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Abstract

A perfect parallelepiped has edges, face diagonals, and body diagonals
all of integer length. We prove the existence of an infinite family of dis-
similar perfect parallelepipeds with two nonparallel rectangular faces. We
also show that we can obtain perfect parallelepipeds of this form with the
angle of the non-rectangular face arbitrarily close to 90◦. Finally, we dis-
cuss the implications which this family has on the famous open problem
concerning the existence of a perfect cuboid. This leads to two conjectures
that would imply no perfect cuboid exists.

1 Introduction

The question of the existence of a 3-dimensional rectangular box with integer
length sides, face diagonals, and body diagonals is an open question referred
to as the perfect cuboid problem. Richard Guy asked a more general question
[1]: “Is there a parallelepiped with all edges, face diagonals and body diago-
nals rational?” Multiplying the lengths of a rational parallelepiped by the LCM
of their denominators gives a parallelepiped with integer length edges, face di-
agonals, and body diagonals, which we call a perfect parallelepiped. The first
example of a perfect parallelepiped was discovered in 2009 by Sawyer and Reiter
[2]. Their initial discovery produced a limited list of specific examples of per-
fect parallelepipeds which had no known structure and no insight as to whether
or not infinitely many dissimilar examples exist. Here we are able to prove
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the existence of infinitely many perfect parallelepipeds by presenting parame-
terizations for an infinite family of dissimilar perfect parallelepipeds with two
nonparallel rectangular faces; that is, at least four of the six parallelepiped faces
are rectangles. We can obtain perfect parallelepipeds such that the angle of the
non-rectangular face is arbitrarily close to 90◦. We offer two conjectures that
together would imply that no perfect cuboid exists.

2 An Infinite Family

2.1 Preliminaries

A rational parallelepiped is determined by three edge vectors, ~u, ~v, and ~w. We
let the lengths ‖~u‖ = |e1|, ‖~v‖ = |e2|, ‖~w‖ = |e3|, ‖~u−~v‖ = |d12|, ‖~u−~w‖ = |d13|,
and ‖~v − ~w‖ = |d23|. We restrict ourselves to cases where ~u is perpendicular
to both ~v and ~w. To do so, we parameterize e1, e2, and e3 in the form of two
Pythagorean triples with e1 shared. In particular, let

e1 = 2p1p2, e2 = p22 − p21, e3 = s((
p1p2
s

)2 − 1), (2.1)

where s is some rational scaling factor which allows for the Pythagorean triple
containing e1 and e3 to be non-primitive. This means we allow it to have some
common factor among its terms. Direct computation [6] verifies

√
e21 + e22 =

p21 + p22 and
√
e21 + e23 = |s|

(
1 + (p1p2

s )2
)
. In this paper,“direct computation”

refers to a computation made in a Mathematica R© notebook found in [6]. Thus,
we let

d12 = p21 + p22 and d13 = s
(
1 + (p1p2

s )2
)

and obtain two edge-matched rectangles with rational diagonals. We allow for
rational values for p1, p2, s, and m with the understanding that the resulting
lengths can be multiplied by the LCM of their denominators to obtain integer
values. Also, we are not concerned with the sign of the ei since the edges are
length |ei|. The only remaining freedom is the choice of the angle between ~v
and ~w. We are able construct the diagonals of a rational parallelogram given
e2 and e3 as its edge lengths by using parameterizations defined by Wyss [4].
Specifically, Wyss defines such diagonals to be

x1 = (e2 + e3)
2m

1 +m2
+ (e2 − e3)

1−m2

1 +m2

x2 = (e2 + e3)
1−m2

1 +m2
− (e2 − e3)

2m

1 +m2

where m is rational. There are additional constraints on the variables to ensure
Wyss’s formulas in conjunction with our formulas for e2 and e3 will produce
realizable parallelograms. We will discuss these constraints later in this sec-
tion when we explore the embedding of the parallelepipeds in R3. By direct
computation [6], we verify that these formulas satisfy the parallelogram law:
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2e22 + 2e23 = x21 + x22.

