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1. INTRODUCTION 
 
 In this paper we will consider geometric representations of the iteration of quadratic polynomials 
modulo p.  This is a discrete analogue of the classical quadratic Julia sets which have been the subject of 
much study [3,4].  In particular, let fdm(u(x)) denote the function digraph which has Zm as vertices and 
edges of the form (x,u(x)) where x is an element of Zm.  This digraph geometrically represents the 
function u(x) and paths correspond to iteration of u(x). The function digraphs resulting from squaring 
mod m, fdm(x2), have been studied when m is prime or has a primitive root [1,2,5,10].  In particular, the 
cycle and tree structures have been classified.  In [8] these results were generalized from fdp(x2) to 
fdp(xk) and a correspondence between geometric subsets of the function digraph and subgroups of the 
group of units was established.  Subsequently, most of the results were generalized to general moduli in 
[12]. 
 The aim of our paper is to explore these same ideas for the iteration of general quadratic 
functions instead of powers.  In other words, we will consider fdp(a0 + a1x + a2x2) where a a p0 1, ∈Z and 

a p2 ∈Z* .  It is easy to enumerate the four function digraphs for p = 2 and so we will study the case when 
p is an odd prime.  Although these digraphs do not contain nearly as much symmetry as the previously 
studied cases, it is possible to observe some aspects of their structure.  Consider Figure 1 which shows 
the digraphs resulting from the iteration of x2 and x2 + 1 modulo 13.  Each of those digraphs breaks into 
3 components.  In reading the digraphs note that the cycle contained in each component appears at the 
left and the cycles progress clockwise; that is u(x) appears below x, except for the lowest cycle element 
where u(x) appears at the top.  For noncycle elements, u(x) appears to the left of x in accordance with the 
indicated tree structure.  Notice that the trees associated with each cycle element are uniform for x2 but 
not for x2 + 1. While it seems very difficult to completely determine the tree and cycle structure without 
enumerating the entire digraph, we can determine various things about the structure. 
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 In particular, basic results for general function digraphs are given in Section 2.  There it is 
established that from the p2(p - 1) function digraphs there are at most p digraphs distinct up to 
isomorphism.  In Section 3 we investigate what appear to be tight bounds on number of cycles of a 
given length. The occurrence of cycles containing exactly one and two elements is completely classified. 
In Section 4 we empirically compare these quadratic digraphs to "random" digraphs and this motivates 
our conjecture that there are exactly p distinct quadratic digraphs mod p except, remarkably, for p = 17. 
The quadratic function x2 - 2 plays a special role in real dynamics [4] and in the theory of Mersenne 
primes [7, 9]. In Section 5 we investigate the corresponding family of function digraphs fdp(x2 - 2). The 
geometric form of these digraphs is very structured.  We will see there are remarkable identities 
involving geometric position, addition and multiplication for these digraphs that lead to that rich 
structure. 
 

2.  BASIC RESULTS 
 
 We begin by discussing properties that are common to function digraphs on Zm, and then turn to 
our quadratic function digraphs. 
Proposition 1: Let u:Zm → Zm be a function. 
(a) The out-degree of any vertex in fdm(u(x)) is exactly one.  
(b) The path in fdm(u(x)) resulting from repeated iteration of any given element will eventually lead to a 
cycle. 
(c) Every component of fdm(u(x)) contains exactly one cycle. 
 
 Proof: (a) This follows from the fact that u(x) is a function. 
(b) Since the function maps points in a finite set to a finite set, any path must eventually return to a 
previously visited vertex. 
(c) If a component has more than one cycle, then somewhere on the undirected path connecting two 
cycles there would need to be a vertex with out-degree 2, contradicting (a). � 
 
Theorem 2: The function digraphs fdm(u(x)) and fdm(v(x)) are isomorphic if and only if there exists a 

┌────────────────┐       ┌───────────────┐ 
│┌ 0             │       │┌  4 ─ 9       │ 
│└─┘             │       │└─┘            │ 
├────────────────┤       ├───────────────┤ 
│           ┌─ 5 │       │           ┌─ 6│ 
│┌  1 ─ 12 ─┤    │       │┌  5 ─ 11 ─┤   │ 
│└─┘        └─ 8 │       ││ │        └─ 7│ 
├────────────────┤       ││  0 ─ 8       │ 
│           ┌─ 6 │       ││ │            │ 
│┌  9 ─ 10 ─┤    │       ││  1           │ 
││ │        └─ 7 │       ││ │            │ 
││ │        ┌─ 2 │       │└  2 ─ 12      │ 
│└  3 ─  4 ─┤    │       ├───────────────┤ 
│           └─ 11│       │┌ 10 ─ 3       │ 
└────────────────┘       │└─┘            │ 
                         └───────────────┘ 

    
 Figure 1.  The function digraphs for x2 and x2 + 1 modulo 13. 
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permutation r such that r u r v− ≡1o o  mod m. 
 
 Proof: ( )⇒ Let r denote an isomorphism between fdm(v(x)) and fdm(u(x)); r gives a bijection 
between the vertices. The isomorphism of edges implies that for all x m∈Z , the edge (x,v(x)) in 
fdm(v(x)) is mapped by r to the edge (r(x),u(r(x))) in fdm(u(x)); hence, u(r( )) r(v( ))x x≡  mod m which 
gives r u r v− ≡1o o .  
 ( )⇐ Let r denote a permutation such that r u r v− ≡1o o .  Now r gives a bijection between the 
vertices, hence we need to check this bijection respects the edges. Since r u r( ) v( )− ≡1o o x x  for all 
x m∈Z , we have u(r( )) r(v( ))x x≡ which is implies the edge (x,v(x)) in fdm(v(x)) is mapped to the edge 
(r(x),u(r(x))) in fdm(u(x)) as required. � 
 
Theorem 3: Let m ≥ 3  be odd, and gcd( , )a m2 1= . The quadratic function digraph fdm(a0 + a1x + a2x2) is 
isomorphic to the function digraph of the canonical form quadratic fdm(x2 + γ), where  
γ = a0a2 + 2-1a1 - 2-2a1

2. 
 
