
  1

Medley of Spirals from Cyclic Cellular Automata 
Clifford A. Reiter 

Department of Mathematics, Lafayette College, Easton, PA 18042-1781, USA 
(preprint) 

 
Abstract 

Cyclic cellular automata on the integer planar lattice are known to typically evolve 
through distinct phases ending with minimal periodic terminal states that usually appear as 
intertwined spirals. Here we explore the diversity of spirals that arise from nonstandard 
neighborhoods on the integer lattice and from looking at the automata on quasi-crystalline 
arrangements of cells. We see that phase transitions and development of spirals are almost 
ubiquitous yet the particular form of the spirals is very dependent upon the particulars of the 
underlying neighborhoods; in fact the spiral forms echo the neighborhoods. The quasi-crystalline 
illustrations provide much more subtle echoes in the spiral forms that show artifacts from the 
non-periodic local symmetry that occurs.  
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1. Introduction 

A cellular automaton is a collection of cells that in each time step are in a “state”; usually 
the set of allowed states for each cell is finite. The cells are affected by a specific local 
neighborhood and a local rule such that the cells evolve from one time step to the next according 
to the rule. Cellular automata are interesting because of their simplicity and complex behavior 
[1-3]. The most famous automaton is Conway’s Game of Life which was popularized by Martin 
Gardner’s Scientific American columns [4-5]. That automaton runs on the integer lattice with 
nearest eight neighbors and two possible states that are updated according to a simple rule. It is 
intriguing because periodic structures occur, as do moving configurations and generators. In fact, 
it is known to be capable of universal computation [6]. 

Cyclic cellular automata were introduced by David Griffeath [7] and described by 
Dewdney [8] in Scientific American in 1989 where they were called cyclic state automata. We 
will refer to them as cyclic cellular automata (CCA). When CCA are applied to a random initial 
configuration, they typically evolve through distinct phases that have different appearances. The 
end result is visually dramatic, periodic spirals that self-organize. Spiral formation arises in 
physical situations [2-3, 9-10] and in other models [1-3, 7, 10-13]. While not every question 
about these automata can be answered, it is possible to see why organized structures should 
develop, as explained in [7-8, 10], and will be described below. Being able to explain this rich 
behavior is an unusual and wonderful feature of these automata. Generalizations of CCA to 
wider neighborhoods and thresholds has been studied as well [7, 10, 12]. 

A cyclic cellular automaton is defined as an automaton where each cell takes one of N 
states 1,,2,1,0 −NK  and a cell in state i changes to state Ni mod1+  at the next time step if it 
has a neighbor that is in state Ni mod1+ , otherwise it remains in state i at the next time step. 
The most classic CCA are applied on the 2-dimensional integer lattice with von Neuman 
neighborhoods (nearest four NWES neighbors). However, this rule can be applied to any 
configuration of cells and any definition of neighborhood in any dimension. In fact, it can be 
applied to any graph.  
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In this investigation we explore CCA on a rich variety of planar graphs: these include 
several types of nearest-neighbor neighborhoods on the integer lattice and quasi-crystalline 
graphs. There are many kinds of neighborhoods can be formed even in the case where only 
nearest neighbors are considered and the resulting spirals include classical diamonds, squares, 
and variants that echo the neighborhood in an inverted sense. The quasi-crystalline arrangements 
of cells lead to many sided spirals that are echoes of more subtle local symmetry appearing in 
those configurations.  
 
