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Abstract 

Identifying the historical data that is the best analog with a pattern from which a 
forecast is sought allows time series data to be extrapolated. That technique of best 
analogs is most effective when the data contains underlying deterministic chaos. Here we 
apply similar techniques, modified to use two space dimensions instead of one time 
dimension, to fill-in and extrapolate missing image data. The technique is successful at 
replacing significant amounts of missing data with reasonable data derived from the 
image itself.  
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1. Introduction 

Casdagli explicitly describes [1] a method for extrapolating time series data by 
identifying the best analogs to the current situation as compared with historical data 
patterns regardless of when that historical data pattern occurred. This method of best 
analogs has also been called fractal forecasting [2-4]. A similar idea is implicit in the 
earlier work of Lorenz on approximating growth of errors in weather patterns [5]. In the 
context of time series, the main idea is to assemble a table of windows of a fixed time 
segment length that record the historical patterns that appeared in the time series, and 
then to extrapolate a current time series pattern by utilizing the historical windows most 
like the current pattern (that is, use the best analogs). The technique's effectiveness is 
comparable to other extrapolation techniques used in classical statistics [2], but it seems 
best for situations where there is deterministic chaos in the time series data. It can be 
quite accurate for a dozen or so time steps and remains realistic much longer for time 
series such as the Henon map [3-4]. 
 Sprott [6] showed how to use a probabilistic voter model to create images with an 
appearance similar to a plasma cloud. That probabilistic automaton replaces pixels with 
neighbors, so it is by design coherent both with the original boundary of missing region 
and in the interior of the region. Moreover, his automaton runs quickly. However, the 
local patterns produced do not reflect the local patterns in the image itself and the 
illustrations primarily were images with simple palettes and fractal like regions for each 
color. Iterated function systems use fractal methods to represent image data [7,8] and 
these are known to be able to produce fake details derived from the image itself. 
However, the emphasis for application of iterated function systems appears to be 
compression rather than replacement of missing data.  
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We develop a method using best analogs for the purpose of providing values for data 
missing from 24-bit images. Ideally such an algorithm could create a realistic (but 
nonexistent) image that contains any particular given partial image. For example, it is 
common for digital photographers to expend considerable energy to crop or remove 
undesirable elements from images. When power lines or people are removed from an 
image, it may require considerable effort and time to clone regions to replace the 
removed data in such a way that the boundary between real and cloned data is not 
apparent. Algorithms that automate or mitigate that work would be welcome. The 
technique we describe seems remarkably effective in that way. 

The basic idea of using best analogs on images is simple: create a table of patterns of 
data in the image; for missing pixels on boundaries, find patterns in the table that are the 
best match to the pattern around the missing pixel (the best analog), and then replace the 
missing pixel with data suggested by the best analog. In practice there are many details to 
consider and important ways to greatly reduce the computational effort required.  
  
2. Using Analogs to Forecast Time Series 

Before fully describing the algorithm for using best analogs for replacing missing 
image pixels, we will describe in more detail the algorithm for time series. Suppose we 
have historical time series data kT  for nk ≤≤1  where we might typically expect 
thousands of data points. We can select some window size, w , typically a relatively 
small number, say between 2 and 20. Then we use data windows to create tables of 
historical patterns and the historical result of those patterns. For example, we might take 
all the sets of three successive points in the series as our windows and use the first two 
points in each window as part of a history table of local patterns and the third point is 
used in a result list that could be used for the prediction.  That is, we could create a 
matrix with rows of historical data, },{ 1+= iii TTh , and a list of results, 2+= ii Tr . Given a 
data pattern },{ 21 UUu =  with unknown following term that we want to forecast, we 
identify several of the historical times when the data in ih  best fits u. Then that historical 
data, along with the corresponding results, ir , are used in a least squares linear model to 
predict the term that follows u. Of course, the historical windows can be of various 
widths, the predicted point need not be the next point in the sequence, the number of best 
fits used in the linear model can be varied and the process can be repeated. 