 Proof: First note that since m is odd, 2-1 exists and hence γ is well defined. Let u(x)=a0+a1x+a2x2, 
v(x) = x2 + γ and r(x) = a2

-1x - 2-1a1a2
-1.  Note that a2

-1 is well defined since gcd( , )a m2 1= .  By direct 
computation we can check r u r( ) v( )− ≡1o o x x  mod m as required. � 
 
Corollary 4: Let m ≥ 3  be odd. There are, up to isomorphism, at most m quadratic function digraphs 
modulo m with leading coefficient relatively prime to m. 
 
 Proof: By Theorem 3, every quadratic function digraph with gcd( , )a m2 1=  in Zm is isomorphic 
to that of a quadratic in the canonical form x2 + γ.  Since there are m distinct quadratics in the canonical 
form, up to isomorphism, there are no more than m quadratic function digraphs mod m with leading 
coefficient relatively prime to m. �   

┌───────────────────────────┐     ┌───────────────────────────┐
│┌  3 ─ 14                  │     │┌ 13 ─ 4                   │ 
│└─┘                        │     │└─┘                        │ 
├───────────────────────────┤     ├───────────────────────────┤ 
│           ┌─ 4            │     │                  ┌─ 3     │ 
│┌  9 ─ 10 ─┤               │     │           ┌─  6 ─┤        │ 
││ │        │      ┌─ 6     │     │           │      └─ 14 ─ 0│ 
││ │        └─ 13 ─┤        │     │┌ 15 ─ 16 ─┤               │ 
││ │               └─ 11 ─ 0│     ││ │        └─ 11           │ 
│└  7 ─ 8                   │     │└  1 ─ 2                   │ 
├───────────────────────────┤     ├───────────────────────────┤ 
│           ┌─ 5            │     │           ┌─ 7            │ 
│┌ 15 ─  2 ─┤               │     │┌  5 ─ 12 ─┤               │ 
│└─┘        │      ┌─ 1     │     │└─┘        │      ┌─ 8     │ 
│           └─ 12 ─┤        │     │           └─ 10 ─┤        │ 
│                  └─ 16    │     │                  └─ 9     │ 
└───────────────────────────┘     └───────────────────────────┘ 

    
Figure 2.  The function digraph fd17(x

2 + 11) is isomorphic to fd17(x
2 + 14). 
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 The proviso on leading coefficients is necessary. For example, when m = 4 the eight polynomials 
x2, x2 + 1, 2x2, 2x2 + x, 2x2 + 2x, 2x2 + 3x, 2x2 + x + 1, 2x2 + 3x + 1 all have nonisomorphic function 
digraphs.  Our interest lies primarily with odd prime moduli. Of course Theorem 3 and Corollary 4 hold 
for odd prime moduli, p. Hereafter in the paper we will let p denote an odd prime. 
 There is a situation when, up to isomorphism, there are fewer than p quadratic function digraphs 
mod p.  Figure 2 shows two canonical form function digraphs that are isomorphic mod 17.  However, 
we conjecture this is the only example where there are fewer than p quadratic function digraphs; this 
will be discussed further in Section 4 after we have established certain facts about arbitrary digraphs that 
satisfy the conclusion of the next theorem. This theorem is the first that requires the modulus to be an 
odd prime. 
 
Theorem 5: Let u(x) be a quadratic function modulo p.  In the function digraph fdp(u(x)) there are 
exactly (p-1)/2 vertices of in-degree 0, one vertex of in-degree 1, and (p-1)/2 vertices of in-degree 2. 
 
 Proof: There are (p-1)/2 quadratic residues and nonresidues mod p.  Note that we need only 
consider the digraphs of quadratics in canonical form.  In order to determine the in-degree of a vertex y 
we need to know the number of solutions x to y x≡ +2 γ .  Note that a vertex has in-degree 2 if and only 
if y - γ is a quadratic residue, it has in-degree 0 if and only if y - γ is a quadratic nonresidue, and it has 
in-degree 1 if and only if y - γ ≡ 0. Thus, there are exactly (p-1)/2 vertices of in-degree 0, 1 vertex of in-
degree 1, and (p-1)/2 vertices of in-degree 2. � 
 

3. CYCLES 
 
 Notice that each element in an n-cycle of fdp(u(x)) must be a solution to the congruence 
u ( )n x x≡  mod p, where u ( )n x denotes the composition of the function u(x) with itself n times. In 
contrast, we will use u( )x n  to denote the nth power of the function u(x). Since the congruence u ( )n x x≡  
has degree 2n  when u(x) is quadratic, it is a standard result that there can be at most 2n  solutions since 
the modulus is prime [11].  Thus, there are at most 2n n  cycles of length n.  It turns out that we can 
establish a better bound on the number of cycles of length n when n pe=  as we will see in Corollary 8. 
A heuristic argument suggest this bound works for general n and empirical evidence indicates the bound 
is tight. In order to establish the bound we use the following lemma and theorem. We will then consider 
our heuristic and empirical evidence and finish this section by classifying the number of one and two 
cycles that appear. 
 
Lemma 6: Let v( )x x= +2 γ , γ ∈ R and P ( ) v ( )n

nx x x= − .  Then P ( )n x divides P ( )kn x as a polynomial 
in R[x].  Moreover, the quotient is in Z[x] if γ ∈ Z. 
 
