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1. Introduction 
Cellular Automata have generated much interest [1,2,3] because of their diverse behavior and 
usefulness as a discrete model for many processes. Wolfram's 1984 paper on universality and 
complexity in cellular automata [3,4] described four classes of behavior for automata: class 1 for 
homogeneous stable behavior, class 2 for simple periodic patterns, class 3 for chaotic aperiodic 
behavior and class 4 for complex behavior which generates local structures. Recent work by 
Cattaneo, Flocchini, Mauri, Quaranta Vogliotti, and Santoro [5] introduced an alternate classification 
scheme that can be obtained by generalizing Boolean cellular automata to a fuzzy automata and then 
observing the qualitative behavior of a Boolean window embedded in a fuzzy domain. These 
automata can be classified according to whether the Boolean behavior dominates, a mixture of 
Boolean and Fuzzy behavior appears, or purely fuzzy behavior appears. The fuzzy behavior can 
further be divided into subclasses with homogeneous and nonhomogeneous behavior. 
 In this paper we further investigate these fuzzy extensions of one-dimensional automata and 
we also consider two-dimensional automata. We investigate the impact of using several choices for 
the fuzzy logic functions including the unusual logic used in [5]. The choice of different fuzzy logics 
lead to significantly different behaviors. We also introduce and use the one-dimensional continuous 
dynamics of the response functions to explain much of the qualitative behavior of these fuzzy 
automata. Lastly, we consider two-dimensional automata giving the Game of Life. We will see the 
greatest common divisor/least common multiple trivalent logic seems to be remarkably able to 
nurture the generation of Life without dominating it; the Game of Life appears even more complex 
in this context. The situation is somewhat analogous to a wave tank with expanding walls generating 
waves with the interference controlled by the rules of the Game of Life. 
 The authors of [5] defined a quantity they call rule entropy in a simple manner based upon 
the defining Boolean rule. While of limited capacity compared to more classical measures of entropy 
[3,6], the simplicity of this entropy comes from the fact that it does not depend upon the 
configuration of states. They observed that this entropy was bounded between 0 and 6 for their 
automata and that class 3 (chaotic) behavior appeared to be limited to their fuzzy classes and 
associated with intermediate or high values of rule entropy, thus connecting the qualitative behaviors 
with this simple quantitative measure. In the Appendix we examine rule entropy noting corrections 
to the tables of [5] and examining a natural extension to the Game of Life. 
 This paper shows that the generalization of ordinary automata to fuzzy automata can be 
accomplished using a wide variety of fuzzy logical systems. The qualitative behaviors are 
remarkably different although the dynamics of response functions offers considerable insight into 
the long term behavior. While the fuzzy automata discussed here are intriguing in their own right, it 
is hoped that this work provokes further interest in investigating how to best use the continuous 
dynamics available from these fuzzy automata and exploring which fuzzy logics best capture the 
qualitative behavior of their Boolean forerunners. 
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2. Fuzzy Automata 
Classical cellular automata consist of an array of states, typically selected from a finite set, along 
with local rules for updating the array of states. Some of the simplest automata are defined on a one-
dimensional lattice of cells, are Boolean (two state), and base the future state of a cell upon the states 
in a 3-cell neighborhood consisting of the cell and its left and right neighbors. Let t

ia  denote the 
value, 0 or 1, of the cell at position i at time t. Table I shows the behavior of an example automaton. 
It is called Rule 17 since the list of results, 1+t

ia , gives the binary digits of 17. 
 Rule 17 can be readily transformed into disjunctive normal form by selecting a variable or its 
negation for each of the three input states for each possible 1 output. Thus, we get 
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where we denote logical "not" with an overbar. Note that we can capture the essential details of this 

representation with the matrix ⎟⎟
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. The rows of the matrix are the two input rows in Table I 