For our initial parameterization we assume x1 = d23 and obtain:

e1 = 2p1p2, e2 = p22 − p21, e3 = s((
p1p2
s

)2 − 1),

d12 = p21 + p22, d13 =s
(

1 + (
p1p2
s

)2
)
, (2.2)

d23 = (e2 + e3)
2m

1 +m2
+ (e2 − e3)

1−m2

1 +m2
.

We now want to identify conditions so that the body diagonals are rational.
We know from [2] that the body diagonals have the form

D2
1 = −e21 + e22 + e23 + d212 + d213 − d223, D2

2 = e21 − e22 + e23 + d212 − d213 + d223,
D2

3 = e21 + e22 − e23 − d212 + d213 + d223, D2
4 = 3e21 + 3e22 + 3e23 − d212 − d213 − d223.

In the case where the parallelepiped has two rectangular faces, i.e. d212 = e21 +e22
and d213 = e21 + e32, direct computation [6] verifies these quantities reduce to:

D2
1 = D2

4 = −d223 + e21 + 2
(
e22 + e23

)
, (2.3)

D2
2 = D2

3 = d223 + e21.

Figure 1 shows a realizable perfect parallelepiped with the edges shown in
heavy black, the face diagonals with dotting and the body diagonals in light
black.

2.2 The Infinite Parameterized Family

Theorem 2.1. In the parameterization described in Equation 2.2, if we let

p1 = p− 1, p2 = p+ 1, and s = ((1−m2)2−4m2)p
m(1−m2) for rational p and m and avoid

zero denominators, then e1, e2, e3, d12, d13, d23, D1, D2, D3, and D4 will all be
rational.

Proof. Direct computation [6] verifies

D1 =

√
(p2−4mp2−4m3p2+4m5p2+4m7p2+m8p2+m2(1+p2)2+m6(1+p2)2−2m4(1−5p2+p4))

2

m2(−1+2m+m2+m4−2m5−m6)2p2

D2 =

√
(p2+4mp2+4m3p2−4m5p2−4m7p2+m8p2+m2(1+p2)2+m6(1+p2)2−2m4(1−5p2+p4))

2

m2(−1−2m+m2+m4+2m5−m6)2p2

D3 = D2

D4 = D1.
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Figure 1: The edges, face diagonals and body diagonals for a realizable perfect
parallelepiped

4



Similarly, it can be shown that if we let x2 = d23, we will still obtain rational
body diagonals for rational p and m (avoiding zero in the denominators). In
fact, direct computation [6] verifies that the body diagonals obtained with this
change will be the same as those obtained when x1 = d23. Thus, we have a
parameterization of edges and diagonals of:

e1 = 2(p2 − 1) (2.4)

e2 = 4p

e3 =
p2 +m8p2 −m2

(
1 + 10p2 + p4

)
−m6

(
1 + 10p2 + p4

)
+ 2m4

(
1 + 17p2 + p4

)
m (−1 +m2) (1− 6m2 +m4) p

d12 = 2(1 + p2)

d13 = −p
2 +m8p2 − 2m4(1− 21p2 + p4) +m2(1− 14p2 + p4) +m6(1− 14p2 + p4)

m(−1 +m2)(1− 6m2 +m4)p

d23 =
p2 + 4mp2 + 4m3p2 − 4m5p2 − 4m7p2 +m8p2 −m2N1 −m6N1 + 2m4N2

m (−1 +m2) (1 +m2) (−1− 2m+m2) p

where p,m ∈ Q and N1 = 1− 6p2 + p4, N2 = 1 + p2 + p4.

A Mathematica R© program [6], developed by [5], returns the vector coordinates
for the embedding of a parallelepiped in R3 given its edge lengths and a diagonal
length of each face. For the parameterization described in Equation 2.4, the
embedding in 3-space is:

~u = {2
(
−1 + p2

)
, 0, 0} (2.5)