 Proof: Since both P ( )n x  and P ( )kn x  are monic it suffices to show that every complex root of 
P ( )n x  is also a root of P ( )kn x  with at least as high a multiplicity.  Note that if x0  is a root of P ( )n x  
then v ( )n x x0 0=  and hence v ( )kn x x0 0=  which implies x0  is a root of P ( )kn x ; this takes care of the 
single roots.  Note x0  is a root of P ( )n x  of multiplicity m if and only if it is a root of P ( )n x  and a root 
of the derivative of P ( )n x  with multiplicity m-1.  Using the chain rule repeatedly and the fact that 
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′v ( ) =  2x x we see that  
 n

n n- n-x = 2 x x ... x x -′P ( ) v ( ) v ( ) v( ) 11 2  
and hence 
 kn

kn kn- kn-x = x x ... x x - .′P ( ) v ( ) v ( ) v( ) 12 1 2  
Now we want to consider the derivative kn x′P ( )  modulo P ( )n x .  Note that by 
definition v ( ) mod P ( )n

nx x x≡  and hence v ( ) v ( ) mod P ( )jn i i
nx x x+ ≡  so that  

 kn
n n- n- k

nx x x ... x x -     x .′ ≡P ( ) ( v ( ) v ( ) v( ) ) 1 mod P ( )2 1 2  
If we let w( ) v ( ) v ( ) v( )x = x x ... x xn n- n-2 1 2  then n x = x -′P ( ) w( ) 1 and 

( ) ( )kn
k k k

n
k

nx x - = w x - w x + w x +...+w x + = x w x +...+  x .′ ≡ ′− − −P ( ) w( ) ( ( ) ) ( ) ( ) ( ) P ( ) ( ) mod P ( )1 1 1 11 2 1  
Now suppose x0  is a root of n xP ( ) of multiplicity m and hence is also a root of n x′P ( )  of multiplicity m-
1.  By the above, it is also a root of )(P xkn′  of multiplicity m-1 and hence is a root of kn xP ( ) of multiplicity 
m. Thus n xP ( )  divides kn xP ( ) .   
 In order to see that the quotient is in Z[x] if γ ∈ Z, consider the following. Since n x xP ( ) [ ]∈Z  is 

monic of degree 2n we can write n x b b x b x xn

n n

P ( ) ...= + + + +
−

−
0 1 2 1

2 1 2  where bi ∈Z . Since kn x xP ( ) [ ]∈Z  

is also monic, we can also write the quotient in the form f( ) ...x a a x a x xK
K K= + + + +−

−
0 1 1

1  where 
K kn n= −2 2  is the degree of the quotient. Suppose f( ) [ ]x x∉Z . Let m be the largest integer such that 

am ∉Z . Now the coefficient of x
n m2 +  in the product kn nx x xP ( ) P ( ) f( )=  is a finite sum of the form 

a a b a bm m mn n+ + ++ − + −1 2 1 2 2 2
... .  This coefficient is an integer since kn x xP ( ) [ ]∈Z  and each factor in the 

second and higher terms of the finite sum are integers; thus am  is also an integer which contradicts am ∉Z  
and proves the claim. � 
 The elements x0 ∈R such that v ( )n x x0 0=  are said to be cyclic of period n. Any root of n xP ( )  
is a cycle element of period n.  Any root of n xP ( )  which is of period n and not of any shorter period is 
said to be of prime period n.  Any complex root with non-prime period n will be a root of some d xP ( )  
where d divides n though it is possible that n xP ( )  does not have roots of prime period n.  For example, 
when γ = -3/4, then 1 1 2 3 2P ( ) ( / )( / )x x x= + −  and 2

31 2 3 2P ( ) ( / ) ( / )x x x= + −  which has no new 
roots; hence there are no points of prime period 2 for this γ. 
 The following theorem and conjecture involve a factorization similar to the classical 
factorization of xn − 1 in terms of cyclotomic polynomials [10], yet it is quite different in that 
P ( ) v ( )n

nx x x= −  involves function iteration, not ordinary powers. 
Theorem 7: Let P ( ) v ( )n

nx x x= −  be as above and let n qk=  be a power of a prime. Also let Q1(x) = 

P1(x) and n
n

d|n,d<n
d

x =
x

x
Q ( )

P ( )
Q ( )∏ 5, then n xQ ( )  is a polynomial in R[x] for γ ∈ R and it is in Z[x] for γ ∈ 

Z. 
 Proof: Since n = qk is a power of a prime this is easy to check that 

 n q
q

q q q

q

q
x = x =

x
x x ... x x

=
x
x

k

k

k- k -

k

k -
Q ( ) Q ( ) P ( )

Q ( )Q ( ) Q ( )Q ( )
P ( )
P ( )1 2 11

 

which is a polynomial by Lemma 6. The remark about the quotient being in in Z[x] for γ ∈ Z follows as 
in the previous Lemma. � 
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 We conjecture that this property holds for general n. 

Conjecture A: Let P ( ) v ( )n
nx x x= −  be as above and let 1 1Q ( ) P ( )x x=  and n

n

d|n,d<n
d

x =
x

x
Q ( )

P ( )
Q ( )∏ , then 

n xQ ( )  is a polynomial in R[x] for γ ∈ R and it is in Z[x] for γ ∈ Z. 
 Consider the following heuristic argument in favor of the conjecture. Solving for P ( )n x , we see 
that n

d|n
dx = xP ( ) Q ( )∏ . We can obtain a sum over the divisors of n by taking logarithms and then we can 

apply the Möbius Inversion formula. On rewriting the result as a product, we see that 
n

d|n
d

n dx = xQ ( ) P ( ) ( / )∏ µ  where µ( )n is the Möbius function. In the case when n = q qk k
1 2

1 2  is the product of 

powers of two primes, this amounts to n q q

n
n

q q

n
q

n
q

x = x =
x x

x x
k kQ ( ) Q ( )

P ( ) P ( )

