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Abstract 
 
Interacting populations exhibit complex behavior in nature. Classic quadratic iteration 

models with two or three populations exhibit some of the features seen in nature, but fail to 
account for spatial variation. Indeed, the diversity paradox is that many classic population 
models predict one species dominates while nature exhibits diversity. While various schemes 
have been presented to address this dilemma, we present a simple, deterministic cellular model 
that incorporates classic iteration schemes and a spatial migration component that provides for 
self-organizing and rich behavior. Our visualization method allows us to observe dynamically 
changing predominance of species, global diversity, waves of species progression, and highly 
organized spiral structures. 
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1. Introduction 

 
The population levels of species in some ecosystems may fluctuate over time in fairly 

regular intervals. Classic illustrations of this phenomenon can be seen in fur records collected by 
the Hudson’s Bay Company Northern Department. Figure 1 shows lynx population data from [1] 
with muskrat population data from [2] from 1821 to 1891. Note that there is an approximate 
cycle of ten years and that peaks of the lynx population roughly correspond to troughs of the 
muskrat population. This observation provides motivation for studying predator-prey differential 
or difference equations since they can exhibit linked oscillating populations [3-5]. However, they 
do not exhibit the diversity in time and space observed in nature. Ecologists are well aware of the 
diversity paradox and that spatial variation [6-9] and disturbances [10] play an important role in 
population dynamics. 
 Cellular models classically consist of a regular, discrete arrangement of cells taking 
values from a finite set with states updated simultaneously at discrete time steps according to a 
local rule [11,12]. The local rule is the same for each cell and only depends upon the state of 
neighbors in some predefined finite neighborhood. In this paper, we use a square lattice of cells 
with states being lists of the population levels of the multiple species being modeled. Thus, 
unlike traditional cellular automata, we allow each cell to contain a collection of continuous 
states from the real numbers (representing population levels). The local rule we present is 
completely deterministic. It uses a mixing scheme that allows us to simulate migration patterns 
for each species and iteration of a classic system of nonlinear difference equations at each cell. 
The iteration scheme allows for the detrimental or beneficial aspect of interactions of populations 
to be expressed. While the local rule we investigate is unique, the model has similarities to 
coupled map lattices and is in the spirit of many reaction-diffusion models that have been 
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extensively studied [6,7,11,12]. A cellular model is also used in [6] but the iteration scheme is 
different from what we examine.   
 We thus investigate a multispecies population model that accounts for both interspecies 
and spatial interactions. Our visualization scheme allows for multiple population levels to be 
simultaneously viewed throughout the area used for the simulation. We will see that rich 
behavior may arise, population levels may oscillate, waves of predominant species may sweep 
across the landscape, succession of species may be observed, and in certain situations, highly 
organized spirals may develop from random configurations. 
    
2. Classic cellular models exhibiting rich behavior 

 
Before presenting our population model, we consider two known examples of cellular 

models that exhibit self-organizing behavior. We do this in order to have examples of complex 
behavior that utilize simple, but different modeling strategies. First is a discrete probabilistic 
cellular automaton known as the WATOR model [11]. Each cell in the lattice represents a single 
fish, shark, or an empty cell (i.e. water). Fish swim at random to an adjacent unoccupied cell and 
breed one of their kind after a specified number of generations. Sharks also swim at random to an 
adjacent cell that is either unoccupied or occupied by a fish. Each shark breeds one of its kind 
after a certain number of generations. Sharks also have to eat fish in order to survive; if a shark 
does not eat any fish in a specified number of generations, it will die. The behavior of the model 
depends on four parameter values, but with suitable choice of parameters and initial conditions, 
an increase in the number of fish leads to an increase in the number of sharks and the increase in 
the number of sharks leads to the decrease in the number of fish, thus achieving global balance 
but local diversity. Figure 2 shows an image from a simulation of WATOR with random initial 
conditions. The model exhibits self-organizing behavior, but it is agent based and uses random 
choices in the update process. 

The second example is the hodgepodge machine. It is a deterministic continuous cellular 
automaton in which each cell in the lattice can be healthy (value 0), infected (value between 0 
and 1) or ill (value 1). Each healthy cell becomes infected if a threshold of infection among 
neighbors is exceeded and each ill cell becomes healthy at the next time step. Infected cells have 
a tendency to increase their level of infection at each time step. Figure 3 shows an example after 
200 steps of the hodgepodge machine applied to a random initial configuration from [13]; notice 
that the hodgepodge machine self-organized into dramatic spirals. Details of the update rule and 
parameters may also be found in [13]. 