that have output value 1. 
 Now we turn this into a fuzzy rule by reinterpreting the logical functions in that formula. In 
all of our versions of fuzzy automata we will imagine 0 as false (or 
dead), 1 as true (or alive) and hence logical "not x " is consistent with 
1-x. In [5], logical "x or y " was replaced by min{1, x+y} while "x 
and y " is given by multiplication: x * y. This allows us to view the 
disjunctive normal form for Rule 17 as a formula where cells have 
values from the interval [0,1] in a way that is consistent with the 
Boolean interpretation on the endpoints 0 and 1. Hence, we have a 
fuzzy automaton. We discuss several other fuzzy automata in Section 
4 and [7] offer a discussion and visual presentation of some other 
fuzzy logics.  
 The time evolution of these fuzzy automata can be visualized 
graphically. In Figure 1 we see our first four examples of automata of 
these type. In particular, we have illustrations of the behavior of 
Rules 17, 125, 73, and 146 on a random Boolean window embedded 
in an infinite fuzzy background with value one-half. The Boolean 
window is 64 units wide and the specific random choices used can be 
duplicated with the J [8] command ?.64$2 . Implementation of the 
automata appears in [9] and additional rules appear on [10]. The 
initial values are the first row in the figure and the states of subsequent stages of the automaton 
appear in subsequent rows. The palette scheme used for our automata is shown in Figure 2. White is 
used for value 0 (dead cells), black is used for value 1 (alive cells) and intermediate values are 
shown in hues that alternate, for contrast, but generally move from lighter hues (cyan, magenta, 
yellow) to darker hues (red, green, blue) as the fuzzy value gets nearer to one. 
 
3. Repeated Input Response Function 
If we let ℜ→ℜ3:f  denote the local rule on a fuzzy one dimensional automata, we can define a 
diagonal map that we will call the repeated input response function, or simply the response function, 
by ),,f()r( xxxx = . Since ℜ→ℜ:r  we can investigate the real dynamics of this response 
function. The response function is undoubtedly too simple to capture all the dynamics of ),,f( zyx ; 
nonetheless, we will see it is remarkably useful for predicting the long term behavior of our fuzzy 
automata.  
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Table I. The definition 
of Rule 17. 
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 Figure 3 shows the response map for several fuzzy automaton rules using the fuzzy logic 
described in the previous section. Notice the functions show great variety. The intersection with the 
line xy =  gives the fixed points. We see Rule 17 has a repelling fixed point near 0.4 while 0 and 1 
form an attractive two cycle. The oscillations near 0 and 1 appearing in Figure 1 for Rule 17 are 
expected. The response function for Rule 125 has a very slowly attracting fixed point near 0.6, hence 
the damped oscillations near 0.6 observed in Figure 1. The response function for Rule 73 has a 
strongly attractive fixed point near 0.4 and hence the homogeneous fuzzy region stabilizes quickly. 
The response function for Rule 146 has three fixed points, 0, 1/3 and 1. While the uniform fuzzy 
background quickly converges to 1/3, the complexity of the fuzzy rule is reasonable. 
 In Table II we see the qualitative behavior of these fuzzy automata are enumerated with a 
summary of the dynamics of the response function and a list of the automata with those given 
characteristics. The classes are organized outermost by whether the background converges in the 
long term to homogeneous value equal to 0, an oscillation between 0 and 1, a homogeneous value 
between 0 and 1 or homogeneous value equal to 1. These situations are further divided into whether 
there is a Boolean window (BW), whether the window travels (trav), whether there is an expanding 
window (exp), or whether there is an expanding fuzzy window on one side (exp fz1) or two sides 
(exp fz). The behavior at 0 and 1 is described by the values of the response function at those points 
with a plus sign next to attractive fixed points. Thus 01+ denotes fixed points at 0 and 1 with 1 being 
attractive. Also +(10) denotes an attractive 2-cycle on those values and +F and -F denote attracting 
and repelling intermediate (fuzzy) fixed points. The categories "all" and "all2" occur when all fuzzy 
values are fixed points or in a 2-cycle, respectively. 
 Notice that all the fuzzy automata with -F match those with 2-cycle long term behavior 
except for Rule 23 which has an expanding two cycle window in a fuzzy background and Rule 232 
which has an expanding Boolean window in a fuzzy background—which make those barely 
exceptional. The automata with no fuzzy fixed points are exactly those with long term homogeneous 
0 or 1 behavior. The automata with fuzzy long term behavior are those whose response functions 
have attractive fuzzy fixed points, except the two cases 23 & 232 mentioned earlier. Distinguishing 
the behaviors of the subcategories of fuzzy behavior is more difficult, but in general having "all" or 
"all2" behavior in the response function is associated with rich behavior. Even in the case when the 
homogeneous fuzzy behavior completely dominates, the slope of the response function has 
predictive value. Namely, when the response function has a slope near ±1 at an attractive fixed point, 
then the nonhomogeneous fuzzy behavior tends to persist longer, as one might expect. These slopes 
are not apparent from the table. 
 