P ( ) P ( )1
1

2
2

1 2

1 2

. Now if n
q

x
1

P ( )  and n
q

x
2

P ( )  

have no roots in common, then all their roots with all their multiplicity are also roots of P ( )n x , and hence 
n xQ ( )  is a polynomial.  If they have a common root x0 and it is a single root of at least one factor of the 

denominator, then the factor with the higher multiplicity divides P ( )n x  by Lemma 6. Since x0  is a root 

of n
q

x
1

P ( )  and n
q

x
2

P ( )  then it has period 
n
q1

and also has period 
n
q2

; hence it has period 

gcd ,
n
q

n
q

n
q q1 1 1 2

⎛
⎝
⎜

⎞
⎠
⎟ = . That is, it is a root of  n

q q
x

1 2
P ( ) . Thus, the factors arising from the root x0 will cancel 

except possibly some factors in the numerator. So long as common roots of factors appearing in the 
denominator do not have common multiplicity over 1, this argument would generalize to any number of 
prime factors. We expect that for a generic choice of γ, the roots of P ( )n x  would all be single roots. 
Thus common multiplicity would be one and hence the above argument would work. However, once the 
result is true for some generic γ, it should be true for the formal parameter γ as well.  
 We can formally compute n xQ ( )  for small n.  Notice that these are polynomials in x and γ.  

1
2Q ( )x = x x + ,− γ  

2
2 1Q ( )x = x + x + + ,γ

3
6 5 4 3 2 2 2 3 21 3 1 2 1 3 3 1 2 1Q ( ) ( ) ( ) ( ) ( )x = x + x + + x + + x + + + x + + x + + + + ,γ γ γ γ γ γ γ γ

4
12 10 9 2 8 2 3 4 2 3 4 5 66 15 3 2 2 1 2 3 3 3Q ( ) ( ) ( ) ( )x = x + x + x + + x +...+ + + + x + + + + + + .γ γ γ γ γ γ γ γ γ γ γ γ  

Using symbolic manipulation software we have verified that 6Q ( )x  is a formal polynomial in x and �  
 
 
Corollary 8: Let u(x) be a quadratic function and let n qk=  be a power of a prime.  In fdp(u(x)) the 

number of cycles of length n is less than or equal to 
1 1

2n
x =

n
xn

n

d|n,d <n
ddeg(Q ( )) deg(Q ( ))−

⎛

⎝
⎜

⎞

⎠
⎟∑ . 

 
 Proof:  The number of elements with prime period n is less than or equal to the degree of n xQ ( )  
which can be computed recursively from its definition given in Theorem 7. � 



 
 

 7

 
Of course, if Conjecture A is true we would have also established Corollary 8 for general n. Hence we 
have the following conjecture. 
 
Conjecture B: Let u(x) be a quadratic function and let n be a positive integer.  In fdp(u(x)) the number of 

cycles of length n is less than or equal to 
1 1

2n
Q x =

n
Q xn

n

d|n,d <n
ddeg( ( )) deg( ( ))−

⎛

⎝
⎜

⎞

⎠
⎟∑ . 

 
 Note that the bounds given in the corollary and conjecture may be ugly in the sense that they are 
recursively defined, but they are easy to compute. Table 1 gives some examples illustrating primes 
where these bounds are achieved. Notice the bounds seem to be tight even though they get large.  It 
seems remarkable that the theoretic bound on 11-cycles is 186 occurrences and this happens for a 
relatively small prime. The fact that these bounds are indeed the maximal number of occurrences we 
found for some additional cases where n is not a prime power provides additional evidence for the 
correctness of Conjecture A and Conjecture B. It is also interesting to compare these bounds which are 
computed algebraically here with the number of orbits of prime period arising from the genealogy of 
periodic points in classical real dynamics [3].  The next theorems allow us to determine when there are 
1-cycles and 2-cycles. 

┌─────────┬─────────────┬────────────────┐ 
│  cycle  │  bound on   │   odd prime    │ 
│ length  │ repetitions │       p        │ 
├─────────┼─────────────┼────────────────┤ 
│    1    │       2     │          3     │ 
├─────────┼─────────────┼────────────────┤ 
│    2    │       1     │          7     │ 
├─────────┼─────────────┼────────────────┤ 
│    3    │       2     │         29     │ 
├─────────┼─────────────┼────────────────┤ 
│    4    │       3     │         31     │ 
├─────────┼─────────────┼────────────────┤ 
│    5    │       6     │        311     │ 
├─────────┼─────────────┼────────────────┤ 
│    6    │       9     │        127     │ 
├─────────┼─────────────┼────────────────┤ 
│    7    │      18     │        509     │ 
├─────────┼─────────────┼────────────────┤ 
│    8    │      30     │      1,021     │ 
├─────────┼─────────────┼────────────────┤ 
│    9    │      56     │      3,067     │ 
├─────────┼─────────────┼────────────────┤ 
│   10    │      99     │      4,093     │ 
├─────────┼─────────────┼────────────────┤ 
│   11    │     186     │     36,847     │ 
├─────────┼─────────────┼────────────────┤ 
│   12    │     335     │      8,191     │ 
└─────────┴─────────────┴────────────────┘ 

 
Table 1.  Minimal odd prime p such that the function  

digraph fdp(x2) achieves the maximal repetition of cycle lengths. 
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Theorem 9: The number of 1-cycles in fdp(x2 + γ) is 1
2 2

+
−⎛

⎝
⎜

⎞
⎠
⎟

− γ
p

. 

 
 Proof: Recall that since p is an odd prime, 2-1 exists modulo p. By completing the square of 
Q1(x) = x2 - x + γ ≡  0, we have (x - 2-1)2 ≡  2-2 - γ.  Thus fdp(x2 + γ) has two, one or zero 1-cycles if and 
only if 2-2 - γ is a quadratic residue, 0 or a nonresidue respectively. � 
 

Theorem 10: There is exactly one 2-cycle in fdp(x2 + γ) iff 
2 1

1
2− − −⎛

⎝
⎜

⎞
⎠
⎟ =

γ
p

. 