~v = {0, 4p, 0}

~w = {0, j, A
√
h

2m(−1 +m2)(1− 6m2 +m4)p
}

where:

j(p,m) =

1

2m(−1 +m2)(1− 5m2 − 5m4 +m6)2p3
(p4 − 8m2p4 − 8m14p4 +m16p4 +

m8(−6 + 24p2 + 98p4 + 24p6 − 6p8)−m4(1− 4p2 + 10p4 − 4p6 + p8)−m12(1

−4p2 + 10p4 − 4p6 + p8) + 4m6(1− 4p2 + 24p4 − 4p6 + p8) + 4m10(1− 4p2 +

24p4 − 4p6 + p8)),
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h(p,m) =

((3p8 + 3m32p8 − 24m6p4(3 + 45p2 + 334p4 + 45p6 + 3p8)− 24m26p4(3 +

45p2 + 334p4 + 45p6 + 3p8) + 2m4p4(3 + 76p2 + 630p4 + 76p6 + 3p8) +

2m28p4(3 + 76p2 + 630p4 + 76p6 + 3p8)− 8m2(p6 + 12p8 + p10)−
8m30(p6 + 12p8 + p10) +m16(−70 + 560p2 − 640p4 + 32496p6 + 291614p8 +

32496p10 − 640p12 + 560p14 − 70p16) +m8(−1 + 8p2 + 176p4 + 3048p6 +

21398p8 + 3048p10 + 176p12 + 8p14 − p16) +m24(−1 + 8p2 + 176p4 + 3048p6 +

21398p8 + 3048p10 + 176p12 + 8p14 − p16) + 8m10(1− 8p2 + 55p4 + 99p6 +

844p8 + 99p10 + 55p12 − 8p14 + p16) + 8m22(1− 8p2 + 55p4 + 99p6 + 844p8 +

99p10 + 55p12 − 8p14 + p16) + 8m14(7− 56p2 + 178p4 − 411p6 + 6874p8 −
411p10 + 178p12 − 56p14 + 7p16) + 8m18(7− 56p2 + 178p4 − 411p6 +

6874p8 − 411p10 + 178p12 − 56p14 + 7p16)− 2m12(14− 112p2 + 827p4 +

7932p6 + 61898p8 + 7932p10 + 827p12 − 112p14 + 14p16)− 2m20(14− 112p2 +

827p4 + 7932p6 + 61898p8 + 7932p10 + 827p12 − 112p14 + 14p16))/((1 +m2)4

(1− 6m2 +m4)2p4A2))

and A(p,m) = (p2 +m8p2 −m2(1 + 10p2 + p4)−m6(1 + 10p2 + p4) + 2m4(1 +
17p2 + p4))2).

We now discuss the restrictions on p and m required for this embedding to
produce realizable rational parallelepipeds.

Lemma 2.2. If p and m are rational values such that p 6= 0,m 6= 0,±1, and
A 6= 0, then the coordinates in Equations 2.5 will all be well defined.

Proof. The terms in the denominators of the aforementioned vectors will be zero
precisely when p = 0,m = 0,m = ±1, A = 0, as well as for several irrational
values of m.

The plot of when A = 0 can be seen in Figure 2 at the end of the section as
the black curve in the white region of the plot.

Lemma 2.3. Given h as defined in Equations 2.5 and rational values for p
and m for which the hypotheses of Lemma 2.2 are satisfied, if h > 0 then the
parameterization described in Equations 2.5 will yield three vectors in R3.

Proof. Assuming p and m are rational and the terms are well defined, it is clear
to see that the majority of the coordinates will be real. The only coordinate
which is not guaranteed to be real is the third coordinate of ~w. We can see,
however, that if the expression under the square root in this coordinate, h, were
positive, then the coordinate would be real. Thus if h > 0, then the vectors
defined by the parameterized edge and diagonal lengths would all be in R3.

Figure 2 at the end of the section displays the region in which h > 0 as
the black shaded region. We can see that the curve described in Lemma 2.2
representing when terms of the vectors may be undefined does not coincide
with this shaded region.
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Lemma 2.4. If the hypotheses of Lemmas 2.2 and 2.3 are satisfied and p 6= ±1,
then the vectors ~u,~v, and ~w will not be coplanar.

Proof. We observe that if the first coordinate of ~u, the second of ~v, and the
third of ~w are not equal to zero, then the three vectors will not be coplanar.
For ~u to be non-trivial, we need p 6= ±1. For ~v to be non-trivial, we need p 6= 0.
For the third coordinate of ~w to be nonzero, we need h > 0 and A 6= 0. Thus by
satisfying the hypotheses of Lemmas 2.2 and 2.3 and the additional condition
p 6= ±1, we ensure ~u,~v, and ~w will not be coplanar.

