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Abstract

Perfect Parallelograms have edge lengths and diagonal lengths that are all
positive integers. These generalize Pythagorean triples which are perfect rect-
angles. We consider the distribution of perfect parallelograms and show they
satisfy a quadratic Diophantine Equation. The solutions to that Diophantine
equation can be generated by a finite collection of matrices that generalizes
the matrix based tree of Pythagorean Triples.

1 Introduction

A classic open problem in number theory is to determine whether there is a perfect
cuboid [3, 5]. That is, is there a rectangular box with edge lengths, face diagonal
lengths and body diagonal length all positive integers? In [3] Richard Guy poses
the question of whether there is a perfect parallelepiped (a three dimensional par-
allelepiped with edge lengths, face diagonal lengths and body diagonal lengths all
being positive integers). Recently perfect parallelepipeds have been shown to exist

1

mailto: reiterc@lafayette.edu
maileto: sawyerj@lafayette.edu


Figure 1: Number of Perfect Parallelograms with largest edge x1 versus x1.

[8]. That paper used assemblies of perfect parallelograms in order to find the perfect
parallelepipeds. Those collections of perfect parallelograms were created by focused
brute force using an efficient representation and were computed using J[7].

In this paper we explore perfect parallelograms in their own right. Figure 1
shows the number of perfect parallelograms with largest edge x1 versus x1. We see
that the number is erratic, but there appears to be a definite trend that is perhaps
slightly more than linear. Figure 2 shows the number of perfect parallegrams with
largest edge length x1 = 2201 and other edge x2 versus x2. For small x2 no perfect
parallelograms exist while for larger x2 up to 15 different diagonal configurations give
perfect parallelograms for the same edge pair. This is quite different from the case
of Pythagorean triangles (perfect rectangles) which have at most one solution for a
fixed edge pair.

Pythagorean triples can be enumerated and described in many ways [6]. One
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Figure 2: Number of Perfect Parallelograms with largest edge x1 = 2201 versus x2.
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remarkeable method involves the multiplication of Pythagorean triples by the matrix

B =

1 2 2
2 1 2
2 2 3


and sign change variants [1, 2, 4]. Matrix generators for sums of squares in higher
dimension [9] have also been found. We define perfect parallelograms as parallelo-
grams that have edge lengths and diagonal lengths that are positive integers. Thus,
Pythagorean triples correspond to perfect rectangles. In this note we will see that
if we generalize the notion of perfect parallelogram, we have a similar collection of
matrix generators. We will also see that perfect parallelograms are the generalized
perfect parallelograms that satisfy one additional linear inequality.

2 Preliminaries

The first theorem states that the edge lengths and diagonal lengths of a perfect
parallelogram satisfy a Diophantine equation.

Proposition 1. Let x1 and x2 be the lengths of the edges of a parallelogram and let
z1 and z2 be the lengths of the diagonals. Then 2x2

1 + 2x2
2 = z2

1 + z2
2.

Proof. Let ~u and ~v be edge vectors for the parallelogram so that ‖~u‖ = x1, ‖~v‖ = x2,
‖~u − ~v‖ = z1, and ‖~u + ~v‖ = z2. Note that ‖~u ± ~v‖2 = ‖~u‖2 ± 2~u · ~v + ‖~v‖2. Then
the result follows from observing that the cross terms cancel: ‖~u+ ~v‖2 + ‖~u− ~v‖2 =
2‖~u‖2 + 2‖~v‖2

Thus any perfect parallelogram gives a positive integer solution to the Diophan-
tine equation 2x2

1 + 2x2
2 = z2

1 + z2
2 . For example, 〈x1, x2, z1, z2〉 = 〈4, 3, 5, 5〉 gives a

solution corresponding to the 3−4−5 right triangle. On the other hand, the Diophan-
tine equation has other solutions, for example 〈x1, x2, z1, z2〉 = 〈3,−2, 5,−1〉, that
do not correspond to a parallelogram. Thus, we define a generalized perfect parallel-
ogram as a list 〈x1, x2, z1, z2〉 of integers, not all zero, such that 2x2

1 + 2x2
2 = z2

1 + z2
2 .

