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Abstract -- Classic two dimensional outer totalistic automata such as Conway's Game of Life can be 
generalized to any domain of cells where each cell has eight neighbors.  A circular hyperbolic 
arrangement of cells is described where each cell has eight neighbors and the time evolution of these 
hyperbolic automata are visualized in three dimensions.  Both random and symmetric initial 
conditions are investigated using these techniques leading to insight into typical long term behavior 
and examples of symmetry breaking. 
 
 1. INTRODUCTION 
Cellular automata in two dimensions are typically defined on an infinite rectangular array of cells.  
The essential features of an automaton is that at each generation the state of each cell is updated 
using uniform local rules and the allowed values of the states of cells are from some finite set.  
Perhaps the most famous cellular automata is Conway's Game of Life [1, 2, 3].  This is a two state 
automata with each cell alive or dead at each state according to some simple rules.  Screen savers 
and shareware programs running Conway's Game of Life as an animation are common.  Observers 
quickly see that very complicated behaviors may occur but that the states tend to settle into a simple 
behavior after some iterations.  One also notices that the long term behaviors observed often have 
some local square symmetry that is presumably an artifact of the rectangular arrangement of the cells 
and the symmetric rules. 
  More generally, automata are used in diverse fields such as image processing and for modeling 
a wide variety of behaviors ranging from the growth of a snowflake to the flow of a fluid [4-6] 
though these models may use very large numbers of states.  Often these automata arise as discrete 
approximations to the solution of continuous problems.  A rectangular arrangement of cells is 
usually the most convenient and simplest arrangement to use.  As we have noted, this leads to 
artifacts with square symmetry being common.  Other arrangements of cells would be expected to 
have their own artifacts, but would be more effective for certain models.  In two dimensions, 
triangular and hexagonal domains have been used [4-8].  In particular, hexagonal lattices have been 
seen to be effective for gas automata since square lattice gas automata conserve rotational 
symmetries seen in physical gases [7, 9].  In three dimensions, the Game of Life has several 
proposed analogues [10-11] and three dimensional automata have also been studied on 
nonrectangular lattices [4, 12]. 
 In this note we design a circular hyperbolic array of cells that shares with rectangular designs 
the fact that each cell has eight neighbors.  As we move outward, the number of cells in each ring 
doubles and hence the number of neighbors within a fixed distance of a cell has the hyperbolic 
quality of being exponential rather than quadratic.  One of the advantages of a circular domain is that 
we will see symmetry breaking.  A classic physical example of this behavior is Harold Edgerton's 
“an instantaneous photograph of a ‘splash’ of milk” that appears in Thompson's “Growth and Form” 
[13] and also in [14].  This photograph shows how a droplet of milk with full circular symmetry 
breaks up into a discrete circular pattern with 24-fold symmetry; Thompson [13] also contains 
another photograph showing the situation after the splash subsides and circular symmetry is restored. 
 In our case, we will see initial configurations with cyclic symmetry can break into configurations 
without symmetry followed by some symmetry restoration. 
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 2. STABILITY AND HYPERBOLIC LIFE 
The rules of the Game of Life are fairly simple: a cell that is alive at one generation will be alive at 
the next generation if 2 or 3 of its eight neighbors are alive; a cell that is dead at one generation will 
become alive if it has exactly 3 of its eight neighbors alive; all other cells will be dead at the next 
generation.  This automata is well defined so long as each cell has eight neighbors.  If we imagine 
concentric rings of cells where there is a doubling of the number of cells at each level, then each cell 
naturally has eight neighbors: two at the same level, two at the previous level and four at the next 
level.  Figure 1 shows a configuration of cells with that feature.  Notice that the center needs to be 
handled carefully: if there were a single central cell it would only have two neighbors.  Choosing 
five central cells causes the central cells to also have exactly eight neighbors though the edge 
topology is different for center cells and cells at higher levels.  Nonetheless, all cells have eight 
neighbors and we can uniformly apply the rules of the Game of Life. 
 In order to show cells as circles we use the arrangement of cells shown in Figure 2.  This 
organization highlights the hyperbolic arrangement of cells.  We next consider several 
configurations which are stable in hyperbolic life.  Figure 3 shows four examples.  First notice that a 
complete “ring” isolated from interference is stable since each cell in the ring has 2 neighbors.  A 
two by two block, which we will call “footprints”, as seen on the upper left is stable since each cell 
has 3 neighbors.  The configuration of cells on the upper right, a “paw”, is also stable since each 
cells has 2 neighbors.  Lastly, an “arc” consists of a partial ring with cells hanging off of the end 
toward the center.  Notice that if there were not cells hanging off the ends of the partial ring, then at 
each generation the partial ring would diminish by one cell on each end.  In practice these arcs 
appear, but often the cell at the end is replaced by some more complex structure that yields some sort 
of “compound arc”.  Sometimes these compound arcs fold back on themselves giving a “loop”. 
 In implementing the Game of Life on a rectangular array of cells the choice of boundary 
conditions plays an important role in behavior.  While periodic boundary conditions are the least 
disturbing, it is best to increase the size of the array so that alive cells avoid the boundary.  
Programming this can be quite tricky as configurations know as gliders commonly arise from 
random configurations.  These configurations replicate themselves slightly translated after 4 
generations but this means the diameter of the region containing alive cells may grow without 
bound.  In hyperbolic life, things at first glance are more frightening since the number of cells within 
a distance n of a fixed cell is exponential in n so that one might expect the size of the region 
containing alive cells to grow exponentially with the number of steps.  Indeed, this would be true for 
general hyperbolic automata.  However, notice that each cell outside the central ring has only two 
neighbors at lower levels.  Thus, in hyperbolic life, where new life requires three neighbors, it is 
impossible for a cell become alive if it is outside of the levels currently containing alive cells.  Thus, 
one never needs to expand the size of the domain used in hyperbolic life.  This has the effect that 
hyperbolic life is simpler than the traditional Game of Life since the diameter can not grow without 
bound; however, hyperbolic life is remarkably interesting given its bounded behavior. 
 Figure 4 shows the result of the time evolution of hyperbolic life on a random initial 
configuration.  The time evolution proceeds in an upward direction and colors are used to indicate 
the number of neighbors each alive cell has according to a scheme that is close to the scheme used in 
[15] for the traditional Game of Life: 
   · 0 neighbors: gray 
 · 1 neighbor: red 
 · 2 neighbors: green 
 · 3 neighbors: blue 
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 · 4 neighbors: cyan 
 · 5 neighbors: magenta 
 · 6-8 neighbors: yellow. 
Thus, gray and red cells die, green and blue cells persist to the next generation and cyan, magenta 
and yellow cells die.  Notice that the long term behavior in Figure 4 shows the center cells dying out 
rapidly, footprints appearing in the back left, an arc on the right, a compound arc on the front right 
and two loops.  Figure 5 gives a second example of the result of a random initial configuration: a 
loop, footprints and a paw persist in the long term.  Notice the center is active far longer in this 
example and that a partial ring dies out one cell at a time in the lower left resulting in a green triangle 
with red top.  These examples give an indication of how hyperbolic life tends to reach a stable 
configuration quickly — faster than the traditional Game of Life and reminiscent of the three 
dimensional version of the Game of Life in [11]; nonetheless, nontrivial configurations often appear. 
 