 
 Proof: Notice that if Q2(x) has a repeated root mod p, the root is a 1-cycle; moreover, if Q1(x) 
and Q2(x) have a shared root, then Q2(x)-Q1(x)  = 2x + 1≡ 0 from which we see x ≡ -2-1 is the only 
possible shared root. In such a case the other root of Q2(x) must be a 1-cycle, hence both roots must be  -
2-1. Thus, the function digraph fdp(x2 + γ) has exactly one 2-cycle if and only if Q2(x) = x2 + x + γ + 1 ≡ 0 
has two distinct solutions in Zp. Completing the square in that congruence yields (x + 2-1)2 ≡ 2-2 - γ - 1 
which has two distinct solutions in Zp if and only if 2-2 - γ - 1 is a quadratic residue mod p. � 
 

4.  RANDOM QUASIQUADRATIC DIGRAPHS 
 
 We have seen that it is difficult to predict the structure of fdp(u(x)) for quadratic functions u(x), 
yet we have been able to give some restrictions on the behavior of these function digraphs.  In this 
section we will compare the structure of the quadratic function digraphs fdp(u(x)) with those of 
"random" functions whose function digraphs have the same number of vertices with in-degree 0, 1 and 2 
as have the quadratic function digraphs.  In particular, we will call a function q:Zp → Zp quasiquadratic 
if it is 2-to-1 for all of its domain except that it is 1-to-1 for one element of its domain.  For example, 
Figure 3 shows a randomly chosen quasiquadratic function digraph on Z17.  Notice it has the same 
random appearance of the quadratic function digraphs modulo 17 but it has two 2-cycles, which is 
impossible for a quadratic function digraph by Corollary 8.  
 We begin our investigation by counting the number of quasiquadratic functions. 
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Theorem 11: Given a prime modulus p ≥ 3,  

(a) the number of quasiquadratic functions is 
p+

p
p+

p
 ...   

1
2 1

2
2 2 2 2 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
⎛
⎝
⎜

⎞
⎠
⎟  and 

(b) the number of quasiquadratic digraphs that are nonisomorphic is 
p

p+1
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ . 

 Proof: (a) There are 
p

p+1
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟  ways to choose the 

p+1
2

 range elements of the quasiquadratic 

functions and there are 
p+ p

 ...   
1

2 2 2 2 2 1
⎛
⎝
⎜

⎞
⎠
⎟  permutations that would result in distinct rearrangements since 

the multinomial 
p

 ...   2 2 2 2 1
⎛
⎝
⎜

⎞
⎠
⎟ gives the number of ways to partition p elements into classes of size 2,2,...2,1 

and there are 
p+1

2
ways to position the 1.   

 (b) An isomorphism between quasiquadratic digraphs must map each pair of the range of the first 
digraph to a pair in the range of the second digraph; the isomorphism must also map the singleton of the 

range of the first digraph to the singleton in the range of the second digraph. Since there are 
p

 ...   2 2 2 2 1
⎛
⎝
⎜

⎞
⎠
⎟  

┌────────┐     ┌──────────────────────────────┐ 
│ 0 ->  7│     │┌  1 ─ 10                     │ 
│ 1 ->  1│     │└─┘                           │ 
│ 2 ->  6│     ├──────────────────────────────┤ 
│ 3 -> 15│     │┌  6 ─ 2                      │ 
│ 4 ->  6│     ││ │        ┌─ 3               │ 
│ 5 -> 13│     │└  4 ─ 15 ─┤                  │ 
│ 6 ->  4│     │           │             ┌─ 8 │ 
│ 7 -> 12│     │           │      ┌─ 11 ─┤    │ 
│ 8 -> 11│     │           │      │      └─ 14│ 
│ 9 -> 15│     │           └─  9 ─┤           │ 
│10 ->  1│     │                  │      ┌─ 5 │ 
│11 ->  9│     │                  └─ 13 ─┤    │ 
│12 ->  7│     │                         └─ 16│ 
│13 ->  9│     ├──────────────────────────────┤ 
│14 -> 11│     │┌ 12                          │ 
│15 ->  4│     ││ │                           │ 
│16 -> 13│     │└  7 ─ 0                      │ 
└────────┘     └──────────────────────────────┘ 

    
 Figure 3.  A random quasiquadratic function and its digraph which contains two 2-cycles. 
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ways to pick the pairs and singleton and 
p+1

2
 ways to place the singleton, there are 

p+ p
 ...   

1
2 2 2 2 2 1

⎛
⎝
⎜

⎞
⎠
⎟  

such permutations. Dividing this into the total number of quasiquadratic digraphs we see the number of 

quasiquadratic digraphs that are nonisomorphic is 
p

p+1
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ . 

 Notice that we really only used the fact that the modulus is odd, not that it is prime. � 
 We can easily generate random quasiquadratic digraphs and compare their structure with the 
structure of quadratic digraphs.  Figure 4 shows the frequency that cycles of specified length appear in 
10,000 random choices of quasiquadratic digraphs modulo 1009.  These quasiquadratic frequencies are 
shown with the connected lines.  The isolated points show the same information for the 1009 quadratic 
function digraphs.  Likewise, Figure 5 shows the average frequency that specified numbers of 
components occur for quasiquadratic and quadratic function digraphs modulo 1009.  While the fits are  

20 40 60 80 100

0.2

0.4

0.6

0.8

1.