Proposition 1 implies that perfect parallelograms are generalized perfect parallelo-
grams.

If 〈x1, x2, z1, z2〉 is a generalized perfect parallelogram then so is any list where the
signs of the coordinates may be independently switched. We can also interchange
x1 with x2 and/or z1 with z2. Thus we say a generalized perfect parallelogram
〈x1, x2, z1, z2〉 is in standard form if all the coordinates are nonnegative and x1 ≥ x2
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Figure 3: Primitive, Odd, Generalized Perfect Parallelograms with Largest Edge
x1 ≤ 11.

and z1 ≤ z2. Thus, every generalized perfect parallelogram is equivalent (up to sign
changes and like-coordinate switches) to one in standard form. When a generalized
perfect parallelogram 〈x1, x2, z1, z2〉 is in standard form we can call x1 the larger
edge, x2 the smaller edge (these will be the same for a perfect rhombus), and z1

is the minor diagonal while z2 is the major diagonal (these will be the same for a
perfect rectangle).

We say a generalized perfect parallelogram is primitive if the greatest common
divisor of its coordinates is one. Notice that integer solutions to 2x2

1 + 2x2
2 = z2

1 + z2
2

must have z1 and z2 have the same parity (even/odd). Thus, we say a generalized
perfect parallelogram 〈x1, x2, z1, z2〉 is odd if z1 and z2 are odd and we say it is even
if z1 and z2 are even.

Figure 3 shows the primitive, odd, generalized perfect parallelograms in standard
form whose largest edge is 11 or less.

The next theorem gives the condition for a generalized perfect parallelogram to
be a perfect parallelogram.

Theorem 2. Let 〈x1, x2, z1, z2〉 be a generalized perfect parallelogram in standard
form, then it is a perfect parallelogram if and only if x1 < x2 + z1.
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Proof. We see that if 〈x1, x2, z1, z2〉 is a perfect parallelogram in standard form, then
the larger edge must be smaller than the sum of the smaller edge with the minor
diagonal by the triangle inequality, hence x1 < x2 + z1. On the other hand, suppose
we have a generalized perfect parallelogram 〈x1, x2, z1, z2〉 in standard form such that
x1 < x2 +z1. Notice that x2 6= 0 since if x2 = 0 then the inequality we are presuming
becomes x1 < z1 and the Diophantine equation becomes 2x2

1 = z2
1 + z2

2 ≥ 2z2
1 since

standard form requires z2 ≥ z1. This gives a contradiction; hence, x2 6= 0 and x1 6= 0
since x1 ≥ x2 . Next we claim that the following inequalities hold.

0 ≤ x2
1 + x2

2 − z2
1

2x1x2

< 1

Now x1 < x2+z1 implies (x1−x2)
2 < z2

1 which implies
x2
1+x2

2−z21
2x1x2

< 1. The Diophantine

equation gives 2x2
1 + 2x2

2 = z2
1 + z2

2 ≥ 2z2
1 which implies x2

1 + x2
2− z2

1 ≥ 0 showing the
desired quotient is nonnegative. So the claim is true and thus it is possible to find
an angle 0 < θ ≤ π

2
so that we get the following.

cos(θ) =
x2

1 + x2
2 − z2

1

2x1x2

Now let ~u = 〈x1, 0〉 and ~v = 〈x2 cos θ, x2 sin θ〉. We see ‖~u‖ = x1 and ‖~v‖ = x2. Also,
2~u · ~v = 2x1x2cos(θ) = x2

1 + x2
2 − z2

1 so that

‖~u− ~v‖2 = ‖~u‖2 + ‖~v‖2 − 2~u · ~v = x2
1 + x2

2 − (x2
1 + x2

2 − z2
1) = z2

1

which gives ‖~u− ~v‖ = z1 and similarly

‖~u+ ~v‖2 = 2x2
1 + 2x2

2 − z2
1 = z2

2

by the Diophantine equation, and so ‖~u + ~v‖ = z2. Thus ~u and ~v give the edges of
the perfect parallelogram 〈x1, x2, z1, z2〉 as required.

