close to being a double fixed point. However, the response function falls just short of
the identity function and so the only fixed point isat 0. Indeed, we see Logic 1 and Logic 3 have
long term behavior on Fuzzy Life that is completely consistent with our expectations given their
response functions.

7. Conclusions

Fuzzy automata offer a mechanism for new classifications of automata and the real dynamics of the
repeated input response functions for these fuzzy automata can be used for insight into their
qualitative behavior. The construction of fuzzy automata can be generdized to different fuzzy logics
and thereis no problem in extending the construction to two dimensional automata. Rule entropy
can also be extended. We have seen that the relationship between rule entropy and the behavior of
the fuzzy Game of Life are consistent with expectations devel oped from the one dimensional case
although the response functions seem more closely related to qualitative behavior in general.
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Appendix: Rule Entropy
Rule entropy was defined in [5] and will be explicitly given below. Informally, rule entropy can be
thought of as ameasure based upon the possible outputs of theinitial configurationsand assuchitis
comparable to the lambda parameter of [6]. However, it uses some of the distribution information in
onetime step rather than just total frequency. Thus, rule entropy would seem to have somewhat
more information than the lambda parameter but far less than classical entropies that would measure
the distribution averaged over many time steps after transient behavior is removed. While "rule
entropy" may not be the best name for this measure of fuzziness, we follow [5] and use that
terminology. Since there are connections between the |lambda parameter and entropy, it is not
surprising that rule entropy, which isintermediate, is aso related to these measures. We consider
rule entropy in one dimension, compute it for some of our examples and then generalize it to two
dimensionsin away that allows us to compute the rule entropy for the Game of Life.

For one dimensiona automata, rule entropy is defined as a sum of |eft and right entropies;
each one sided entropy isin turn the sum of level 1 and 2 one-sided entropies that arise by varying

two or one of the cells on the other side. For convenience we take pil to be the proportion of states

with i asasuffix that result in aone. Then
Hi == plap 109, (Plaps) (1 Plap.) 109, (1- plaps)

<a,b>
wherea and b can be 0 or 1. We can use the mnemonic that the superscript indicates which side to
vary and the subscript the number of coordinatesto vary. Similarly,

H, =-> pl.log,(pl,.)+(1- pl,.)log,(1- pl..).

Then the left rule entropy is H' = H, + H . Theright entropy is defined in an analogous manner:
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wetake p!’ to bethe proportion of states with i asaprefix that result in aone. Then
le =- Z pia,b> Iogz( pia,b>) +(1_ pia,b>) logz (1_ pia,b>)

<a,b>

and
H; = _Z p£a> Iogz( p£a>) +(1_ p£a>) logz (1_ p£a>)

<a>

and theright ruleentropy is H" = H; + H,. Asan illustration we will compute the rule entropy for
Rule 17. The vector index < 0,0 > isasuffix to both the triples resulting in one, hence

Ploo =2 =1.Likewise, wesee ply,. =%, pli,. =%, and pli,. =% resultingin H; =0 since
for each term either the proportion or itslogarithmis 0. Also, p.,. = % since both true outputs have
< 0> asasuffix. Wecan check p.. = 9% andsince ¥%log,(%)=—% wesee H, =1. The
analogous computations on theright are plo . =%, Plor. =%, Pho =%, PLr =% SO H; =2.
Also, pl,. =%, p.. =% 0 H, =-2(¥%log,(%) + %109,(3,)) =1.62 and hence H' = 3.62. The

table of right and |eft rule entropies appearing in the paper [5] appear to skip the ¥, 109, (3;) terms.

However, this does not substantially impact their conclusions.
Table V summarizes the rule entropies for the examples of

rue H' H' fuzzy automata that we saw in Figure 1. Rule entropies near the
maximal value of 6 are expected [5] to be associated with
171 362 homogeneous fuzzy behavior, zero rule entropy with expanding
73 48 48 Boolean windows and intermediate val ues associated with more
complex interaction. Here we see Rule 17 has the low rule entropy
1253 36 and the Boolean behavior dominates. However, Rules 73, 125 and
146 48 458 146 dl have relatively intermediate rule entropies and fairly
complex behavior. It is somewhat disappointing that Rule 125 has
TableV. Salected rule lower rule entropy given the expectation that homogeneous
entropies behavior corresponds to rule entropy near the maximal value 6.