4. Other Fuzzy Logics  
We consider several other fuzzy logics in order to discuss their use in fuzzy automata. See [11] for a 
discussion of some classical multi-valued logics. Table III summarizes the five logics that we will 
discuss. These logics were chosen because they appear in other literature [5,11,12,13] and they seem 
to have interesting fuzzy dynamics. In previous sections, our illustrations have so far considered 
only the fuzzy logic used in [5], Logic 1 in our table. 
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Homogeneous 0 +00    0, 8, 32, 40, 56, 64, 74, 88, 96, 98,  
   +01  128, 136, 160, 168, 192, 224,  
 BW  +00  4x, 12x, 36, 44, 68x, 72, 76, 100, 104,  
   +01  132x, 140x, 164, 196x, 200,  
   trav  +00  2x, 10x, 16x, 24x, 34x, 42x, 48x, 66x, 80x, 

112x, 130,  
   +01  138x, 144x, 152, 162x, 176x, 194x, 208x,  
2-Cy 0-1  +(10) -F 1, 3, 5x, 7x, 17, 19, 21x, 31x, 55x, 63, 87, 

95x, 119, 127,  
Fuzzy   00 +F 6, 20, 22, 26, 30, 38, 52, 54, 60, 62, 82, 

86, 90, 102, 106, 110, 118, 120, 122, 124, 
126,  

   01 +F 148, 150, 154, 158, 166, 180, 210, 214,  
   10 +F 9, 25, 33, 35, 37, 41, 45, 49, 57, 59,  61, 

65, 67, 75, 89, 91, 97, 99, 101, 103, 105, 
107, 111, 115, 121, 123, 125, 134,  

   11 +F 129, 131, 135, 137, 145, 147, 149, 151, 153, 
155, 159, 161, 165, 167, 169, 181, 193, 195, 
211, 215, 225,  

 exp fz   00 +F 14, 18, 46, 58, 84, 114, 116,  
   01 +F 142, 146, 182, 212,  
   01 all 184, 226,  
     10 +F 11, 43, 47, 81, 113, 117,  
   10 all2 27, 39, 53, 83,  
   11 +F 139, 143, 163, 177, 183, 209, 213,  
 BW  00 +F 28x, 70x, 108,  
   01 +F 156, 198,  
   01 all 204,  
   10 +F 73x, 109x,  
   10 all2 51,  
   11 +F 157x, 199x, 201,  
 exp  00 +F 50,  
   01 +F 178,  
   +(10) -F 23,  
   +01+ -F 232,  
   10 +F 13, 69, 77, 79, 93,  
   11 +F 179,  
 trav  01 all 170, 240,  
   10 all2 15, 85,  
 expfz1  00 +F 78, 92,  
   01 all 172, 202, 216, 228,   
   11 +F 141, 197,  
 exp fz  00 +F 94,  
   10 all2 29, 71,  
   11 +F 133,  
Homogeneous 1 01+  234, 238, 248, 250, 252, 254,  
   11+  173, 185, 227, 229,  235, 239, 249, 251, 

253, 255,  
 BW  01+  206, 218, 220, 222, 236,  
   11+  203, 205, 207, 217, 219, 221, 223, 233, 237,  
 trav  01+  174, 186x, 188, 190, 230, 242, 244, 246,  
   11+  171, 175, 187x, 189, 191, 231, 241, 243, 

245, 247  
 
 Table II. Long term behavior of Logic 1 fuzzy automata 
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  x or y x and y 

Logic 1 CFMQVS min(1, x+y) x * y 
Logic 2 Max/Min max(x, y) min(x, y) 
Logic 3 Probabilistic x + y - x * y x * y 
Logic 4 MV min(1, x+y) max(0, x +  y -1) 
Logic 5 gcd/lcm gcd(x, y) lcm(x, y) 

