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Abstract 

The Binet formula provides a mechanism for the Fibonacci numbers to be viewed as a 
function of a complex variable. The Binet formula may be generalized by using other 
bases and multiplicative parameters that also give functions of a complex variable. Thus, 
filled-in Julia sets that exhibit escape time may be constructed. Moreover, these functions 
have computable critical points and hence we can create escape time images of the 
critical point based upon the underlying multiplicative parameter. Like the classic 
Mandelbrot set, these parameter space images give a type of atlas into the Julia sets.  
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1. Introduction 

The Fibonacci numbers are given by the sequence 0, 1, 1, 2, 3, 5, 8, 13, ... where each 
term is the sum of the previous two. This sequence can be defined via the recursive 
formulas: 00 =F , 11 =F , and 21 −− += nnn FFF . However, we can also use the well known 

Binet formula [1-3] which may be described as follows. Let 1.618
2

51 ≈+=τ  and 
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51 ≈−=τ  where τ  is the golden ratio and τ  is the algebraic conjugate of τ . 

Then the Binet formula, 
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zF ττ −= , is a complex function that is a generalization 

of the Fibonacci sequence. However, because this function involves the negative baseτ , 
it takes complex values along the real line. Thus, while it gives a generalization to the 
complex domain, it does not give a generalization to the real domain. 

In [4], the escape time of )(zF was examined, and an interesting spiral around the 
origin was observed. This investigation is the final step in a natural progression of 
investigations that began with that observation of a spiral; that was followed by 
considering functions with a multiplicative parameter that made the spiral more dramatic. 
Those functions were then considered with a generalized base. Then, realizing that the 
critical points could be computed, we were ready to study the dynamics of the critical 
points. Thus, in this investigation we study the dynamics of functions similar to the 
function )(zF  that was studied in [4], but with two parameters of generalization. We are 
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able, in a manner analogous to the classic Mandelbrot set, to use the critical point 
dynamics to locate Julia sets with visually rich behavior. 

Specifically, we consider the complex dynamics of functions of the form 
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=τ . While the function 

depends upon the parameters α  and q , we will usually call the function )(zf  for 

brevity. Of course, the Binet formula occurs when 
5

1=α  and 5=q . We will determine 

critical points for these functions and create images of the behavior of the critical point 
relative to the parameterα . These critical point images are an analog of the classic 
Mandelbrot set [5-10], and like the classic Mandelbrot set, we are able to use these 
images to identify values of α that give rise to complicated  filled in Julia sets for these 
families of functions. The function )(, zf qα  is also related to the exponential 

functions zeα ; each of the terms of )(, zf qα  corresponds to an exponential function. The 

dynamics of  zeα  are discussed in [11-12]. 
 
2. The Critical Points 

Given ⎟
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when 1>q , then 0<τ  and hence )ln(τ  is multi-valued. If we formally solve for the 

critical points; that is, solve 0)( =′ zf  for z, we obtain 
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logarithm is multi-valued, there will be many critical points. Nonetheless, we will take z* 
to be the critical point associated with the principal value for )ln(τ  and consider it to be 
the principal critical point. Notice that the principal critical point depends upon q, but not 
upon α .   
 For example, when q = 5 the principal critical point is approximately 
-0.333041+0.702924i. If we consider the iteration of f on the principal critical point for 
differentα , different behaviors occur. For example, when 1=α  the iterates quickly 
become huge, for 1.0=α , the iterates are attracted to the fixed point 0, and when 

i+= 2α , the iterates are attracted to the 4-cycle that is approximately 
1.13105+1.60132i, 1.28108+3.63822i, -2.48557+3.31337i, and -0.316386+0.597539i. In 
the next section we will consider images giving information about these behaviors. 
 
3. Dynamics of the Principal Critical Point   
Figure 1 shows the behavior of principal critical point for q = 5 as the complex parameter 
α is varied. The center of the image corresponds to i67.163.0 +=α  and the width the 
image is 4.5. For each α  corresponding to a pixel position, if iteration of the critical 
point becomes large (1e5), then we consider it to have escaped and those points are 
shown in grayscales, with black being rapid escape and white being slow escape. Color 
(hue) in the portion that remains bounded specifies periodicity of the cycle to which it is 
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attracted. For our images we tested for periodicity using the built-in tolerance of the 
programming language J [13]. It considers floating point numbers equal if the relative 
difference is less than 1544 106.52 −− ×≈  in magnitude. Note that in some cases this could 
lead to incorrect conclusions. For example, it might be found that a point is seen to be in 
a 14-cycle within tolerance while if further iteration were done it would be seen that 
eventually it was in a 7-cycle within tolerance. Thus, we attempt to identify cycle patterns 
quickly, rather than attempting to see if the cycle structure simplifies on further iteration. 
We accept these computations as they are designed but remain aware that the 
periodicities are not examined carefully, simply mechanically with the tolerance scheme 
we have described. We do typically use one further exception: if the real or imaginary 
parts are less than the tolerance, 1544 106.52 −− ×≈ , in magnitude, then we consider that 
part of the complex number to be exactly zero. Using these convergence requirements, 
only one tenth of one percent of the pixels in Figure 1 correspond to values for which the 
behavior was not determined after 32768 iterations. Notice that there are features 
reminiscent of the ordinary Mandelbrot set, such as sequences of buds, and yet there are 
quite a few features that are dramatically different. For example the distorted cyan region 
at the top or the green bud on the left that has a large side bud. 