Like WATOR, the model we present in the next section allows there to be patches of 
changing dominant population. However, our model is deterministic. Like the hodgepodge 
machine, it can also produce self organization. However, since our scheme is multi-species, it 
can exhibit succession of species. It can also produce stability and extinction.  
 
3. Population dynamics with spatial mixing for two species 

 
In the multispecies population model we are presenting, each cell represents the 

population levels of predator(s), prey or resource(s). These will be updated according to pre-
defined local rules. For simplicity, we first describe our model in the case where there are two 
populations. Let JIxx ,=  denote the level of the prey population in cell (I, J) and JIyy ,=  the 
level of the predator population in cell (I, J). Our local update rule consists of two stages. First, 
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each of the population levels is averaged in a weighted manner over the immediate 3 by 3 
neighborhood around the cell. This provides for migration or diffusion of populations. We let 

xm  and ym  denote migration coefficients for x and y. We compute the local average x value for 
each cell by taking xm  times the average over the 3 by 3 neighborhood plus xm−1  times the 
center cell. We do likewise for the other populations. Specifically, in the first phase we compute 
the following.  
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The second phase is motivated by the difference equations of Lotka-Volterra type [3-5,7] 
that can then be used to describe the interspecies interactions. For example, the changes in 
population levels in a predator-prey model have the following form where A is a growth rate for 
the prey, B gives a prey-prey competition factor, C determines the rate at which the prey is 
diminished by interactions, D is a growth (death) rate for the predator, E is the rate at which the 
predator is increased by prey-predator interactions, and F is a predator-predator competition 
term.  
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The classic Lotka-Volterra model is a differential equation analogue of (2) with B = F = 0. 
Classic competition models are similar with different choices of sign.  

The second phase of our local scheme is to update the averaged populations in each 
according to (2). In particular, solving for newx  and newy  in (2) and replacing x and y by the 
averages from (1), our assembled local rule is:  
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 Our convention is to list the parameters in an array with minus signs explicit and the first 
column corresponding to the linear terms. That is, we would write  
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for the above. Figure 4 shows a typical example of a two species system run on a 200 by 200 
arrangement of cells with periodic boundary conditions. Here the intensity of red at a position 
indicates the level of the first (prey) population while the intensity of green shows the level of 
the second (predator) population. Parameters for this system are  
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where 1== yx mm . Initial conditions were a random distribution as will be explained in the next 
section. After 100 steps the two populations have formed distinct patches. By step 200 the 
populations have organized so that there are distinct waves of predators moving into regions of 
high prey concentration. Figure 5 shows the behavior of the two populations in a single cell over 
the 200 steps. The population levels oscillate with the same period but out of phase in a manner 
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reminiscent of Figure 1. Like natural populations, the height of the peaks tends to vary. An 
animation of this cellular model with these parameters may be found at [14]. 
 
4. Fixed points and stability  

In general we consider models with n species. Each cell contains n population levels 
nxxx ,,, 21 K with local averaging and an update rule for ix  involving a linear term for ix  and 

quadratic terms that are ix  times each of the population levels.  
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We can analyze this quadratic iteration scheme as a discrete nonlinear dynamical system. 
Considering and interpreting fixed points and eigenvalues is a standard technique [4,5,7,15]. Of 
course, in our model the mixing plays a significant role. Nonetheless, we can understand some 
behaviors of the iteration scheme mathematically and use that for guidance. The fixed points of 
the system are the points where i