Figure 1 shows the result of this type of forecasting taken from [4]. The first 900 
terms from iteration of the (chaotic) Henon map is used to create 2-step historical data 
with the results being the next element of the sequence. A pair of terms from the Henon 
series is used as an initial pattern for which a forecast is sought (however, that pair does 
not appear in the historical data set -- it appears 50 terms beyond the historical data). For 
each forecast, the best five pairs from the historical data are used and the process is 
repeated using the prediction as the new last element of the data pair. Figure 1 shows the 
Henon sequence and the fractal forecast for 20 terms. The actual Henon sequence is 
shown in green while the predictions are shown in black. Notice the match is visually 
very good for around a dozen steps, and then prediction wanders from the actual pattern, 
but the prediction remains realistic as a portion of the time series data even when the 
match is inaccurate. 
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3. The Basic Algorithm for Best Analogs on Images 
We now suppose we have an image with missing data that has been somehow 

marked. For example, we will usually mark missing data with a magenta color since that 
is an unusual color in nature. Figure 2 shows two images blended into a panorama using 
Autostitch [9]. That application automatically blends the images in a way that attempts to 
remove distortion caused by the different angles used with the camera in the individual 
images. The result produces a region outside of the image data, which we have slightly 
enlarged (to remove edge artifacts) and marked in magenta. Such panoramas can be 
trimmed by selecting the largest rectangular window so that the boundary is not visible in 
the trimmed version. However, such trimming loses a significant portion of the original 
image data. In Figure 2 the sense of the largeness of the rock and some of the puffy white 
clouds would be lost with such trimming. Our goal is to fill the magenta region, which 
amounts to slightly more than one-eighth of the pixels, with realistic data in an automated 
way. If successful, the resulting image would be good enough to use, or at least to allow a 
larger trimmed region to be used. Figure 3 shows an example of the result produced by 
the standard algorithm that we will describe in Section 4. In this section, we focus on a 
basic version of the algorithm. 

We consider all the patches in the image conforming to various patterns. Figure 4 
shows two pattern templates. On the left is a 3 by 3 patch that uses the eight pixels 
marked with an asterisk in order to estimate the location marked with a question mark. 
We denote this pattern ne, for "northeast", the direction of the pixel to be forecast. Of 
course there are analogous patterns given by 3 rotations: se, sw, nw. The second pattern in 
Figure 4 is a portion of a 3 by 4 patch where eight pixels are used to predict the two 
pixels at the positions marked with the question marks. This pattern we denote N, for 
"North". There are analogous E, S and W patterns. For each of the patterns we look at all 
the patches in the image where the marked positions are non-magenta pixels and store 
them in suitable pattern history (the asterisk positions) and result (the question mark 
positions) tables.  

Before describing how we organize the replacement of the missing pixels, we 
describe how to forecast a single missing pixel using the basic algorithm. Suppose we are 
using the forecasting algorithm where a ne pattern is matched; thus we assume that 
history and result tables for ne patterns have been assembled. We search through the ne 
history table for the single historical pattern that is the best fit to the pattern of asterisk 
marked positions under consideration. Rather than using several best patches and a least 
squares fit, we select just one, in order to avoid the graying expected from averaging 
several results. The result of the forecast is the entry in the result list corresponding to 
that best fit of the pattern to the historical table data. That result pixel is then used to 
replace the magenta pixel in the ne corner of the patch. 
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Now we are ready to give an overview of how we organize the basic forecasting 

algorithm. The outline is summarized in Table I. The general algorithm first creates the 
history/result tables for the various patterns we will use. We repeat trying all the patterns 
until the image remains unchanged. We look for all possible opportunities to apply one 
technique, say nw, then apply the technique to those patches and then try another pattern. 
A typical sequence might be to apply nw wherever possible (but not pursuing the new 
opportunities for nw that are generated by new pixels), then applying ne, se, sw, S, E, N, 
and W. and then repeating that process until the image can not be updated.  