 
Figure 4.  The average frequency of cycle lengths for quadratic and  

quasiquadratic digraphs modulo 1009 
not perfect, they are remarkably good and this provides empirical support for the heuristic view that the 
quadratic function digraphs are nearly "random".   
 In Section 2 we noted an example of quadratic function digraphs in canonical form that are 
isomorphic: fd17(x2 + 11) � fd17(x2 + 14).  If we assume that the p quadratic function digraphs are 
randomly distributed over the quasiquadratic function digraphs, then we can estimate the expected 
number of pairs of quadratic function digraphs that will be isomorphic by multiplying the number of 

pairs 
p
2

⎛
⎝
⎜

⎞
⎠
⎟  by the reciprocal of the number of distinct quasiquadratic functions digraphs.  Table 2 shows the 
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expected number of isomorphic pairs implied by that estimate.  One might choose to use 
p −⎛

⎝
⎜

⎞
⎠
⎟

2
2  instead of 

p
 2
⎛
⎝
⎜

⎞
⎠
⎟  since fdp(x2) and fdp(x2 - 2) are special; see [8] and Section 5 respectively, for how those digraphs 

are special. Using 
p −⎛

⎝
⎜

⎞
⎠
⎟

2
2 would reduce the expected numbers, especially for small p.  However, the 

main point is that these expected numbers approach 0 very quickly since the number of pairs is 
quadratic but the number of quasiquadratic functions is exponential in p.  Hence we make the following 
conjecture. 
 
Conjecture C: Quadratic Digraph Isomorphism Conjecture. The only occurrence of isomorphic 
quadratic function digraphs in canonical form is fd17(x2 + 11) ≅ fd17(x2 + 14). 
 
 In addition to the heuristic argument in favor of this conjecture given above, we have 
computationally verified the conjecture for all primes up to 1009. 
 
 
 

┌────┬──────────────┐
│ p  │   Expected   │ 
│    │ isomorphisms │ 
├────┼──────────────┤ 
│  3 │  1.0         │ 
│  5 │  1.0         │ 
│  7 │  0.6         │ 
│ 11 │  0.119       │ 
│ 13 │  0.0455      │ 
│ 17 │  0.00559     │ 
│ 19 │  0.00185     │ 
│ 23 │  0.000187    │ 
│ 29 │  0.00000523  │ 
│ 31 │  0.00000154  │ 
└────┴──────────────┘ 

   
Table 2.  The expected number of isomorphic quadratic function digraphs for small odd primes. 
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2 4 6 8 10 12

0.05

0.1

0.15

0.2

 
Figure 5.  The average number of components for quadratic and quasiquadratic digraphs modulo 1009 
 
 

5. FUNCTION DIGRAPHS fdp(x2 - 2) 
 
 In classical dynamics the dynamics of the function x2 - 2 are special [4] because the Julia set is 
unusually simple. A similar statement can be made in the theory of numbers where iteration of this 
function plays a role in whether Mersenne numbers p q= −−2 11  are prime [7, 9]. We investigate the 
family of function digraphs fdp(x2 - 2) for general odd prime modulus which has far more structure than 
typical quadratic function digraphs.  This structure seems to be as deep as, but more complicated than 
the structure of fdp(x2).  Indeed, we will see that the identities we use involve both multiplication and 
addition.  Figure 6 shows fd239(x2 - 2).  This example is rather large but serves to illustrate all the 
properties that we want to observe without requiring several examples.  We see that all the cycle 
elements have one leaf or a binary tree attached.  The non-leaf trees all have the same depth and are 
isomorphic except for one vertex of in-degree one.  Our goal in this section is to show that those claims 
are true in general.  Also notice that the cycle lengths seem to have some coherence.  Readers who 
would like to see examples of the remarkable arithmetic/structure identities before considering the 
general theory may preview the examples that follow Theorem 19.  
 In this section we will let s(x) = x2 - 2.  The level of a vertex x measured from its cycle is given 
by the smallest k such that sk(x) is a cycle element.  Thus, cycle elements are at level 0. Components 
with at least one vertex at level 2 are called branched components.  Other components are called stumpy 
components.  We say that two distinct vertices M and N are k-ancestors if k is the smallest positive 
integer such that sk(M) = sk(N).  For example, M and N are 1-ancestors if and only if M = -N and they are 
2-ancestors if and only if s(M) = -s(N); namely, M 2 - 2 = 2 - N 2. 
 Our first lemma in this section shows that multiplying two 2-ancestors gives a nearby vertex. We 
think of this theorem as giving enough structure to the digraphs so that we can establish a base case for 
our eventual induction. It also establishes enough structure so that in the subsequent lemma we can 
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discuss leaves, cycles and distinguish two fundamentally different types of digraph components: those 
that reach level two and those that do not. 
 
Lemma 12: If M and N are 2-ancestors in fdp(s(x)) then MN and s(M) are 2-ancestors and MN and s(N) 
are 2-ancestors as well.  
 
 Proof: Since M and N are 2-ancestors, s(M) = - s(N) so M 2 - 2 = 2 - N 2 and hence N 2 = 4 - M 2.  
Now s2(M) = M 4 - 4 M 2 + 2 = 2 - M 2 (4 - M 2) = 2 - (MN)2 = - s(MN).  Thus, MN and s(M) are 2-

┌───────────────────────────────────┐┌───────────────────────────────────┐┌───────────┐          
│                           ┌─ 36   ││                             ┌─ 112││┌ 198 ─ 205│          
│                   ┌─  99 ─┤       ││                     ┌─ 114 ─┤     │││ │        │          
│                   │       └─ 203  ││                     │       └─ 127│││   6 ─ 41 │          
│┌   2 ─ 237 ─   0 ─┤               ││             ┌─  88 ─┤             │││ │        │          
│└─┘                │       ┌─ 57   ││             │       │       ┌─ 102││└  34 ─ 233│          