    Table III. Five Fuzzy Logics 
 
 Notice that Logic 1 uses a combination of logical functions from Logics 3 and 4. Table IV 
gives some values of these fuzzy logics. Logic 1 has an "or" that is fairly high valued while the 
"and" is fairly low valued. For all the examples in this paper the only initial values are 0, 1/2, and 1. 
Notice that when Logic 1 is restricted to those three values, it is not closed and hence doesn't form a 
trivalent logic. 
 The most classical multivalued logic is Logic 2, which is based on maximum replacing "or" 
and minimum replacing "and". When restricted to the three initial values, the classical trivalent 
Lukasiewicz Logic results [12]. Logic 3 is a probabilistic Logic which does not restrict to a trivalent 
logic. It shares "and" with Logic 1, but "or" has values that are sometimes lower. Logic 4 restricts to 
a trivalent logic, but not any of those mentioned in [12]. The "or" values are shared with Logic 1 but 
there are many more 0 values in the evaluation of "and". 
 Logic 5 is not a logic on the interval [0,1] since it does not map back to the interval [0,1]. 
However, its trivalent restriction is closed which makes it a trivalent logic when restricted to our 
initial values. Its logical "or" is the same as in the Bochvar trivalent logic while the "and" is not 
listed in [12]. We were motivated to consider these gcd/lcm functions as extensions of or/and since 
the gcd/lcm extension of or/and is a compatible extension and many of the same identities are 
satisfied by these function pairs. We have also previously found some remarkable connections 
between classical Sierpinski gaskets, carpets and higher dimensional analogues when one extends 
or/and to gcd/lcm [13]. 
 The qualitative behavior of the versions of fuzzy automata that are produced by these logics 
are diverse. We saw the behavior of rules 17, 125, 73, and 146 with Logic 1 in Figure 1. We believe 
the diversity of this fuzzy automata results in part from two facts. First the logic does not restrict to a 
trivalent logic so that values tend to mix. Second, the repeated input response function, as described, 
has rich behavior for many of these automata. 
 While Logic 2 represents a very common multi-valued logic, one-dimensional fuzzy 
automata produced with this rule tend to have relatively simple behavior. This is forced by the fact 
that the rule restricts to a trivalent rule. Nonetheless, automata can be classified according to whether 
fuzzy behavior dominates or a Boolean region persists. The Boolean regions may have vertical or 
diagonal boundaries. As for Figure 1, the initial configuration is a random Boolean window in a 
fuzzy background of level 0.5. The palette is again given in Figure 2.  
 Figure 4 shows the behavior of these automata using Logic 2 with Rules 17, 125, 73, and 
146. Figure 5 shows Logic 3 used for these rules. The behavior of these probabilistic automata is 
often quite close to the behavior seen for Logic 1 but there is a greater tendency toward 
homogeneous fuzzy behavior. Logic 1 is preferable to Logic 3 if greater qualitative diversity is 
sought. On the other hand, Logic 3 has more uniform definitions and would likely be more amenable 
to analytic study. Even so, in some cases, Logic 3 behavior is quite interesting. For example, Rule 50 
leads to an undramatic expanding Boolean window using Logic 1, and hence represents relatively 
simple behavior. However, Figure 6 shows Rule 50 for Logic 3 where very rich behavior appears. 
 Logic 4 is trivalent when restricted to our initial values and it generates some interesting 
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behaviors as illustrated in Figure 7. Indeed, these behaviors are the most interesting trivalent 
extension that we have seen. Logic 4 on 0 and 0.5 seems closely related to the corresponding 
Boolean rule. In particular, Rule 146 restricted to 0 and 0.5 behaves the same as Rule 146 on 0 1 
except for the case when all three cells are 1. So actually, Rule 146 restricted to 0 and 0.5 behaves 
the same as Rule 18 on Boolean values and the Sierpinski triangle features are known to arise from 
that automaton. Given these remarks, it is perhaps not surprising that the mixture of Logic 3 and 4 
used in Logic 1 seems to create the most diversity. That in turn makes it a good candidate for 
classification of quantitative behavior.  
 Lastly, Logic 5 is also trivalent on our initial values and has relatively modest behavior when 
used for one dimensional automata. The fuzzy values do not dominate and they play little role except 
to provide a window in which the Boolean values can grow. Figure 8 shows Boolean rules 
periodically extended and initially exhibiting three periods. Contrast those purely Boolean rules with 
the Logic 5 fuzzy rules, shown in Figure 9, exhibiting the evolution of a Boolean window embedded 
in an infinite 0.5 domain, as we have studied in our previous examples of fuzzy automata. In Figure 
9, the expanding Boolean regions have more of the global feel of the automata, and seem richer than 
the purely Boolean examples. Indeed we will see below that Logic 5 provides a remarkable growing 
environment for the Game of Life. 
 