Theorem 2.5. For rational p and m that satisfy p 6= 0,±1, m 6= 0,±1,
A(p,m) 6= 0 and h(p,m) > 0, the vectors parameterized in Equations 2.6 will
form a realizable rational parallelepiped.

Proof. Let p and m be parameters that satisfy the hypotheses. It is known
that any three vectors in 3-space that are not coplanar form a parallelepiped.
Lemmas 2.2 and 2.3 guarantee the vectors to be well defined and real, and
Lemma 2.4 guarantees them to be not coplanar. Therefore, p and m form
a realizable parallelepiped. Direct computation [6] verifies that under these
conditions the vectors guarantee rational body diagonals, face diagonals, and
edge lengths. Thus, they in fact form a realizable rational parallelepiped.

Thus, our final parameterization of a family of rational parallelepipeds is
given by ~u,~v, and ~w defined as above in Equation 2.5 satifying the above hy-
potheses and with edge, face diagonal and body diagonal lengths given by:

‖~u‖, ‖~v‖, ‖~w‖, ‖~u+ ~v‖, ‖~u− ~v‖,‖~u+ ~w‖, ‖~u− ~w‖, ‖~v + ~w‖, ‖~v − ~w‖, (2.6)

‖~u+ ~v + ~w‖, ‖~u+ ~v − ~w‖,‖~u− ~v + ~w‖, and, ‖~u− ~v − ~w‖.

Further, we note that the lengths of sides and face diagonals are precisely
the absolute values of e1, e2, e3, d12, d13, and d23 given in Equation 2.4.

2.3 Infinitely Many Dissimilar Realizable Perfect Paral-
lelepipeds

To show that our family does in fact contain infinitely many dissimilar realizable
perfect parallelepipeds, we first find parameters that result in a single realizable
perfect parallelepiped.

Theorem 2.6. For the particular values p = 6 and m = 1
5 , the parameterization

in Equations 2.6 yields a realizable perfect parallelepiped.

Proof. Direct computation [6] verifies:
~u = 〈70, 0, 0〉,
~v = 〈0, 24, 0〉, and

~w = 〈0, 5443248244205 ,
1728
√
5369118

244205 〉.
Direct computation [6] verifies:
‖~u‖ = 70, ‖~v‖ = 24, ‖~w‖ = 2352

85 , ‖~u + ~v‖ = 74, ‖~u− ~v‖ = 74, ‖~u + ~w‖ = 6398
85 ,
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Figure 2: Contour plot of regions described in Lemmas 2.2 and 2.3
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‖~u − ~w‖ = 6398
85 , ‖~v + ~w‖ = 3192

65 , ‖~v − ~w‖ = 18216
1105 , ‖~u + ~v + ~w‖ = 5558

65 ,
‖~u + ~v − ~w‖ = 79466

1105 , ‖~u − ~v + ~w‖ = 79466
1105 , and ‖~u − ~v − ~w‖ = 5558

65 . By
multiplying each of these values by the LCM of their denominators, we obtain
a perfect parallelepiped.

To show that this leads to infinitely many dissimilar perfect parallelepipeds,
we fix m at 1

5 and argue that by varying p we achieve the desired result.

Theorem 2.7. There are infinitely many dissimilar perfect parallelepipeds in
a neighborhood of the particular perfect parallelepiped obtained when p = 6 and
m = 1

5 .

Proof. Let p = 6 and m = 1
5 . By Theorem 2.6, we know this gives a realizable

rational parallelepiped. Clearly, based on the embeddings shown in the proof of
Theorem 2.6 the function h, as defined in Equations 2.5, is positive for p = 6 and
m = 1

5 . Since h(p, 15 ) is a rational function in p and defined when p = 6, then it
will be continuous at p = 6. Similarly, the function A, as defined in Equation
2.5, is nonzero for p = 6 and m = 1

5 . A(p, 15 ) is also a rational function in p,
defined when p = 6, so it will be continuous at p = 6. Thus when m = 1