The large blue portion of Figure 1 corresponds to primarily to points α  attracted to a 
fixed point although that fixed point depends onα . The blue points in the lower circular 
region are attracted to the fixed point 0. Note that while this image highlights the primary 
component of the bounded region, many other smaller components appear in the image 
and many others appear outside the region shown by the image. In particular, more 
regions appear if we expand the domain of the image. Such an image with width 22 is 
shown at [14] and the structure in Figure 1 along with two smaller sets resembling the 
classic Mandelbrot set may be seen.  

The coloring scheme in Figure 1 is such that grayscales show escape time and 
periodicity of iteration of the critical point is shown by hues, using the following 
correspondence: 1-cycles are in blue, 2-cycles are in green, 3-cycles are in cyan, 4-cycles 
are in red, 5-cycles are in yellow, 6-cycles are in orange, 7-cycles are in light green, 8-
cycles are in light blue, 9-cycles are in red-magenta, 10-cycles are in green-blue, 11-
cycles are in purple, 12-cycles are in magenta, and then colors are recycled modulo 12 so 
that 13-cycles would be shown in blue, the same color as 1-cycles. Lighter color shades 
are used when convergence is rapid and darker shades are used when the convergence 
was slow. That convention is the opposite of what we use for the grayscales so that there 
is good contrast at the boundary between those regions. 
 When q = 15, the critical point is approximately -0.38474+0.46808i. Figure 2 shows 
the behavior of the critical point using the same coloring scheme as was used for Figure 
1. Again, position in the image corresponds toα . In Figure 2, the image is centered on 

i1.13.0 +=α  and the image has a width of 3.6. The figure is more symmetric than 
Figure 1 but the cyan bud is still highly distorted.  
 When q = 610 the principal critical point is approximately -0.283905+0.150034i. 
Figure 3 shows the behavior of the critical point in that case; the image is centered at 
1.51i and has width 4.44. The basins that remain bounded now form a much more 
symmetric figure. The upper portion is similar to the ordinary Mandelbrot set, but there is 
substantially more structure that exists beneath it. In general, as q increases, the primary 
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bounded basins appear to become more symmetric. A few dozen further examples and 
zooms into details may be seen at [14].   
 Figure 4 shows a zoom into the region between the lower blue circular bulb in Figure 
2, just above the green bulb; the center is -0.15-0.12i and the width is 0.39. However, for 
this image we used tolerance in cycle checking, but did not force complex parts less than 
tolerance in magnitude to be zero. Thus we see that there is a great deal of ghosting by 
numeric cycles very close to zero within the basin associated with the fixed point at 0.   
 
4. Julia Sets 

Filled in Julia sets are created by taking a fixed function and considering the 
escape/convergence time for initial points that correspond to screen position. Here, we fix 
α  and q in order to get a specific function to iterate. In Figure 5 we show the escape 
and/or convergence time for the filled in Julia set associated with 

i.. 680121030381- +=α  and q = 5 that comes from a distorted green bud seen on the left 
of Figure 1. Here the window is centered at -9.4+9i with a width of 14. The green region 
corresponds to regions with a period 2 attractor and purple corresponds to period one. 
Points corresponding to escape are shown in blue. Notice that the green regions have 
asymmetric arms. The distortion is expected since α  was selected from a distorted bud.  

Figure 6 gives the Julia set for i.-.- 22066402409080=α  when q = 610. The window 
is centered at -0.8 + 9.5i with a width of 0.3. Here points corresponding to 24-cycles are 
shown in green, those corresponding to 1-cycles are in purple, and escape is shown in 
blue. This is a wild, complex Julia set, but no distortion is apparent as would be expected 
since no glaring distortion is apparent in the critical point escape time image for q = 610.  
 Figure 7 shows a spiral associated with a period one attractor. This arises from 

i..- 311764008502650 +=α  and q = 610.  The window is centered at -0.076+5.76i and 
has a width of 1.3248. The period one points correspond to purple arches and escape time 
corresponds to the hues in the spirals. 

Figure 8 shows a spiral associated with a period nine attractor. This arises from 
i..- 25103102024440 +=α  and q = 610.  The window is centered at -0.1288+5.71i and 

has a width of 1.232. The period one points correspond to purple arches and period 9 
points to the red; escape time corresponds to the blue in the spirals.  
 
5. Conclusions 

Generalized Binet functions have a principal critical point that allows for critical 
point escape time images to be created that, like the classic Mandelbrot set, are a guide to 
visually dramatic Julia sets. We have seen that for low values of q, images of the critical 
point dynamics show distortion that carries over to the corresponding Julia sets. For 
larger values of q, the critical point dynamics show much more symmetry, but remain 
more complicated than the classic Mandelbrot set. In all cases we are able to use the 
critical point dynamic images as a guide into filled Julia set images with rich, beautiful 
behavior. 
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Figure 1. Parameter space behavior of the critical point when q=5. The center is 

i67.163.0 +  and the width is 4.5. 
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Figure 2. Parameter space behavior of the critical point when q=15. The center is 

i1.13.0 +  and the width is 3.6. 



 8

 
Figure 3. Parameter space behavior of the critical point when q=610. The center is 1.51i 
and the width is 4.44. 
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Figure 4. Parameter space zoom for q=15 with no fuzz removal. The center is -0.15-0.12i 
and the width is 0.39.  
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Figure 5. A Julia set from a distorted q = 5 bud. The center is -9.4+9i and the width is 14. 
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Figure 6. A q = 610 Julia set with period 24 attractors. The center is -0.8 + 9.5i and the 
width is 0.3. 
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Figure 7. A q = 610 Julia set spiral with period 1 attractors. The center is  -0.076+5.76i 
and the width is 1.3248. 
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Figure 8. A q = 610 Julia set spiral with period 9 attractors. The center is -0.1288+5.71i 
and the width is 1.232. 
 
 
 