5. The Game of Life 
The Game of Life [14,15,16] is a two dimensional Boolean automaton that has local rule defined on 
three by three neighborhoods surrounding a cell. A cell is alive at the next generation if it is 
currently alive and has two or three of its eight neighbors alive or if it is currently dead and has 
exactly three of its eight neighbors alive. Now we can list the eight neighbors of t

jia  and write the 
rule for Life in disjunctive normal form which contains terms like those that follow. 
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The first two terms displayed in that formula require t

jia  to be false and hence there must be exactly 

three of the other cells without negations. Therefore there are 56
3
8
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⎛  terms of this type. The last 

two terms have t
jia  true and so there can be either 2 or 3 other cells without the bar; hence there are 
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⎛  terms of this type yielding 140 terms total. Using the fuzzy interpretation 

for the logical functions described above, we can implement Life embedded in a uniformly fuzzy 
background. 
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Logic 1: CFMQVS 
┌────┬─────────────────────┐┌────┬──────────────────────────┐ 
│ or │   0 0.25  0.5 0.75 1││ and│0   0.25   0.5   0.75    1│ 
├────┼─────────────────────┤├────┼──────────────────────────┤ 
│   0│   0 0.25  0.5 0.75 1││   0│0      0     0      0    0│ 
│0.25│0.25  0.5 0.75    1 1││0.25│0 0.0625 0.125 0.1875 0.25│ 
│ 0.5│ 0.5 0.75    1    1 1││ 0.5│0  0.125  0.25  0.375  0.5│ 
│0.75│0.75    1    1    1 1││0.75│0 0.1875 0.375 0.5625 0.75│ 
│   1│   1    1    1    1 1││   1│0   0.25   0.5   0.75    1│ 
└────┴─────────────────────┘└────┴──────────────────────────┘ 
Logic 2: Max/Min 
┌────┬─────────────────────┐┌────┬─────────────────────┐ 
│ or │   0 0.25  0.5 0.75 1││ and│0 0.25  0.5 0.75    1│ 
├────┼─────────────────────┤├────┼─────────────────────┤ 
│   0│   0 0.25  0.5 0.75 1││   0│0    0    0    0    0│ 
│0.25│0.25 0.25  0.5 0.75 1││0.25│0 0.25 0.25 0.25 0.25│ 
│ 0.5│ 0.5  0.5  0.5 0.75 1││ 0.5│0 0.25  0.5  0.5  0.5│ 
│0.75│0.75 0.75 0.75 0.75 1││0.75│0 0.25  0.5 0.75 0.75│ 
│   1│   1    1    1    1 1││   1│0 0.25  0.5 0.75    1│ 
└────┴─────────────────────┘└────┴─────────────────────┘ 
Logic 3: Probabilistic 
┌────┬──────────────────────────┐┌────┬──────────────────────────┐ 
│ or │   0   0.25   0.5   0.75 1││ and│0   0.25   0.5   0.75    1│ 
├────┼──────────────────────────┤├────┼──────────────────────────┤ 
│   0│   0   0.25   0.5   0.75 1││   0│0      0     0      0    0│ 
│0.25│0.25 0.4375 0.625 0.8125 1││0.25│0 0.0625 0.125 0.1875 0.25│ 
│ 0.5│ 0.5  0.625  0.75  0.875 1││ 0.5│0  0.125  0.25  0.375  0.5│ 
│0.75│0.75 0.8125 0.875 0.9375 1││0.75│0 0.1875 0.375 0.5625 0.75│ 
│   1│   1      1     1      1 1││   1│0   0.25   0.5   0.75    1│ 
└────┴──────────────────────────┘└────┴──────────────────────────┘ 
   Logic 4: MV 
┌────┬─────────────────────┐┌────┬─────────────────────┐ 
│ or │   0 0.25  0.5 0.75 1││ and│0 0.25  0.5 0.75    1│ 
├────┼─────────────────────┤├────┼─────────────────────┤ 
│   0│   0 0.25  0.5 0.75 1││   0│0    0    0    0    0│ 
│0.25│0.25  0.5 0.75    1 1││0.25│0    0    0    0 0.25│ 
│ 0.5│ 0.5 0.75    1    1 1││ 0.5│0    0    0 0.25  0.5│ 
│0.75│0.75    1    1    1 1││0.75│0    0 0.25  0.5 0.75│ 
│   1│   1    1    1    1 1││   1│0 0.25  0.5 0.75    1│ 
└────┴─────────────────────┘└────┴─────────────────────┘ 
Logic 5: gcd/lcm 
┌────┬────────────────────────┐┌────┬─────────────────┐ 
│ or │   0 0.25  0.5 0.75    1││ and│0 0.25 0.5 0.75 1│ 
├────┼────────────────────────┤├────┼─────────────────┤ 
│   0│   0 0.25  0.5 0.75    1││   0│0    0   0    0 0│ 
│0.25│0.25 0.25 0.25 0.25 0.25││0.25│0 0.25 0.5 0.75 1│ 
│ 0.5│ 0.5 0.25  0.5 0.25  0.5││ 0.5│0  0.5 0.5  1.5 1│ 
│0.75│0.75 0.25 0.25 0.75 0.25││0.75│0 0.75 1.5 0.75 3│ 
│   1│   1 0.25  0.5 0.25    1││   1│0    1   1    3 1│ 
└────┴────────────────────────┘└────┴─────────────────┘ 
Table IV. Some Fuzzy Logic Function Values 
 