3 Matrix Generators

We begin by defining matrices S and E below. Direct computation shows that
S−1 is the claimed inverse matrix. We will see that muliplication by these matrices
preserves generalized perfect parallelograms. The matrices S and E preserve perfect
parallelograms too.
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S =


2 1 1 1
1 2 1 1
2 2 2 1
2 2 1 2

 S−1 =


2 1 −1 −1
1 2 −1 −1
−2 −2 2 1
−2 −2 1 2

 E =


0 0 0 1
0 0 1 0
0 2 0 0
2 0 0 0


For example, given ~w = 〈2, 1, 1, 3〉 which is a generalized perfect parallelogram in
standard form, then so is S ~w = 〈9, 8, 11, 13〉 while S−1 ~w = 〈1, 0,−1, 1〉 which is
a generalized perfect parallelogram, but not in standard form. Note that we will
freely write vectors either as horizontal lists or column vectors although we will be
consistent in any one context. Also, given the perfect parallogram ~w = 〈4, 3, 5, 5〉
then we also get another: E~w = 〈5, 5, 6, 8〉 and another S ~w = 〈21, 20, 29, 29〉 but
S−1 ~w = 〈1, 0, 1, 1〉 is only a generalized perfect parallelogram.

Proposition 3. Let ~w denote a vector of four integers that are not all zero.
(a) ~w is a generalized perfect parallelogram if and only if S ~w is.
(b) If ~w is a generalized perfect parallelogram in standard form then so is S ~w.
(c) If ~w is a perfect parallelogram in standard form then so is S ~w.
(d) ~w is a generalized perfect parallelogram if and only if E~w is.
(e) ~w is a generalized perfect parallelogram in standard form if and only if E~w is.
(f) If ~w is a perfect parallelogram in standard form then so is E~w.

(g) The map ~W = E~w gives a bijection between the set of primitive odd generalized
perfect parallelograms and the set of primitive even generalized perfect parallelograms.

Proof. Let ~w = 〈x1, x2, z1, z2〉 and ~W = 〈X1, X2, Z1, Z2〉.
(a) Suppose ~W = S ~w. Then direct computataion of the Diophantine equation

(with all terms on one side) verifies that

2X2
1 + 2X2

2 − Z2
1 − Z2

2 = 2(2x1 + x2 + z1 + z2)
2 + 2(x1 + 2x2 + z1 + z2)

2

− (2x1 + 2x2 + 2z1 + z2)
2 − (2x1 + 2x2 + z1 + 2z2)

2

= 2x2
1 + 2x2

2 − z2
1 − z2

2

and hence ~W is a generalized perfect parallelogram if and only if ~w is one.
(b) Suppose ~W = S ~w. Note that X1 ≥ X2 means 2x1 +x2 + z1 + z2 ≥ x1 + 2x2 +

z1 + z2 which is equivalent to x1 ≥ x2 and Z1 ≤ Z2 means 2x1 + 2x2 + 2z1 + z2 ≤
2x1 + 2x2 + z1 + 2z2 which is equivalent to −z2 ≤ −z1 or z1 ≤ z2. Also, the entries
in ~W will be nonegative if the entries in ~w are, and so we see ~W will be in standard
form if ~w is in standard form.
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(c) Suppose ~W = S ~w. In light of (b) and Theorem 2, it suffices to check that
x1 < x2 + z1 implies X1 < X2 + Z1. Note that X2 − X1 + Z1 = (x2 − x1 + z1) +
(2x1 + 2x2 + z1 + z2) > 0 since the left is positive by assumption and the right is
nonnegative.