Thisillustratesthat it isn't possible to offer asimple threshold on
rule entropy to distinguish these behaviors. Indeed, we saw that the qualitative behaviors can vary
quite alot when the fuzzy logic is changed. Rule entropy can be viewed as atype of entropy that
does not account for the patterns excluded by the repeated iteration of therule [3, 18] and in that
senseisnaive. Nonetheless, it is extremely easy to compute and reasonably effective given those
qualifications.

We can define rule entropy for automatain two dimensions in various ways that seem
compatible with the choice in one dimension. For Boolean automata defined on 3 by 3
neighborhoods centered on the cell being updated, it seems appropriate to maintain the directiona
distinctions offered in one dimension. Thus, for a3 by i matrix |, wherei is1 or 2, we define p; to

be the proportion of 3 by 3 input configurationswith | appearing on the left and which result in life.
Thus, we basically consider proportions arising from fixing two or one columns on the left. Then
Hi=— > pilog,(p])+(1- pj)log,(1-p}),
I is3by 2
and
H;=- 2 pilog,(p) +(1- p})log,(1- p})

lis3by1
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with H" = H, + H, asbefore. Left, top and bottom entropies can be defined in an ana ogous
manner. However, by symmetry, these will all be the same for the Game of Life. In order to compute
the right rule entropy for the Game of Life, we need to consider 2° fixed 3 by 2 arraysfor H , and 2

fixed arraysfor H, . We can organize our computation as follows: consider the 3 by 2 arrays
keeping track of whether the center islit and how many of the other 5 fixed positions are lit. Then
count the number (out of the eight ways) that the three by three neighborhood can be completed to
obtain life.

In Table VI, C denotes the value of the center, N denotes the number of onesin the other 5
positions being fixed and U denotes the number of ways those ones can be rearranged in those 5
positions. For example, when C =1, N = 1, we need one or two cellslit in the last column (the three

3 3
varied positions). Since (J + (Zj =6 wehave p, = % . Because there are five waysto rearrange

the fixed noncentral 1, we will obtain five terms with this proportion.

In Table VI, we summarize the computations for level 2 rule entropy. In that table, N
denotes the number of the fixed three positions that contain a 1, U denotes the number of waysto
rearrange those ones, CO designates the number of waysto fill in the varied 6 positionsto result in

r lifeif the center must be O, C1 designates the number of waysto fill
C N U p : . " TP
inthe varied 6 positionsto result in life if the center must be 1.
0 0 % Thisresultsin arule entropy of H' = 46.87 . The maximal
1 0 1 % possible rule entropy for Boolean 3 by 3ruleis 72 sinceit is
0 1 5 ¥% possible to create an automatawith all 2° +2° =72 valuesof |
1 1 5 4 resulting in p; = % . Thusthe normalized rule entropy for the
Game of Lifeisapproximately 0.65 which isintermediate. The fact
0 2 10 % _ _
1 2 10 4 that it represents complex behavior that tends to settle down after
% many iterations is consistent with our remarks above.
0 3 10 ¥4
1 3 10 4
Table VI. Computing level
1 right rule entropy for
Life.
N U CO Cl1 p
0 1 10 20 3%,
1 3 10 15 2%,
2 3 5 6 1

31 1 1 3%,

Table VIIl. Computing level
2 right rule entropy for
Life.



Figure1l. Rules17, 125, 73, 146 asfuzzy automata

Figure 2. Fuzzy automata palette.

12



1 1
0.8} 0.8
0.5 0.6
0.4} 0.4
0.2t 0.2
0.2 0.4 0.6 0.8 1 0.2 0.3 0.5 0.8 1
1 1
0.8} 0.8
0.5 0.6
0.4} 0.4
0.2} 0.2
0.2 0.4 0.6 0.8 T 0.2 0.4 0.5 0.8 1
1 1
0.8} 0.8
0.5 0.6
0.4} 0.4
0.2t 0.2
0.2 0.4 0.6 0.8 i 0.2 0.3 0.5 0.8 1

Figure 3. Repeated input response functions for fuzzy rules 17, 125, 73, 146, 90 and 170.
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Figure4. Rules17, 125, 73 and 146 using Fuzzy Logic 2.

Figure5. Rules17, 125, 73 and 146 using Fuzzy Logic 3.



Figre 6. Rule50 using fuzzy Lglc 3.

]

Figure7. Rules17, 125, 73 and 146 using Fuzzy Logic 4.
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Figure 9. Rules17, 125, 73 and 146 using Fuzzy Logic 5.
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Figure 10. Nurturing the Game of Life using Fuzzy Logic 5.
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Figure 12. Repeated input response function for the Game of Lifeusing Logics 1 and 3.