2. Debris, Defects and Demons 
 Before giving definitions, we give a classic illustration. Figure 1 shows CCA using von 
Neuman neighborhoods on a 500 by 500 array of cells. Periodic boundary conditions are used so 
that cells on the right edge have neighbors from the left edge and analogous comments apply to 
the left, top and bottom edges. Four different time steps are shown in Figure 1. The automata 
were implemented in J [14] using the automata templates from [15]. The cyclic cellular automata 
uses 14=N  states and the initial states for each cell are chosen randomly and uniformly from 
those states. The states are shown cyclically with hue, running from red through intermediates to 
green and then blue and magenta as the states run from 0 to 1−N . The upper left portion of the 
figure occurs after 75 time steps and one can observe rough “debris” regions that have not 
substantially evolved and “droplets” of color, with some waves of changes moving across them. 
The upper right shows the result after 150 time steps and we see the droplets cover a majority of 
the region, but some spiral “defects” have begun to evolve. After 225 time steps, shown on the 
lower left, we see many spirals have formed and some of them have grown quite large. Here the 
shortest possible nontrivial periodicity that can occur is 14 and the black pixels mark the edges of 
regions that have repeated with that optimal periodicity. The spirals (defects) that are surrounded 
by black pixels have optimal period, and are called “demons”. The bottom right of the figure 
shows the situation after 975 time steps. At this point the demons have overtaken most of the 
other spirals and the black pixels surround small regions that are defects with periods higher than 
16, which will soon also be overtaken by the demons. Many movies showing the evolution of the 
CCA described in this paper may be found at [16]. Watching the phase transitions evolve 
reinforces the dynamic nature of these processes. 
 Following [7-8] we describe these phases more carefully. The bond between two 
neighbors is open if the difference between their states is Nmod}1,0,1{− . Otherwise the bond is 
closed. Note that once a bond is open it must remain open for all future time. A site is considered 
debris at a given time if it has no open bonds with its neighbors. The connected components of 
the non-debris sites are called droplets. A loop within a droplet using open bonds could possibly 
include only bonds Nmod}1,0,1{− . If one takes a running sum (not mod N) of the differences 
mod N (so each difference is from }1,0,1{− ) along such a loop, then the total must be zero mod 
N since each cell value appears once in a positive and negative sense. Thus, the sum of the 
differences must be a multiple of N. If the multiple is not zero, then the loop is part of a defect. 
That property of the loop will be preserved as the automaton evolves, and each cell in a defect 
must eventually continue cycling through the states KK ,0,1,,2,1,0 −N forevermore; although 
it may take more than one time step between each change of state. Eventually every cell 
neighboring such a loop must cycle. Then their neighbors must cycle. Eventually every cell in 
such a droplet must cycle, and thus the droplet must grow since every neighbor of the droplet 
will eventually join the droplet since the neighbor in the droplet will eventually cycle through all 
values. Of course the speed of such cycling need not be constant until it is part of a demon. If a 
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defect loop runs through all states as efficiently as possible on the lattice (minimal period having 
no unnecessary 0 bonds) then it is a demon. Given random initial states for all the cells on an 
infinite lattice, demons are expected to occur somewhere with probability one. Thus, demon 
domination is the expected long term state. 
 Figure 2 shows zooms into two of the spirals from the end state of the experiment shown 
in Figure 1. The closed bonds are demarcated by black lines. On the left is a demon since if one 
marches around the “L” shaped closed bonds, one moves through the 14 states using 14 cells 
crossing 14 bonds; all those bonds correspond to one level change in state, all the same in a 
positive or negative sense. That property persists for all future times and thus that spiral is a 
demon. The spiral on the right is a defect, but not a demon. Any short path around the closed 
bonds using left-right and up-down bonds requires more than 14 cells and visits yellow and 
violet cells twice. Such a loop must persist but changes can (and will, with probability one) occur 
to the closed bonds so that this region becomes part of a more efficient, minimal period, defect 
that is a demon.  
 However, the arrangement of cells may not allow for a demon loop of length N. For 
example, with von Neuman neighborhoods, it is not possible for a loop to return to itself using an 
odd number of bonds. Thus, if 15=N  then a demon loop must contain at least one bond where 
there is no change in state.  Figure 3 shows this situation where a loop around the closed bonds 
visits light green twice. Also note debris, droplets, defects and demons are all apparent after 255 
time steps.  
 