Notice that the eight patterns we have described would not allow all patterns of 
missing pixels to be fixed. For example, an alternating checkerboard arrangement of 
known and unknown pixels could not be forecast using our patterns. However, in 
practice, for the types of missing data we used, these patterns are adequate. There are 
several further practical details to change before we describe the standard forecasting 
algorithm that we use, but running the algorithm that we have described so far results in 
an image very much like Figure 3.  
 
4. The Standard Algorithm  

While the basic algorithm described in the previous section is successful, we will 
describe in this section, our "standard algorithm", one that includes modifications to the 
basic algorithm to improve efficiency and the quality. Notice that the number of magenta 
pixels is likely to be substantial in the sense that we will usually be interested in using 
forecasting when 10% or more of the pixels are missing. If only a few scattered pixels 
were missing, replacing them with neighbors would quickly yield a reasonable image. 
Thus, we may think of the number of pixels that need to be forecast as being proportional 
to the number of pixels in the image. Also, the number of patches used to build each of 

Create ne, se, sw, nw history/result tables 
 
Create N, E, S, and W history/result tables 
 
Repeat until there are no changes to the image during a (A)-(H) loop 

 (A) nw pass: 
(i) identify all image patches that match the pattern of known and unknown pixels 
required for a nw forecast 
(ii) attempt to forecast nw each of the patches identified in (i); update pixels when 
successful 

(B) ne pass: repeat (A) for ne patterns 
(C) se pass: repeat (A) for se patterns 
(D) sw pass: repeat (A) for sw patterns 
(E) S pass: repeat (A) for S patterns 
(F) E pass: repeat (A) for E patterns 
(G) N pass: repeat (A) for N patterns 
(H) W pass: repeat (A) for W patterns 

End repeat  
 

Table I. Overview of the basic forecasting algorithm. 
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the history/result tables is also proportional to the number of pixels in the image. By the 
basic algorithm we have described, each pixel forecast would require comparing each 
surrounding patch to all the entries in the appropriate history table in order to find the 
best matching historical pattern. Thus, the number of comparisons required by the basic 
algorithm is expected to be proportional to the square of the number of pixels in the 
original image. Moreover, each pattern contains 8 pixels and hence 24 values when each 
of the RGB values are all considered. Thus, making a comparison of two patterns is 
significantly more arithmetic than comparing two numbers. Running the basic algorithm 
on the 217 by 500 image in Figure 2 takes a couple of hours on a microcomputer. That is 
not an implausible amount of time, but we will describe a variation that allows the time to 
be reduced to a few minutes.  
 In this section we will describe our "standard algorithm". Many variations from this 
standard will be obvious and we will consider some of them. The standard algorithm 
differs from the basic algorithm in three ways: (i) a paletted image is used to greatly 
reduce the number of full color comparisons used, (ii) weights are used to bias the 
imporatance of pixel position, and (iii) the order in which various patterns are applied is 
modified to produce a rough, rapidly changing edge.  
 We begin by creating a 256-color paletted version of the image using quantization 
tools in the Image3 Addon for the programming language J [10-11]. Along with the full 
color history/result tables, we create analogous tables for the quantized image. In Figure 
5 we see the positions shown in Figure 4 with the asterisks replaced by weights. Each 
pattern has two pixel positions marked with weight 4. These are the pixel positions 
closest to the result positions (the question marks). Our plan is to only compare patches if 
the corresponding paletted image patches have the same entry at one or both of the two 
positions marked with a 4. This would offer little (but some) benefit if these comparisons 
had to be done each time a patch was considered. However, the histories of the 24-bit 
images can be pre-organized according to the palettes at those positions. Thus, when we 
have a patch under consideration, the palette entry at the position of a 4 essentially gives 
a pointer to all the full color image patches that we need to compare with our given patch. 
There is some bookkeeping to do (pixels in the quantized image need to be updated), but 
this variation makes the time required for forecasting very reasonable. It is also true that 
organizing the history tables can be done efficiently. In fairness, we note that this 
approach has very substantial memory requirements. The history tables are several times 
larger than the image itself, and we are using several history tables.  
 A practical consideration arises: it may be that there are no patterns in the history 
table with a pixel coming from the required palette. That is, the list of patterns in the 
history table that should be checked can be empty. In that case, our strategy is 
straightforward: do nothing. In our experience, the missing pixel will be forecast later 
using one of the other patterns. 
 The second feature that is part of our standard algorithm is that we weight pixels in 
the patches, somewhat favoring pixels nearer the result positions as more important than 
those further away. More specifically, if >=< 1111 ,, bgrp  and >=< 2222 ,, bgrp  are RGB 
triples, then we take the square of the distance between them to be  
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If the pixels in two patches are given (in some fixed order) by },...,{ 821 pppP =  and 
},...,{ 821 qqqQ =  and the corresponding weights are },...,{ 821 www , then the square of the 