│                   └─ 140 ─┤       ││             │       └─ 125 ─┤     │├───────────┤┌───────────┐ 
│                           └─ 182  ││             │               └─ 137││┌ 199 ─ 139││┌ 202 ─ 193│ 
├───────────────────────────────────┤│┌ 230 ─  94 ─┤                     │││ │        │││ │        │ 
│                             ┌─ 68 │││ │          │               ┌─ 17 │││ 164 ─ 40 │││ 172 ─ 37 │ 
│                     ┌─  81 ─┤     │││ │          │       ┌─  48 ─┤     │││ │        │││ │        │ 
│                     │       └─ 171│││ │          │       │       └─ 222│││ 126 ─ 75 │││ 185 ─ 67 │ 
│             ┌─ 106 ─┤             │││ │          └─ 151 ─┤             │││ │        │││ │        │ 
│             │       │       ┌─ 87 │││ │                  │       ┌─ 77 ││└ 100 ─ 113││└  46 ─ 54 │ 
│             │       └─ 158 ─┤     │││ │                  └─ 191 ─┤     │├───────────┤├───────────┤ 
│             │               └─ 152│││ │                          └─ 162││┌ 195 ─ 156││┌ 218 ─ 170│ 
│┌ 238 ─   1 ─┤                     │││ │                          ┌─ 5  │││ │        │││ │        │ 
│└─┘          │               ┌─ 104│││ │                  ┌─  23 ─┤     │││  22 ─ 44 │││ 200 ─ 21 │ 
│             │       ┌─  59 ─┤     │││ │                  │       └─ 234│││ │        │││ │        │ 
│             │       │       └─ 135│││ │          ┌─  49 ─┤             │││   4 ─ 217│││  85 ─ 39 │ 
│             └─ 133 ─┤             │││ │          │       │       ┌─ 74 │││ │        │││ │        │ 
│                     │       ┌─ 95 │││ │          │       └─ 216 ─┤     │││  14 ─ 235│││  53 ─ 154│ 
│                     └─ 180 ─┤     │││ │          │               └─ 165│││ │        │││ │        │ 
│                             └─ 144│││  79 ─   9 ─┤                     │││ 194 ─ 225│││ 178 ─ 186│ 
├───────────────────────────────────┤││ │          │               ┌─ 50 │││ │        │││ │        │ 
│                             ┌─ 92 │││ │          │       ┌─ 108 ─┤     │││ 111 ─ 45 │││ 134 ─ 61 │ 
│                     ┌─  97 ─┤     │││ │          │       │       └─ 189│││ │        │││ │        │ 
│                     │       └─ 147│││ │          └─ 190 ─┤             │││ 130 ─ 128│││  29 ─ 105│ 
│             ┌─  86 ─┤             │││ │                  │       ┌─ 33 │││ │        │││ │        │ 
│             │       │       ┌─ 12 │││ │                  └─ 131 ─┤     │││ 168 ─ 109│││ 122 ─ 210│ 
│             │       └─ 142 ─┤     │││ │                          └─ 206│││ │        │││ │        │ 
│             │               └─ 227│││ │                          ┌─ 35 │││  20 ─ 71 │││  64 ─ 117│ 
│┌ 223 ─ 224 ─┤                     │││ │                  ┌─  28 ─┤     │││ │        │││ │        │ 
││ │          │               ┌─ 103│││ │                  │       └─ 204│││ 159 ─ 219│││  31 ─ 175│ 
││ │          │       ┌─  91 ─┤     │││ │          ┌─  65 ─┤             │││ │        │││ │        │ 
││ │          │       │       └─ 136│││ │          │       │       ┌─ 90 │││ 184 ─ 80 │││   3 ─ 208│ 
││ │          └─ 153 ─┤             │││ │          │       └─ 211 ─┤     │││ │        │││ │        │ 
││ │                  │       ┌─ 110│││ │          │               └─ 149│││ 155 ─ 55 │││   7 ─ 236│ 
││ │                  └─ 148 ─┤     │││  25 ─ 160 ─┤                     │││ │        │││ │        │ 
││ │                          └─ 129│││ │          │               ┌─ 93 │││ 123 ─ 84 │││  47 ─ 232│ 
││ │                          ┌─ 11 │││ │          │       ┌─  43 ─┤     │││ │        │││ │        │ 
││ │                  ┌─ 119 ─┤     │││ │          │       │       └─ 146│││  70 ─ 116│││  56 ─ 192│ 
││ │                  │       └─ 228│││ │          └─ 174 ─┤             │││ │        │││ │        │ 
││ │          ┌─  58 ─┤             │││ │                  │       ┌─ 26 │││ 118 ─ 169│││  27 ─ 183│ 
││ │          │       │       ┌─ 19 │││ │                  └─ 196 ─┤     │││ │        │││ │        │ 
││ │          │       └─ 120 ─┤     │││ │                          └─ 213│││  60 ─ 121│││  10 ─ 212│ 
││ │          │               └─ 220│││ │                          ┌─ 115│││ │        │││ │        │ 
│└  15 ─  16 ─┤                     │││ │                  ┌─  78 ─┤     │││  13 ─ 179│││  98 ─ 229│ 
│             │               ┌─ 82 │││ │                  │       └─ 124│││ │        │││ │        │ 
│             │       ┌─  30 ─┤     │││ │          ┌─ 107 ─┤             │││ 167 ─ 226│││  42 ─ 141│ 
│             │       │       └─ 157│││ │          │       │       ┌─ 101│││ │        │││ │        │ 
│             └─ 181 ─┤             │││ │          │       └─ 161 ─┤     │││ 163 ─ 72 │││  89 ─ 197│ 
│                     │       ┌─ 51 │││ │          │               └─ 138│││ │        │││ │        │ 
│                     └─ 209 ─┤     ││└ 145 ─ 214 ─┤                     │││  38 ─ 76 │││  32 ─ 150│ 
│                             └─ 188││             │               ┌─ 24 │││ │        │││ │        │ 
└───────────────────────────────────┘│             │       ┌─  96 ─┤     │││   8 ─ 201│││  66 ─ 207│ 
                                     │             │       │       └─ 215│││ │        │││ │        │ 
                                     │             └─ 132 ─┤             │││  62 ─ 231│││  52 ─ 173│ 
                                     │                     │       ┌─ 63 │││ │        │││ │        │ 
                                     │                     └─ 143 ─┤     │││  18 ─ 177│││  73 ─ 187│ 
                                     │                             └─ 176│││ │        │││ │        │ 
                                     └───────────────────────────────────┘│└  83 ─ 221││└  69 ─ 166│ 
                                                                          └───────────┘└───────────┘ 