(d) Suppose ~W = E~w. We suppose ~W = E~w. We see the Diophantine equation
(with all the terms on one side) is

2X2
1 + 2X2

2 − Z2
1 − Z2

2 = 2z2
2 + 2z2

1 − (2x2)
2 − (2x1)

2

= −2(2x2
1 + 2x2

2 − z2
1 − z2

2)

and hence ~W is a generalized perfect parallelogram if and only if ~w is one.
(e) Suppose ~W = E~w. Note that the entries of ~w are nonnegative if and only if

the entires in ~W are and that X1 ≥ X2 means z2 ≥ z1 and Z2 ≥ Z1 means 2x1 ≥ 2x2

so the result follows.
(f) Suppose ~W = E~w. We are assuming that ~w is a perfect parallelogram in

standard form, so we know x1 < x2 + z1 and also z2 < x1 + x2 by the triangle
inequality. Thus z2 < x1 + x2 < 2x2 + z1 so that X1 < Z1 +X2 as required.

(g) First note that if ~w is an odd primitive generalized perfect parallelogram, then
E~w = 〈z2, z1, 2x2, 2x1〉 is even, it is a generalized perfect parallelogram by (d), and it
is primitive since z2 does not have a factor of 2 and any other common prime factor
would contradict the primitivity of ~w. Given an even primitive generalized perfect
parallelogram it would have the form 〈x1, x2, 2s1, 2s2〉 where s1 and s2 are nonnegative
integers. Both x1 and x2 must be odd since the Diophantine equation simplifies to
x2

1+x2
2 = 2s2

1+2s2
2 which implies x1 and x2 have the same parity (even/odd) but both

being even would contradict primitivity. Thus E〈s2, s1, x2, x1〉 = 〈x1, x2, 2s1, 2s2〉 as
required to see the map is onto. It is one-to-one because E is invertible.

We next turn to a technical lemma that we will find useful for the proof of our
main theorem.

Lemma 4. Let 〈x1, x2, z1, z2〉 be a primitive generalized perfect parallelogram in stan-
dard form, then x1 + x2 ≤ z1 + z2 ≤ 2(x1 + x2) and equality is only possible for
〈x1, x2, z1, z2〉 = 〈1, 0, 1, 1〉 and 〈x1, x2, z1, z2〉 = 〈1, 1, 0, 2〉.

Proof. We know the coordinates are non-negative and 2x2
1 + 2x2

2 = z2
1 + z2

2 . The fact
that (x1 − x2)

2 ≥ 0 implies x2
1 + x2

2 ≥ 2x1x2 so that 2x2
1 + 2x2

2 = x2
1 + x2

2 + x2
1 + x2

2 ≥
x2

1 + x2
2 + 2x1x2 = (x1 + x2)

2. So we see (x1 + x2)
2 ≤ z2

1 + z2
2 ≤ (z1 + z2)

2. Taking
roots gives the desired left-hand inequality: x1 + x2 ≤ z1 + z2 where equality can
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only occur for z1 = 0 and x1 = x2. The Diophantine equation implies x1 divides z2

when z1 = 0 and x1 = x2 contradicting primitivity unless x1 = 1. So equality on the
left occurs only for 〈x1, x2, z1, z2〉 = 〈1, 1, 0, 2〉.

By Proposition 3, 〈z2, z1, 2x2, 2x1〉 is also a generalized perfect parallelogram and
it is in standard form. Applying the argument to this generalized perfect parallelo-
gram gives z1 + z2 ≤ 2(x1 + x2) and equality can only hold if x2 = 0 and z1 = z2 = 1
giving 〈x1, x2, z1, z2〉 = 〈1, 0, 1, 1〉

Our main theorem is that all primitive generalized perfect parallelograms can be
produced from the two smallest examples via multiplication by a finite collection
of matrices. Like-coordinate interchanges and sign changes can be accomplished
with matrix multiplication and we need additionally only multiplication by S. The
theorem’s proof goes the other way, it shows that given any primitive, generalized,
perfect parallelogram in standard form, multiplication by S−1 gives a smaller one
unless the vector is one of the two special generators. Sign changes and coordinate
switches can be used to return the result to standard form and then the process is
repeated until one of the two special generators is reached.