new
i xx = . Thus, the nonzero fixed points of (6) will correspond 

to solutions to the following linear system. 
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For typical choices of jia ,  the system will have a unique nonzero fixed point. The fixed point 
offers some guidance that can be used for selecting the visualization scale or the initial 
configuration. For example, our typical random configuration selects each population uniformly 
between zero and twice the level of that population at the fixed point.  
 Moreover, if the right hand side of (6) is viewed as a vector valued function of the vector of 
population levels, the Jacobian can be computed. The Jacobian is the matrix giving the partial 
derivatives of all the right hand sides with respect to all the variables. The eigenvalues of the 
Jacobian evaluated at the fixed point give an indication of the qualitative behavior that might be 
expected for a pure iteration scheme near the fixed point. For example, if we look at the data for 
the example shown in Figure 4, the fixed point is approximately (5392, 3922). The eigenvalues 
are a complex conjugate pair with magnitude approximately 1.03. Thus we would expect the 
iteration scheme to involve a rotation and slight expansion near the fixed point. Figure 6 shows 
the succession of (x,y) pairs for one cell from the model. The cell begins by moving in toward the 
fixed point and next rotates around it in an expanding fashion. We will see that the migration 
scheme has a great impact on the overall behavior, but we can still use an understanding of the 
iteration scheme to get a sense of scale and to select examples where the eigenvalues of the 
Jacobian of the fixed point would seem to be interesting. In particular, when complex pairs are 
near one in magnitude or when some eigenvalues are smaller than one while others are larger 
would be a good place to look for rich behavior.  

Combining the migration phase with the iteration leads to the following general form for 
our n-species model. Here we use JIix ,,  to denote the level of the ith population in cell ),( JI . 
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Similar to (1), JIix ,,  is a weighted average over the immediate 3 by 3 neighborhood using the 
migration coefficient 

ixm . 
 

5. Population dynamics with spatial mixing for three species 
 
 More complex behavior is observed in three species systems.  Figure 7 shows the 
behavior after 65 and 200 steps for a system with random initial conditions. It shows very typical 
spiral wave formation. Here the three population levels correspond to the intensity of red, green 
and blue. After 65 iterations patches have formed while after 200 spiral wave fronts appear. An 
animation for this example, a script to run the process, and the coefficients may be found at [14]. 
Here the populations might be interpreted as resource, prey and predator and the wave fronts 
have a distinct predator follows prey follows resource ordering.  
 Other choices of parameters and migration schemes may lead to visually uninteresting 
behaviors. The populations may all settle down on the fixed point. Sometimes one population 
becomes extinct and the others behave like one with fewer species. 
  Figures 8-9 both correspond to the exact same coefficients; however, the migration rates 
differ. Figure 8 has migration rates >< 1.0,1,5.0  while Figure 9 has >< 1,5.0,1 . Note that in 
Figure 7 distinct patches appear, but there is only a hint of spirals. The spirals in Figure 9 are 
distinct. Compare these with those from the hodgepodge machine as seen in Figure 3. 
 In our implementation we also forced population levels to be between zero and some 
convenient upper bound. The upper bound played no role in the examples discussed so far, but in 
the next two examples they do play a role. Figures 10 and 11 arise from the same coefficient 
matrix and a random initial condition that is sparse for the second two populations. In Figure 10 
the model is bounded by 216-1 and in practice the first two populations periodically reach the 
bound while the third never reaches it. In Figure 11 the model is bounded by 224-1 and in 
practice the first two populations do not reach the bound but, curiously, the third population does 
periodically reach the bound. The behavior appears less organized and is qualitatively different 
from that seen with the lower bound. 
 
6. Conclusions 
 
A deterministic cellular multispecies population model that iterates the process of migration 
between cells and updating cells according to a quadratic iteration scheme is presented. It gives 
rise to rich self-organizing behavior. We visualize the population levels using different color 
components so that we can observe the interaction of the populations including global diversity, 
and recycling waves of species progression as might be expected in nature. We see single cells 
exhibit out of phase periodic behavior like seen in nature. We also see dramatic, self organized 
spirals appear from random. 
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Figure 1. Lynx furs (blue) and muskrat furs (green, 10s) from the Canadian Northern Department of the 
Hudson’s Bay Company.  
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Figure 2. WATOR model of water-fish-sharks. 

 

 

Figure 3. The hodgepodge machine can exhibit self-organizing spirals. 
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Figure 4. Levels of two populations at time 100 and 200 show predator front formation. 

 

 

Figure 5. Cyclic variations of the predator and prey population levels at a typical cell. 

 

 



 9

 

Figure 6. Phase portrait for the predator and prey population levels at a typical cell. 

 

 

Figure 7. A three-species example at time 65 and 200. 
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Figure 8. Light formation of spirals for one set of migration values.  

 

 

Figure 9. Well formed spirals for another set of migration values. 

 



 11

 

Figure 10. Very distinct spirals for one choice of upper bound. 

 

 

 

Figure 11. Less organized behavior for a higher upper bound. 