 3. SYMMETRY BREAKING 
One of our goals in investigating hyperbolic life was to observe symmetry breaking. When we 
describe the symmetry of a configuration we are only considering the arrangement of the alive cells. 
Thus we can have 8-fold rotational symmetry by leaving levels 0, 1 and 2 empty and making every  
fifth cell at level 3 alive. Since there are 40 cells at that level, this gives the desired symmetry. In 
general one can also observe reflective symmetries, but we will usually only consider n-fold 
rotational symmetries. For example, Figure 6 shows two iterations of a configuration that has 20-
fold rotational symmetry and that results in a 2-cycle. Notice the inner cells are stable while the cells 
in the outer ring alternate between even and odd positions. 
 Figure 7 shows the first 11 iterations of a configuration that begins with 4-fold rotational 
symmetry. Successive iterations are laid out like English text: across rows. At iteration 2 the 
symmetry has broken to 2-fold and at iteration 4 there is no rotational symmetry (keep in mind the 
innermost ring has 5 cells). At iteration 5 the 2-fold symmetry is recovered and at iteration 6 part of 
the configuration begins a 4-cycle though the four “footprints” don’t stabilize until iteration 8.  
Figure 8 shows 24 stages of the time evolution of the configuration from Figure 7. Notice the 
footprints, the 4-cycle and the 2-fold symmetry. 
 Figure 9 shows the first 11 iterations of a configuration that begins with 8-fold symmetry.  At 
iteration 2 this breaks to 4-fold symmetry, at iteration 3 it is 2-fold and there is no rotational 
symmetry in iteration 4.  However, at iteration 5 there is 4-fold symmetry.  The symmetry then 
breaks, first to 2-fold symmetry and then disappearing. Notice that while there is no rotational 
symmetry in the long term, there is bilateral symmetry. Figure 10 shows the time evolution of this 
configuration. Notice that in the long term it results in a 3-cycle with no rotational symmetry though 
the bilateral symmetry persists. 
 