 When we use our five logics to create various fuzzy versions of the Game of Life, we 
generally see expected behavior given our experience with one dimensional automata. Logic 1 
generates fuzzy automata that tend toward homogeneous fuzzy behavior which in one dimension [5] 
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was consistent with chaotic or complex behavior. It is also true that Logic 2 leads quickly to 
homogeneous fuzzy behavior. Logic 3 leads to homogeneous fuzzy values near 0. Logic 4 becomes 
Boolean and the ordinary Game of Life results. Another fuzzy generalization of the Game of Life 
appears in [17].  
 The most interesting generalization from our viewpoint is Logic 5. It leads to a growing 
Boolean region with fuzzy behavior 1/2 outside the region. The growing edge of the Boolean region 
leads to an alternation between on and off which form waves, in the absence of interference, and 
ultimately these waves interact with the initial Boolean configuration. In Figure 10 we see this fuzzy 
automaton iterated upon a 5 by 5 random initial configuration (generated by the J [8] expression 
?. 5 5$2). Notice that at iterations two to four the alive configuration is rather trivial. By 
iterations 29 and 30 the behavior seems quite complex. There is some appearance of diagonal 
density and the waves near the edges are clearly visible. However, there is remarkably little 
symmetry and the configuration seems to be rather far from settling into any pattern. Figure 11 
shows the status after 100 iterations and [10] has a link to an animation showing the time evolution 
of this 2-dimensional automaton. 
 Much as we did in the one-dimensional situation, we can define the repeated input response 
function for two dimensional automata. For 3 by 3 neighborhoods we need to make all 9 input 
values equal. Because of the discontinuous nature of Logic 5, it is unsuitable for constructing a 
response function. However, the repeated input response function for the Game of Life for two other 
choices of fuzzy logic is shown in Figure 12. The response function for Logic 1 has an attractive 
fixed point near 0.37. Fuzzy Logic 3 has what appears to be a fixed point near 0.25 that is 
tantalizingly close to being a double fixed point. However, the response function falls just short of 
the identity function and so the only fixed point is at 0. Indeed, we see Logic 1 and Logic 3 have 
long term behavior on Fuzzy Life that is completely consistent with our expectations given their 
response functions. 
 