5 ,
there is a neighborhood about p = 6 containing infinitely many rationals for
which Theorem 2.5 is satisfied, and the parameterization produces a rational
parallelepiped. To show that we in fact have infinitely many dissimilar rational
parallelepipeds in this neighborhood, we consider the angle between edges ~v
and ~w. Since the other two edges are always at right angles, two parallelepipeds
with different acute angles between ~v and ~w will be necessarily dissimilar from
one another. By direct computation [6] the cosine of the desired angle for the
particular value p = 6 is c23 = 113401

140777 . The derivative of c23, with respect to p,
at that particular value of p is 77834125

165553752 . Since the derivative is defined at p = 6,
the cosine is continuous and non-constant in a neighborhood of 6. We conclude
that the angle θ23 takes on infinitely many acute values in a neighborhood of
6; hence, there are infinitely many dissimilar rational parallelepipeds in such a
neighborhood. By clearing denominators, the examples remain dissimilar, and
we obtain infinitely many dissimilar perfect parallelepipeds.

We will see in Section 5 that we can choose rational p and m such that the
angle between ~v and ~w is arbitrarily close to 90◦.

3 Symmetries in Parameters

The parameterization presented in Equation 2.6 is valid for any rational p and
m provided that the hypotheses of Theorem 2.5 hold. However, a significantly
smaller domain is required to parameterize all dissimilar examples. Suppose
parameters p, m and p′, m′ parameterize perfect parallelepipeds with lengths
|e1|, |e2|, |e3|, |d12|, |d13|, |d23| and |e′1|, |e′2|, |e′3|, |d′12|, |d′13|, |d′23|, respectively.
Then the resulting parallelepipeds are similar if there exists some scaling factor
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s such that

|e1| = s|e′1|, |e2| = s|e′2|, |e3| = s|e′3|, |d12| = s|d′12|, |d13| = s|d′13|, and |d23| = s|d′23|.
(3.1)

Other cases of similarity are possible; however, we restrict ourselves to this case,
as it is the most frequent.

In the following lemmas, we will use the function notation ei(p,m) to denote
the value of ei when parameters p and m are used and likewise for dij(p,m).
In addition, for real numbers a and b, we let (a, b) be the set of all rational x
satisfying a < x < b.

Lemma 3.1. Every parallelepiped obtained by the vectors parameterized in
Equations 2.6 with parameter values p ∈ (−∞, 0) and m ∈ Q is similar to
a parallelepiped with parameter values p′ ∈ (0, ∞) and m.

Proof. Let p ∈ (−∞, 0) and m ∈ Q. Now let p′ = −p and observe that p′ ∈
(0, ∞). Direct computation [6] verifies that e1(p, m) = e1(p′, m), e2(p, m) =
−e2(p′, m), e3(p, m) = −e3(p′, m), d12(p, m) = d12(p′, m), d13(p, m) = −d13(p′, m),
and d23(p, m) = −d23(p′, m). Thus for the scaling factor of s = 1, Equations
3.1 hold, and we conclude that the parallelepipeds are similar.

Since no realizable parallelepiped has p = 0, we obtain all dissimilar paral-
lelepipeds by restricting ourselves to positive p values.

Lemma 3.2. Every parallelepiped obtained by the vectors parameterized in
Equations 2.6 with parameter values p ∈ (1, ∞) and m ∈ Q is similar to a
parallelepiped with parameter values p′ ∈ (0, 1) and m.

Proof. Let p ∈ (1, ∞) and m ∈ Q. Now let p′ = 1
p and observe that p′ ∈

(0, 1). Direct computation [6] verifies that e1(p, m) = −p2e1(p′, m), e2(p, m) =
p2e2(p′, m), e3(p, m) = p2e3(p′, m), d12(p, m) = p2d12(p′, m), d13(p, m) =
p2d13(p′, m), and d23(p, m) = p2d23(p′, m). Thus for the scaling factor of s =
p2, Equations 3.1 hold, and we conclude that the parallelepipeds are similar.

Again since no realizable parallelepiped has p = 1, we are safe to restrict
ourselves to p values between 0 and 1. We have analogous lemmas for m.