 4. COMPUTATIONS, OBSERVATIONS AND CONJECTURES 
We implemented hyperbolic life in the programming language J [16] and we piped the output, in the 
style of [17], to the raytracer POVRAY [18] to create the color images. J is a high level dialect of 
APL that is functional and ASCII based; nonetheless, like APL code, J code tends to be unreadable 
to readers unfamiliar with the language. On the other hand, the language is fairly easy to learn and it 
provides an effective environment for exploring hyperbolic life. Interested readers are welcome to 
contact the author for J scripts implementing hyperbolic life. 
 We sought examples of symmetry breaking via Monte Carlo explorations of the space of initial 
configurations with specified symmetry and specified size. Our explorations tracked the symmetry 
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breaking, which was too common to be interesting, and also sought out periodic long term behavior 
as seen in the examples in the previous section. 
 Our experience with these explorations suggests the following observations and conjectures.  
We never observed the breaking of 5-fold symmetry. Indeed this must be the case because of the 
symmetry of the rules and the overall 5-fold symmetry of the domain. That is, since we can always 
make a fifth of a rotation a configuration with 5-fold symmetry must maintain that symmetry in the 
next generation. We also only observed configurations with 2n-fold symmetry break by one factor of 
2 yielding 2n-1-fold symmetry. It is also the case that this is true in general. First notice that the only 
rotational symmetries possible are factors of 2n⋅5. If the factor of 5 appears, then this is equivalent to 
having both 5-fold symmetry and 2k-fold symmetry. We have already seen that the 5-fold symmetry 
is preserved. Now suppose that the 2k-fold symmetry occurs on a configuration with alive cells on 
levels j and higher. Any cells at the next generation at level j or higher must have the 2k-fold 
symmetry. If 2k divides the number of cells at level j-1, that is, if k ≤ j-1, then any new cells at level 
j-1 also have the 2k-fold symmetry. If not, then k = j and the arrangement of cells at level j-1 have 2k-

1-fold symmetry. Since the original configuration can also be viewed as having 2k-1-fold symmetry, 
so must the next generation. In summary, the only way for symmetry to break is by a factor of 2 
forced by the lack of sufficient symmetry at a lower level where alive cells are appearing. As we saw 
in Figure 9, it is possible for the symmetry to increase by more than a factor of two.  In our Monte 
Carlo investigations we never observed the symmetry rising from none to 5-fold symmetry. 
However, we see that we can pick a stable configuration with 5-fold symmetry at high levels and put 
four cells at level 0.  One iteration would result in changing from no symmetry to 5-fold symmetry. 
A similar argument shows that any possible rotational symmetry can arise from a configuration 
without rotational symmetry. 
 In our investigations we observed configurations containing n-cycles where n was 1, 2, ..., 8, 
and 13. We see no reason that there are any restrictions on the period sizes; hence we conjecture that 
there are configurations of hyperbolic life that give rise to cycles of each length.  We have seen that 
the active levels of hyperbolic life can not expand and hence there is no hope for a “glider” moving 
off toward infinity. Thus, like the hexagonal (3422) rule in [7] we see rich stable structure without 
apparent gliders. However, it is not clear whether there could be analogs of gliders that would move 
about in a circle. If we imagine a cluster of cells evolving counterclockwise it will need to pass 
through the 5 rays emanating from the origin; refer to Figure 1. It is possible to imagine a sequence 
of steps that might light each cell on the counterclockwise side of a ray. However, none of the cells 
further counterclockwise would have 3 neighbors. Hence there is a barrier if the hyperbolic life 
glider is to avoid the origin. Thus, a hyperbolic life glider would need to be very active near the 
origin and pass life past the barrier from level 0. It would be better to describe such a configuration 
as a spinning arm, rather than a glider. We have found no such configurations, but we conjecture that 
these spinners exist. 
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Figure 1. Circular arrangement of cells with each cell having eight neighbors. 
 

 
Figure 2. Hyperbolic arrangement of circular cells. 
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Figure 3. Some stable configurations for hyperbolic life. 
 

 
Figure 4. The time evolution of hyperbolic life on a first random initial configuration. 
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Figure 5. The time evolution of hyperbolic life on a second random initial configuration. 
 
 

 
Figure 6. A 2-cycle with 20-fold rotational symmetry. 
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Figure 7. Symmetry breaking, restoration and development of 4-cycles. 

 
Figure 8. Time evolution showing symmetry breaking, restoration and development of 4-

cycles. 
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Figure 9. Symmetry breaking and the development of 3-cycles and bilateral symmetry. 

 
Figure 10. Time evolution showing symmetry breaking and the development of 3-cycles and 

bilateral symmetry. 