2. Moore neighborhoods 
 We now turn to discussing other neighborhood patterns using sub-neighborhoods of the 3 
by 3 neighborhood surrounding the cell. We number a 3 by 3 neighborhood so that the center has 
number 4 as shown in Figure 4. Letting P denote the neighborhood pattern, we write 1357=P  
for the von Neuman neighborhoods used in the previous section. The complete Moore 
neighborhood thus has pattern given by 01235678=P . The behavior of the CCA with this sense 
of neighbor is for the most part qualitatively similar that what we saw in Figure 1, but some 
distinctions should be made. Figure 5 shows the 20=N  state evolution at times 63, 105, 147, 
and 231, respectively. Notice the droplet formation, spirals developing, dominating and 
becoming ubiquitous. However, unlike the 1357=P  pattern, the square spirals tend to have their 
edges parallel to the lattice. 
 However, the situation is different when the number of states is different. Notice that on 
the upper left of Figure 6, which corresponds to 8=N , the cells settle into a periodic (period 8) 
pattern that involves grainy patches, but it would be an exaggeration to suggest these are spirals. 
The upper right shows the final periodic state when 16=N  and the lower left shows it for 

26=N . Note that the spirals are much larger when the number of states is larger. We see very 
typical spiral formation in those cases. The lower right show 40=N  and here the evolution 
stops after 96 steps. At this point the number of states has gotten so large that many cells and 
small droplets are surrounded by closed bonds and no evolution continues. Note that this is a 
finite scale effect in the sense that if the array of cells was infinite, with probability one we 
would expect there to be a defect loop somewhere and that would force every cell into a periodic 
state in finite time.  
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3. Restricted Neighborhoods 
 Next we consider the neighborhood 0123567=P  with 20=N , shown in the upper left 
of Figure 7 at a time when the demons are a sound majority. In this neighborhood pattern there 
are no connections running to a cell from the southeast, and hence a spiral wave can not move 
northwest. The result is the truncated spiral shown. On the upper right of Figure 7 we see the  
spirals arising from 012357=P  and 18=N . This time the spirals are truncated on the top left 
and right. The lower left shows 01357=P , 16=N spirals. It is no surprise that if we remove the 
last corner and go to 1357=P  we get the diamond spirals seen in Figure 1. Lastly, the lower 
right portion of Figure 7 shows 0157=P  with 13=N  and we see rather asymmetric spirals 
form. In each case, we see the spiral form is an inverted echo of the neighborhood. 
 In Figure 8 we consider some more extreme patterns. The upper left shows 0268=P  
with 10=N . Note that here cells are only connected diagonally so that alternate squares in a 
checkerboard fashion create two independent arrangements like the von Neumann 
neighborhoods rotated 45 degrees. The upper right shows the pattern 027=P  when 10=N . It 
is quite intriguing to have triangular spirals on a square lattice. For purposes of obtaining defects, 
edges are only “one-way” and loops using those directed edges must have a multiple of four in 
length. In particular, the demons seen here have period 12. Movies showing the development of 
these 027=P  CCA are slightly different due to the few edges [16]. The lower left shows 

135=P  with 9=N where it is not possible for spirals to form since there is no way for a cell to 
increase in state from below. However, given the periodicity of this finite version, droplets form 
and optimal waves develop. That portion of the figure show a state when droplets dominant and 
as the dominating waves begin to develop. In the lower right portion of the figure we have 

015=P  with 8=N ; again no spirals, but optimal waves form on these finite periodic domains. 
 