Lemma 3.3. Every parallelepiped obtained by the vectors parameterized in
Equations 2.6 with parameter values p ∈ (0, 1) and m ∈ (−∞, −1) ∪ (1, ∞)
is similar to a parallelepiped with parameter values p ∈ (0, 1) and m′ ∈ (−1, 1).

Proof. Let p ∈ (0, 1) and m ∈ (−∞, −1) ∪ (1, ∞). Now let m′ = −1
m and

observe that m′ ∈ (−1, 1). Direct computation [6] verifies that e1(p, m) =
e1(p, m′), e2(p, m) = e2(p, m′), e3(p, m) = e3(p, m′), d12(p, m) = d12(p, m′),
d13(p, m) = d13(p, m′), and d23(p, m) = −d23(p, m′). Thus for the scaling
factor of s = 1, Equations 3.1 hold, and we conclude that the parallelepipeds
are similar.
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Lemma 3.4. Every parallelepiped obtained by the vectors parameterized in
Equations 2.6 with parameter values p ∈ (0, 1) and m ∈ (

√
2 − 1, 1) is sim-

ilar to a parallelepiped with parameter values p ∈ (0, 1) and m′ ∈ (0,
√

2− 1).

Proof. Let p ∈ (0, 1) and m ∈ (
√

2 − 1, 1). Now let m′ = 1−m
1+m and ob-

serve that m′ ∈ (0,
√

2 − 1). Direct computation [6] verifies that e1(p, m) =
e1(p, m′), e2(p, m) = e2(p, m′), e3(p, m) = −e3(p, m′), d12(p, m) = d12(p, m′),
d13(p, m) = −d13(p, m′), and d23(p, m) = d23(p, m′). Thus for the scaling fac-
tor of s = 1, Equations 3.1 hold, and we conclude that the parallelepipeds are
similar.

Lemma 3.5. Every parallelepiped obtained by the vectors parameterized in
Equations 2.6 with parameter values p ∈ (0, 1) and m ∈ (−1, 1−

√
2) is similar

to a parallelepiped with parameter values p ∈ (0, 1) and m′ ∈ (1−
√

2, 0).

Proof. Let p ∈ (0, 1) and m ∈ (−1, 1 −
√

2). Now let m′ = 1+m
m−1 and ob-

serve that m′ ∈ (1 −
√

2, 0). Direct computation [6] verifies that e1(p, m) =
e1(p, m′), e2(p, m) = e2(p, m′), e3(p, m) = −e3(p, m′), d12(p, m) = d12(p, m′),
d13(p, m) = −d13(p, m′), and d23(p, m) = −d23(p, m′). Thus for the scaling fac-
tor of s = 1, Equations 3.1 hold, and we conclude that the parallelepipeds are
similar.

These lemmas culminate in the following result:

Theorem 3.6. Any rational parallelepiped obtained by the vectors parameter-
ized in Equations 2.6 is similar to a rational parallelepiped obtained by rational
parameters 0 < p < 1 and 1−

√
2 < m <

√
2− 1.

Proof. The theorem follows from Lemmas 3.1, 3.2, 3.3, 3.4, 3.5 and the fact
that no parallelepiped obtained by the vectors parameterized in Equations 2.6
has p = ±1 or p = 0.

For example, direct computation [6] verifies that using p = 1
6 and m = 1

5
give ei and dij that differ from those in Theorem 2.3 by a factor of ±36. The
embedding in this case is given by u =

{
− 35

18 , 0, 0
}

, v =
{

0, 23 , 0
}

, and w ={
0, 453604732615 ,

48
√
5369118

244205

}
which involves a negative entry. However, upon clearing

the denominators in both examples, identical primitive perfect parallelepipeds
appear with: ‖~u‖ = 38675, ‖~v‖ = 13260, ‖~w‖ = 15288, ‖~u ± ~v‖ = 40885,
‖~u ± ~w‖ = 41587, ‖~v + ~w‖ = 27132, ‖~v − ~w‖ = 9108, ‖~u ± (~v + ~w)‖ = 47243,
‖~u± (~v − ~w)‖ = 39733.

4 Methodology

Here we will discuss our methodology in searching for the infinite family of
perfect parallelepipeds we found. Using the initial parameterizations described
in Equation 2.2 we ran brute force computer searches. These searches quickly

11



found the four examples of perfect parallelepipeds with two nonparallel rect-
angular faces which Sawyer and Reiter had discovered [5]. The searches then
yielded an expansive data set for us to work with.