weighted distance between those patches is  
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We select the result from the patch where that weighted distance (squared) is smallest. 
The standard weights we use are those shown in Figure 5.  
 Lastly, we comment on the strategy for controlling the sequence of patterns to be 
used. Doing a ne pass involves identifying all the patches that have the proper sequence 
of known and unknown pixels so that they might be updated using a ne pattern. We do 
not update that list as forecasts are made, but instead move on to using other patterns. We 
only give up on an image if we have applied our entire sequence of patterns and made no 
changes to the image. Some general remarks are in order. Each pattern has its own 
advantages and disadvantages. The patterns that move N or in other directions parallel to 
edges sometime introduce obvious linear artifacts such as vertical streaks in clouds. 
However, there is overhead in running a pattern pass and these horizontal/vertical 
patterns can move entire edges of the image forward in one pass. Thus, they tend to be 
fast when they are satisfactory. The ne and other diagonal patterns tend to do the best job 
of avoiding artifacts, but can not move a rectangular edge outward, and tends to take 
(slow) advantage of the stair-step edges, such as those in Figure 2. Our standard 
algorithm is to mix these by running three rounds of the 4 diagonal passes, followed by 
applying a round of the horizontal/vertical passes restricted to only updating a random 
third of the pixels that could be updated. Thus, steps (A)-(D) from Table I are repeated 
three times, and then only a third of the possible patches from (E)-(H) are used in each 
pattern pass in that sequence. This tends to lead to lots of diagonal processing, but with 
steady outward motion also occurring. Of course, using best analogs forecasting is 
sensitive to these details and for any given image one might well be more pleased with a 
slightly different choice for ordering the passes, using different weights, or selecting a 
different version of the paletted image, but our experience suggests that this standard 
choice is reasonable. Figure 3 shows the result of the standard forecasting algorithm 
applied to Figure 2. A movie consisting of 31 frames, one at the end of each (A)-(H) 
loop, is available at [12]. Some examples illustrating the sensitivity to the small changes 
mentioned above may also be found there. 
 
5. Further Experiments and Some Variants 

As a next experiment, consider the left half of the original image that appeared in 
Figure 2 where a magenta eraser has been used to remove evidence of humans. That is, 
the hiker (Steve), his shadow, and the trail blaze have been marked out. Figure 6 shows 
the input image and the resulting standard forecast. The forecast might be acceptable as it 
is, but it could be improved by erasing any offending smaller region and applying the 
algorithm again. In any case, we view this as a reasonable image of "wilderness" and 
success for the algorithm.  

Figure 7 shows the original image of the right half of Figure 2 with 10 by 10 blocks 
of pixels randomly removed so that 25% of the original image has been removed. The 
bottom half of the image shows the recovery by the standard forecast. While artifacts 



 7

appear, they are not apparent under casual observation and we again consider the forecast 
successful. Figure 8 shows the magnitude of the difference of the original image with the 
forecast shown in Figure 7. We reversed RGB values to enhance visibility of those 
differences; thus, white corresponds to no difference. Notice that there is very little 
difference for the sky but a vague sense of the missing blocks for the foreground. Figure 
9 shows the frequency distribution for the difference in magnitudes (averaged over RBG) 
shown in Figure 8. For example, more than one percent of the forecast pixels were 
perfectly correct and 12% had an average (over RGB values) difference of 1 out of 256. 
Higher average differences appeared, but the data shown represents 93% of the missing 
pixels. Notice that many forecast pixels were little different from their correct values. 