4. Quasi-crystal neighborhoods  
 We now turn to neighborhoods that have been created by canonical projection. Typically 
these result in graphs with quasi-crystalline structure. These have local patterns, but not global 
symmetry. In special cases ordinary crystalline lattices can be formed and it is also possible for 
very carefully chosen quasi-crystalline arrangements to have a rotational symmetry. Many 
examples of quasi-crystalline patterns arising from canonical projection are shown in [17] where 
a description of the creation process may also be found. Figure 9 shows a quasi-crystalline 
arrangement generated from 5-d that results in patterns with local 5-fold symmetry. While there 
are not any periodicities, any patch that occurs will occur repeatedly in infinite versions of these 
arrangements; this is a special arrangement with a 5-fold rotational symmetry, but due to the 
random nature of the initial conditions, that is of no consequence.  
 For the CCA on such an arrangement, we take the cells to correspond to vertices and 
edges show which cells are neighbors. We created such an arrangement with slightly over 600k 
vertices and render CCA images so that the state of each cell typically shown by the color of one 
or two nearest pixels. The implementation uses clipped boundary conditions in the sense that 
edge cells simply have fewer neighbors than typical interior cells. For example, unlike periodic 
boundary conditions, cells on the right edge are not connected to cells left edge. Figure 10 shows 
the development of the CCA on that arrangement with spiral formation on the left after 78 time 
steps and on the right after 208 time steps. The CCA evolves through the expected droplets to 
defect spirals with demons coming to dominate. Note that on this arrangement of cells, it is not 
possible to have loops using an odd number of edges. Thus, when there is an odd number of 
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states, N , the demons will have periodicity 1+N . Notice that the spirals are much rounder than 
those seen previously, but that there is a 10-sided appearance on close inspection.   
 Figure 11 shows two small patches of the crystalline neighborhoods obtained from 
canonical projection from three and six dimensions. On the left portion of the figure, each cell 
has six neighbors, so this is the classical hexagonal lattice. On the right portion, some cells have 
six neighbors while others have three, so this is a restricted hexagonal lattice. Larger versions of 
these patterns are used to create the CCA illustrated in Figure 12. Here we show the development 
at a time when droplets are still apparent, defects cover most of the image and demons (interior 
of the black marked regions) have begun to develop. In both cases there are 14=N states. On 
the left, 90=t , while on the right, 165=t . Given the fact that there are fewer edges in the 
version on the right, it is reasonable to expect the spirals to take longer to organize. Projection 
from 4-d also gives a crystalline lattice; the same one used to create Figure 1. 
 Figure 13 shows a portion of the quasi-crystalline arrangement of cells that arises from 
canonical projection from 7-d and 8-d. The versions we use for the CCA use over 708k and 126k 
cells respectively. We again consider 14=N  states. Figure 14 shows these CCA after 855 and 
645 steps respectively. At these times the demons are highly developed. The 14-sided spirals on 
the left side of the figure have a very smooth appearance. The 8-sided spirals seen on the right 
side of the figure are somewhat fuzzy due to the fact that several pixels correspond to each cell. 
 We have seen that the CCA using a close sense of neighbor via patterned sub-
neighborhoods of 3 by 3 patches or via arrangements arising from canonical projection typically 
evolve through the droplet, defect and demon phases. The spirals that self-organize are very 
sensitive to the particular neighborhood arrangement and tend to echo the local connection 
configurations. 
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Figure 1. Classic CCA with 14=N  showing droplet formation, spiral formation and demon 
domination. 
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Figure 2. CCA with 14=N . A demon and a non-demon defect with inactive bonds shown in 
black. 
 

 
Figure 3. Demons forming and a demon loop at 255=t  with 15=N ; this demon needs 16 
bonds.  
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┌─┬─┬─┐ 
│0│1│2│ 
├─┼─┼─┤ 
│3│4│5│ 
├─┼─┼─┤ 
│6│7│8│ 
└─┴─┴─┘ 

 Figure 4. Center cell 4 with numbered neighbors. 
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Figure 5. Using 20=N  states and pattern 01235678=P  at times 231,147,105,63=t . 
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Figure 6. Using 40,26,16,8=N  states and pattern 01235678=P  at final periodic times. 
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Figure 7. Neighborhoods using patterns 0123567=P , 012357=P 01357=P  and 0157=P . 
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Figure 8. Extreme patterns 0268=P , 027=P  , 135=P , and 015=P . 
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Figure 9. A quasi-crystal created by canonical projection from 5-dimensions.  
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Figure 10. Spiral formation on a quasi-crystal with 5-fold local symmetry. 
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Figure 11. Crystalline lattices arising from canonical projection from 3-d and 6-d. 
 

 
Figure 12. CCA with 14=N  on crystalline hexagonal lattices. 
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Figure 13. Arrangements of cells from canonical projection from 7-d and 8-d. 
 

 
Figure 14. Spiral formation on a quasi-crystals from canonical projection from 7-d and 8-d. 
 