In examining the data, we noticed certain values of m appeared more preva-
lently than others and thus decided to run searches based upon those fixed
values of m. Once we had a sufficient amount of data from such a search, we
created a scatterplot comparing the values of p1 to e1 for each of the rational
parallelepipeds our search produced. Depicted below is the scatterplot for the
case of m = 1

5 . Note that each of the points on the plot represents a rational
parallelepiped obtained through our searches. In attempts to define e1 in terms

20 40 60 80 100 120 140
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10 000

20 000

30 000

40 000

50 000
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Figure 3: Scatterplot of rational parallelepipeds when m = 1
5

of p1, we examined the scatterplot for collections of points that fell along a
single curve. We took samplings of points which appeared related and then fit
a function curve to those points. In several cases we were able to obtain simple
functions giving e1 in terms of p1. For these cases we then were able to plot the
corresponding s versus p1 values and similarly fit curves to the points, obtaining
simple equations giving s in terms of p1. From these equations of e1 and s, the
lengths of the remaining sides could be determined, and they guaranteed ratio-
nal body diagonal lengths. This resulted in several equations of curves which
hit strings of points in the scatterplot. We then compared these equations and
generalized them by introducing a new variable, k, thus leading to a parame-
terization of e1 = 4kp1 + 2p21 and s = 119

30 (k2 + kp1). Repeating this process
for various fixed values of m, we obtained several equation sets parameterizing
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families for fixed m values. Specifically we saw for

m = 1
5 : e1 = 4kp1 + 2p21 and s = 119

30 (k2 + kp1),
m = 1

4 : e1 = 4kp1 + 2p21 and s = 161
60 (k2 + kp1),

m = 2
5 : e1 = 4kp1 + 2p21 and s = 41

210 (k2 + kp1).

We recognized the similarity between each of the cases and sought a way to
generalize the unique factor in s for any valid m value. We discovered that we
could generalize to:

e1 = 4kp1 + 2p21 and s = (1−6m2+m4)
m(−1+m2) (k2 + kp1).

We observed that this parameterization led to all of the equations for the other
edge and diagonal lengths of the shape being homogeneous in p1 and k, which
tells us that the dissimilarity of the resulting parallelepipeds is solely dependent
on the ratio of the values of p1 and k. Thus, by allowing p1 and k to be rational
values, it suffices to set k = 1 in our equations. Additionally, we see that by
allowing the substitution of p1 = p−1, our parameterization becomes symmetric
about zero. This leaves us simply with our current parameterization of

e1 = 2(p2 − 1) and s = (1−6m2+m4)p
m(−1+m2) .

Recall our initial parameterization of Pythagorean triples as seen in Equations
2.1. We have also explored the different possible combinations of how the shared
edge of the two Pythagorean triples, that is e1, could be represented in each of
the two triples. Note that the two legs of a Pythagorean triple can be represented
as 2αβ and α2 − β2. In the family from Equation 2.6, e1 appears in the form
of 2αβ in both of the triples. We have also found infinite families for which it
appears as α2 − β2 in both of the triples, and as 2αβ in one and as α2 − β2

in the other. After further examination, however, it was discovered that these
families were algebraic transformations of the original, and thus not unique. We
checked over a thousand perfect parallelepipeds with two nonparallel rectangular
faces that we discovered using the searches described above and they all can be
produced using Equation 2.6.

Conjecture 4.1. Up to scaling, every rational parallelepipid with at least 2
nonparallel rectangular faces may be found using suitable parameters in Equation
2.6.

5 Notes on the Perfect Cuboid

The infinite family of perfect parallelepipeds we have obtained can also be viewed
as an infinite family of nearly perfect cuboids. The parallelepipeds in this family
are but one right angle from being cuboids. Through our parameterizations we
will be able to give a condition, which if met, would result in the discovery of a
perfect cuboid.

Recall the embedding in R3 defined in Equations 2.5 and note that the three
vectors are mutually orthogonal if j(p,m) = 0. This leads to the following
result.
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Theorem 5.1. There exist rational p and m such that the vectors ~u, ~v, and ~w
yield a perfect rational cuboid if and only if there exist rational p and m with
0 < p < 1 and 0 < m <

√
2− 1 such that j(p,m) = 0.