Thus far, we have considered examples where we view our forecasting as having 
been successful. Now we turn to some other illustrations where the algorithm has only 
partial success in order to illustrate the limitations of the algorithm. Figure 10 begins with 
the same original as the previous figure, but a large 160 by 160 square has been removed 
from the center of the 480 by 640 image. The standard forecast may improve things, but 
it leaves disturbing artifacts near the center. This illustrates that the algorithm does not 
force interior coherence and probably is more effective at extrapolation as compared to 
interpolation. Still, one could again erase any offending portion and apply the algorithm 
again on a smaller unknown region. Figure 11 shows the magnitude of differences of the 
original image with the forecast. Note that the central missing square is apparent and 
some of its central portions are quite dark, which is indicative of the poorness of the fit. A 
histogram showing the distribution of the average differences appears in Figure 12. In 
this case 87% of the data is shown and the shift, compared to Figure 9, of the differences 
upward may be observed.  

Figure 13 shows the image from Figure 2 with the boundary widened so that more 
than half the pixels are unknown. We do not consider this a test of meeting our goals, but 
rather a test of how far the idea might be carried. Here we use a variant on the standard 
algorithm where we apply two rounds of the (A)-(D) passes of the diagonal patterns 
(versus three rounds in the standard algorithm). Notice that the image is not outrageous. 
However, there are small amusing artifacts such as a piece of Steve's head floating in the 
brush on the left. A new trail marker and piece of his elbow appears on the rock toward 
the bottom right of the figure.  

Figure 14 shows an alternate scheme used to extrapolate the same wide boundaries as 
appeared in the source in Figure 13. Here an initial threshold of 500 was set and if the 
weighted square of the distance between patches was not less than that threshold, the 
pixel was not updated. If running through the pattern sequence loops made no changes, 
the threshold was raised by a factor of 2 and processing continued. The pattern sequence 
did one loop of the horizontal/vertical loops and then 3 of the diagonal loops. Notice that 
using thresholds resulted in very good fits being used for almost all pixels, forcing 
significant regions to be cloned. The price paid for that fine detail is that the boundaries 
between those cloned regions are obviously unnatural. We also see evidence of the 
streaking in the clouds that occurs when N is a dominant pattern. Nonetheless, we 
consider the idea of thresholds to be very interesting. 
 
Conclusion 
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Forecasting using best analogs is a simple technique for using good matches to patterns in 
historical data to forecast from similar data. We have seen that basic idea can be used to 
forecast data missing from images. Several details beyond those basic ideas can be used 
to make the algorithm run quickly and to improve its results. We have seen the success of 
the resulting algorithm for modest extrapolation and on images with scattered small 
regions of missing data.  
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Figure 1. Time series best analogs forecast for the Henon map. 
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Figure 2. A panoramic image with missing pixels along the edge. 
 
 

 
Figure 3. The standard forecast of the panoramic image from Figure 2. 
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Figure 4. The northeast and north patterns used for the history tables. 
 

 
Figure 5. The northeast and north weighted patterns. 
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Figure 6. Removal of human artifacts via the standard forecast.  
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Figure 7. Recovery of 25% of an image via the standard forecast.  
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Figure 8. Magnitude of differences of the original and the forecast from Figure 7. 
 

 
Figure 9. Distribution of average differences of the original and the forecast pixels from 
Figure 7.
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Figure 10. The standard forecast leaves artifacts in large interior regions.  
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Figure 11. Magnitude of difference from original for Figure 10. 

 
Figure 12. Distribution of average differences of the original and the forecast pixels from 
Figure 10. 
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Figure 13. Forecast of more missing pixels than original pixels.  
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Figure 14. Using thresholds for the forecast.  
 
 