7. Conclusions 
Fuzzy automata offer a mechanism for new classifications of automata and the real dynamics of the 
repeated input response functions for these fuzzy automata can be used for insight into their 
qualitative behavior. The construction of fuzzy automata can be generalized to different fuzzy logics 
and there is no problem in extending the construction to two dimensional automata. Rule entropy 
can also be extended. We have seen that the relationship between rule entropy and the behavior of 
the fuzzy Game of Life are consistent with expectations developed from the one dimensional case 
although the response functions seem more closely related to qualitative behavior in general. 
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Appendix: Rule Entropy 
Rule entropy was defined in [5] and will be explicitly given below. Informally, rule entropy can be 
thought of as a measure based upon the possible outputs of the initial configurations and as such it is 
comparable to the lambda parameter of [6]. However, it uses some of the distribution information in 
one time step rather than just total frequency. Thus, rule entropy would seem to have somewhat 
more information than the lambda parameter but far less than classical entropies that would measure 
the distribution averaged over many time steps after transient behavior is removed. While "rule 
entropy" may not be the best name for this measure of fuzziness, we follow [5] and use that 
terminology. Since there are connections between the lambda parameter and entropy, it is not 
surprising that rule entropy, which is intermediate, is also related to these measures. We consider 
rule entropy in one dimension, compute it for some of our examples and then generalize it to two 
dimensions in a way that allows us to compute the rule entropy for the Game of Life. 
 For one dimensional automata, rule entropy is defined as a sum of left and right entropies; 
each one sided entropy is in turn the sum of level 1 and 2 one-sided entropies that arise by varying 
two or one of the cells on the other side. For convenience we take l

ipr  to be the proportion of states 

with i
r

 as a suffix that result in a one. Then 
)1(log)1()(log ,2,

,
,2,1

l
ba

l
ba

ba

l
ba

l
ba

l ppppH ><><
><

><>< −−+−= ∑  

where a and b can be 0 or 1. We can use the mnemonic that the superscript indicates which side to 
vary and the subscript the number of coordinates to vary. Similarly, 

)1(log)1()(log 222
l
a

l
a

a

l
a

l
a

l ppppH ><><
><

><>< −−+−= ∑ . 

Then the left rule entropy is lll HHH 21 += . The right entropy is defined in an analogous manner: 
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we take r
ipr  to be the proportion of states with i

r
 as a prefix that result in a one. Then 

)1(log)1()(log ,2,
,

,2,1
r

ba
r

ba
ba

r
ba

r
ba

r ppppH ><><
><

><>< −−+−= ∑  

and 
)1(log)1()(log 222

r
a

r
a

a

r
a

r
a

r ppppH ><><
><

><>< −−+−= ∑  

and the right rule entropy is rrr HHH 21 += . As an illustration we will compute the rule entropy for 
Rule 17. The vector index >< 0,0  is a suffix to both the triples resulting in one, hence 

12
2

0,0 ==><
lp . Likewise, we see 2

0
1,0 =><

lp , 2
0

0,1 =><
lp , and 2

0
1,1 =><

lp  resulting in 01 =lH  since 

for each term either the proportion or its logarithm is 0. Also, 4
2

0 =><
lp  since both true outputs have 

>< 0  as a suffix. We can check 4
0

1 =><
lp  and since 2

1
2

1
22

1 )(log −=  we see 12 =lH . The 
analogous computations on the right are 2

1
0,0 =><

rp , 2
0

1,0 =><
rp , 2

1
0,1 =><

rp , 2
0

1,1 =><
rp  so 21 =lH . 

Also, 4
1

0 =><
rp , 4

1
1 =><

rp  so 62.1))(log)(log(2 4
3

24
3

4
1

24
1

2 ≈+−=rH  and hence 62.3≈rH . The 
table of right and left rule entropies appearing in the paper [5] appear to skip the )(log 4

3
24

3  terms. 
However, this does not substantially impact their conclusions. 

 Table V summarizes the rule entropies for the examples of 
fuzzy automata that we saw in Figure 1. Rule entropies near the 
maximal value of 6 are expected [5] to be associated with 
homogeneous fuzzy behavior, zero rule entropy with expanding 
Boolean windows and intermediate values associated with more 
complex interaction. Here we see Rule 17 has the low rule entropy 
and the Boolean behavior dominates. However, Rules 73, 125 and  
146 all have relatively intermediate rule entropies and fairly 
complex behavior. It is somewhat disappointing that Rule 125 has 
lower rule entropy given the expectation that homogeneous 
behavior corresponds to rule entropy near the maximal value 6. 
This illustrates that it isn't possible to offer a simple threshold on 

rule entropy to distinguish these behaviors. Indeed, we saw that the qualitative behaviors can vary 
quite a lot when the fuzzy logic is changed. Rule entropy can be viewed as a type of entropy that 
does not account for the patterns excluded by the repeated iteration of the rule [3, 18] and in that 
sense is naive. Nonetheless, it is extremely easy to compute and reasonably effective given those 
qualifications.  
 We can define rule entropy for automata in two dimensions in various ways that seem 
compatible with the choice in one dimension. For Boolean automata defined on 3 by 3 
neighborhoods centered on the cell being updated, it seems appropriate to maintain the directional 
distinctions offered in one dimension. Thus, for a 3 by i matrix I, where i is 1 or 2, we define r