Proof. First suppose that there exist 0 < p < 1 and 0 < m <
√

2 − 1, both
rational, such that j(p,m) = 0. We need to check that the vectors ~u, ~v, and ~w
satisfy the hypotheses of Theorem 2.5. Clearly we have p 6= 0, p 6= ±1, m 6= 0,
and m 6= ±1. Solving j(p,m) = 0 for p yields eight solutions for p in terms
of m. Four of these solutions guarantee p to be negative and are disregarded.
For each of the four nonnegative solutions, we verify that A(p,m) is nonzero for
all choices of m. Direct computation [6] verifies that in all cases A(p,m) = 0
implies that m is irrational. We conclude A(p,m) is nonzero.

Further, direct computation [6] verifies that for each of the four aforemen-
tioned solutions, h(p,m) evaluates to 4 for all rational m. Thus we conclude
that h > 0, and by Theorem 2.5 the parameters p and m result in a rational
parallelepiped. Since the y coordinate of ~w is zero, we conclude that the vectors
~v and ~w are orthogonal. Thus the rational parallelepiped has three nonparallel
rectangular faces and is a perfect rational cuboid.

Now suppose that there exist rational p and m such that ~u, ~v, and ~w yield
a perfect rational cuboid. By Theorem 3.6, without loss of genrality we may
assume 0 < p < 1 and 1 −

√
2 < m <

√
2 − 1. The vectors ~u, ~v, and ~w are

mutually orthogonal; hence the y coordinate of ~w must be zero, thus j(p,m) = 0.
It remains to show that this cuboid is similar to a perfect rational cuboid with
0 < p′ < 1 and 0 < m′ <

√
2−1. If 0 < m <

√
2−1 we are done. We know m 6=

0. So we may assume 1−
√

2 < m < 0. As above, solving j(p,m) = 0 yields four
viable expressions for p in terms of m. In each case, direct computation verifies
that the parallelepiped generated by p and m is similar to the parallelepiped
generated by p and −m. Thus we let p′ = p and m′ = −m and note that p′ and
m′ are in the desired intervals and generate a perfect rational cuboid.

Conjecture 5.2. There are no rational choices of p and m for which j(p,m) =
0.

While four viable solutions for p in terms of m are produced when solving
j(p,m) = 0, a contour plot reveals that only one of them attains values in the
desired region 0 < p < 1 and 0 < m <

√
2 − 1. The contour plot is given in

Figure 4. The key equation represented by the white curve in the black region
is:

p =

√
−−1+14m4+2m6−m8+

√
G+m2(2+

√
G)

m2(−1+m2)2

√
2

(5.1)

where G(m) = 1− 6m2 − 17m4 + 108m6 − 17m8 − 6m10 +m12.
The plot suggests that ~u, ~v, and ~w yield a perfect rational cuboid if and only

if Equation 5.1 has a solution for rational p and m, 0 < m <
√

2− 1.
In addition, since the cosine of the angle between ~v and ~w is continuous

where it is defined, we have the following result:
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Figure 4: The black region represents the parameter space that yields realizable
parallelepipeds. The thin white curve, given by Equation 5.1, represents the
parameters that yield cuboids.
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Theorem 5.3. We can obtain rational parallelepipeds such that the angle be-
tween ~v and ~w is arbitrarily close to 90◦.

Proof. We obtain these parallelepipeds by picking rational p and m in the valid
(black) region that are sufficiently close the white curve.

For example, direct computation [6] shows that the nonrectangular face in
the parallelepiped corresponding to p = 1

6 , m = 1
5 has an angle of approxi-

mately 36.34 degrees. If we put m = 1
5 into Equation 5.1 and compute a five

term simple continued fraction expansion for the algebraic value p, we obtain
the rational approximation 43

212 . Using that approximation produces a rational
parallelepiped with nonrectangluar face having an angle of approximately 89.98
degrees. Using a 100 term continued fraction expansion and resulting rational
approximation gives an angle that is 90 degrees to 87 decimal places.
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