Theorem 5. All primitive generalized perfect parallelograms can be produced from
~w1 = 〈1, 0, 1, 1〉 or ~w2 = 〈1, 1, 0, 2〉 by a finite sequence of changes of sign, switches
of like coordinates and multiplication by S.

Proof. Suppose that ~w = 〈x1, x2, z1, z2〉 is a generalized perfect parallelogram and let
~W = S−1 ~w. We claim that ‖ ~W‖ < ‖~w‖ except for the special vectors above where
‖~w1‖ = ‖S−1 ~w1‖ and ‖~w2‖ = ‖S−1 ~w2‖. Those two special cases are easy to verify.
As noted above, proving this claim suffices to prove the theorem. To prove the claim
we consider partitioned arrays and let

I =

(
1 0
0 1

)
, N =

(
1 1
1 1

)
, ~w =

(
~x
~z

)
, ~x =

(
x1

x2

)
, ~z =

(
z1

z2

)
,

~W =

(
~X
~Z

)
, ~X =

(
X1

X2

)
, ~Z =

(
Z1

Z2

)
,

The fact that

(
~x
~z

)
gives a generalized perfect paralelogram means it satisfies the

Diophantine equation and thus
√

2‖~x‖ = ‖~z‖ and
√

3‖~x‖ = ‖~w‖. Therefore to prove

the claim about S−1 reducing vector sizes, it suffies to show that ‖ ~X‖ ≤ ‖~x‖ and

equality holds only for the two special cases noted above. Now ~W = S−1 ~w means(
~X
~Z

)
=

(
I +N −N
−2N I +N

)(
~x
~z

)
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so we see that ~X = (I +N)~x−N~z = ~x+N(~x− ~z) and therefore

‖ ~X‖2 = ‖~x‖2 + 2~x · (N(~x− ~z)) + (N(~x− ~z)) · (N(~x− ~z))

and the last term simplifies using NTN = 2N into

(N(~x− ~z))T (N(~x− ~z)) = 2(~x− ~z) · (N(~x− ~z))

Therefore we get
‖ ~X‖2 = ‖~x‖2 + 2(2~x− ~z) · (N(~x− ~z))

The desired ‖ ~X‖ ≤ ‖~x‖ will hold once we show the last term is not positive.

(2~x− ~z) · (N(~x− ~z)) = (2(x1 + x2)− (z1 + z2))(x1 + x2 − (z1 + z2))

In general (2a− b)(a− b) ≤ 0 if and only if a ≤ b ≤ 2a so we are done if we can show
x1 + x2 ≤ z1 + z2 ≤ 2(x1 + x2). However, that is true by Lemma 4 with equality
holding in the two special cases as required.

Here is an example. Let ~u1 = 〈53, 44, 51, 83〉 which is a perfect parallelogram.
S−1~u1 = 〈16, 7,−9, 23〉 ∼ 〈16, 7, 9, 23〉 = ~u2 where “∼” indicates the vector on

the left has been put into standard form using sign changes and like-coordinate
interchanges.

S−1~u2 = 〈7,−2,−5, 9〉 ∼ 〈7, 2, 5, 9〉 = ~u3

S−1~u3 = 〈2,−3, 1, 5〉 ∼ 〈3, 2, 1, 5〉 = ~u4

S−1~u4 = 〈2, 1,−3, 1〉 ∼ 〈2, 1, 1, 3〉 = ~u5

S−1~u5 = 〈1, 0,−1, 1〉 ∼ 〈1, 0, 1, 1〉 = ~w1, which is one of the generators.
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