Ip  to 
be the proportion of 3 by 3 input configurations with I appearing on the left and which result in life. 
Thus, we basically consider proportions arising from fixing two or one columns on the left. Then 

)1(log)1()(log 2
2by3is

21
r
I

r
I

I

r
I

r
I

r ppppH −−+−= ∑ , 

and 
)1(log)1()(log 2

1by3is
22

r
I

r
I

I

r
I

r
I

r ppppH −−+−= ∑  

 

8.48.4146

6.33125

8.48.473

62.3117

rl HHrule

 

 
Table V. Selected rule 
entropies 
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with rrr HHH 21 +=  as before. Left, top and bottom entropies can be defined in an analogous 
manner. However, by symmetry, these will all be the same for the Game of Life. In order to compute 
the right rule entropy for the Game of Life, we need to consider 26 fixed 3 by 2 arrays for rH1  and 23 
fixed arrays for rH 2 . We can organize our computation as follows: consider the 3 by 2 arrays 
keeping track of whether the center is lit and how many of the other 5 fixed positions are lit. Then 
count the number (out of the eight ways) that the three by three neighborhood can be completed to 
obtain life. 
 In Table VI, C denotes the value of the center, N denotes the number of ones in the other 5 
positions being fixed and U denotes the number of ways those ones can be rearranged in those 5 
positions. For example, when C = 1, N = 1, we need one or two cells lit in the last column (the three 

varied positions). Since 6
2
3

1
3

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛  we have 8
6=r

Ip . Because there are five ways to rearrange 

the fixed noncentral 1, we will obtain five terms with this proportion. 
 In Table VII, we summarize the computations for level 2 rule entropy. In that table, N 
denotes the number of the fixed three positions that contain a 1, U denotes the number of ways to 
rearrange those ones, C0 designates the number of ways to fill in the varied 6 positions to result in 

life if the center must be 0, C1 designates the number of ways to fill 
in the varied 6 positions to result in life if the center must be 1. 
 This results in a rule entropy of 87.46≈rH . The maximal 
possible rule entropy for Boolean 3 by 3 rule is 72 since it is 
possible to create an automata with all 7222 63 =+  values of I 
resulting in 2

1=r
Ip . Thus the normalized rule entropy for the 

Game of Life is approximately 0.65 which is intermediate. The fact 
that it represents complex behavior that tends to settle down after 
many iterations is consistent with our remarks above. 

8
1

8
1

8
4

8
3

8
6

8
3

8
4

8
1

1031
1030
1021
1020
511
510
101
100

r
IpUNC

 

Table VI. Computing level 
1 right rule entropy for 
Life. 

64
2

64
11

64
25

64
30

1113
6532

151031
201010

10 r
IpCCUN

 

Table VII. Computing level 
2 right rule entropy for 
Life. 
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Figure 1.  Rules 17, 125, 73, 146 as fuzzy automata. 
 
 
 
 

 
Figure 2.  Fuzzy automata palette. 
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Figure 3. Repeated input response functions for fuzzy rules 17, 125, 73, 146, 90 and 170. 
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Figure 4.  Rules 17, 125, 73 and 146 using Fuzzy Logic 2. 
 

 
Figure 5.  Rules 17, 125, 73 and 146 using Fuzzy Logic 3. 
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Figure 6.  Rule 50 using fuzzy Logic 3. 
 
 
 

 
Figure 7.  Rules 17, 125, 73 and 146 using Fuzzy Logic 4. 
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Figure 8.  Rules 17, 125, 73 and 146 using Boolean Automata and periodic boundary conditions.  
Three periods are shown. 
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Figure 9.  Rules 17, 125, 73 and 146 using Fuzzy Logic 5. 
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Figure 10.  Nurturing the Game of Life using Fuzzy Logic 5. 
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Figure 11.  The Fuzzy Game of Life after 100 iterations 
 
 
 

 
Figure 12.  Repeated input response function for the Game of Life using Logics 1 and 3. 
 