    

Figure 6.  The function digraph fd239(x2 - 2).
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ancestors and by symmetry so are MN and s(N). � 
 
 As an aside, we notice that if we try to generalize this to v( )x x= +2 γ , we see that M and N are 
2-ancestors means M 2 + γ = -γ - N 2 and hence -2γ = N 2 + M 2. Thus,  

v ( ) ( ) v( )2 4 2 4 2 2 22 2M M M M N M M MN= + + + + − − + + − + +γ γ γ =  γ γ = γ γ2 2 2  
and hence v ( ) v( )2 M MN= −  if an only if γ γ = 02 + 2 . This gives the special cases γ = 0,−2  
mentioned in Section 4. 
 We will refer to Figure 6 to provide an illustration of Lemma 12 in fd239(s(x)). Notice that 
M=230 and N=65 are 2-ancestors appearing in the component of fd239(s(x)) that has a 4-cycle. We see 
that s(M)=s(230)=79 while MN = ≡230 65 132*  mod 239. We can observe that 79 and 132 are also 2-
ancestors. 
 If x is a noncycle element we define the tree leading to x to be the union of all paths leading to x. 
More precisely, the tree leading to x is { }y s y x kp

k∈ = ≥Z | ( ) for some 0 . Notice that for each p, the 
function digraph fdp(s(x)) contains a component where 0 maps to -2 which maps to 2 and where 2 maps 
back onto itself. The vertex x = -2 is the single vertex of in-degree 1 and it is at level one. Therefore, all 
cycle elements have in-degree 2. Thus, each cycle element has a unique noncycle parent. If c is a cycle 
element we define the tree associated with c to be the tree leading to the noncycle parent of c.  In 
particular, x is an element of the tree leading to x but c is not an element of the tree associated with c. 
 A vertex x ≠ -2 has parents if and only if there are two solutions y to y2 - 2 = x and this occurs 

exactly when the Legendre symbol 
2

1
+ x
p

=
⎛
⎝
⎜

⎞
⎠
⎟ .  In particular, the tree leading to 0 contains more than the 

vertex 0 if and only if p = 1, 7 mod 8 since those are the cases when 2 is a quadratic residue.  We call this 
component the 0-component.  Eventually we will see the existence and depth of the tree leading to 0 
influences the structure of the branched components. 
 We say a tree is a complete binary tree up  to level k if the tree has a root and each vertex at level 
less than k from the root has exactly two parents. 
 The next lemma describes the structure of the components up to level 2 which gives a starting 
point for our structure theorem. 
 
Lemma 13: In fdp(s(x)),  
(a) The tree associated with a cycle element in a stumpy component consists of one leaf at level one. 
(b) The tree associated with a cycle element in a branched component, except the vertex 2, is a tree 
structure that is a complete binary tree up to level 2.   
 
 Proof: Recall that -2 is the only vertex of in-degree one and it is not a cycle element.  Thus, 
every cycle element has in-degree 2.   
 (a) By definition, stumpy components cannot have any elements at level 2 or higher and we have 
noted every cycle element in a stumpy component will have in-degree 2; this gives the result. 
 (b) We know that each cycle element has a single noncycle parent.  By definition, in every 
branched component there is some vertex M at level 2.  Let N be the cycle element such that M and N 
are 2-ancestors.  Lemma 12 implies that MN is at level 2 leading to the cycle element after s2(M).  
Repeating the process on MN and proceeding around the entire cycle implies there is a vertex at level 2 
in the tree associated with every cycle element.  Since the in-degree of all the level 1 vertices must be 2, 
except for at -2 in the 0-component, we see the trees associated with such a cycle element from a 
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branched component must be a complete binary tree up to level 2. � 
 
 We now show that in the branched components any vertex has parents if and only if its additive 
inverse has parents. We already noted that ±2 both have parents. 
 
Lemma 14: If x is a vertex other than ±2 in a branched component then x has parents if and only if -x 

has parents.  That is, 
2 2+ x

p
 =  

- x
p

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟ . 

 Proof: We have seen this is true for levels 0 and 1 since all such vertices have parents (Lemma 
13 b) and it is trivially true for x=0.  Suppose this lemma is not true in general.  Suppose x is a vertex at 

the lowest level such that 
2 2+ x

p
  

- x
p

⎛
⎝
⎜

⎞
⎠
⎟ ≠

⎛
⎝
⎜

⎞
⎠
⎟ .  Now 

2 2 4 22+ x
p

- x
p

 =  
- x
p

 =  
- x

p
⎛
⎝
⎜

⎞
⎠
⎟
⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

s( )
.  Since 

s(x) is at a lower level, the result is true for s(x) hence 
2 2

1
2- x

p
 =  

+ x
p

 =  
x
p

 =  
s( ) s( )⎛

⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟  so 

2 2+ x
p

 =  
- x
p

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟ 9 which contradicts the supposition and completes the proof. � 

 
 Note that if any vertex x appears at level 3 or higher then s(x) and -s(x) will both have parents 
and hence we get at least 4 vertices at the level of x.   
 We already know that 2 is a 1-cycle element and -2 is a nonleaf leading to that cycle. Thus ±2 
are nonleaves in a branched component. The next theorem shows that we can use the two Legendre 
symbols from Lemma 14 to classify all the other vertices into four geometric classes.   
 
Theorem 15: Suppose x is a vertex other than ±2 in fdp(s(x)). 

(a) If 
2

1
+ x
p

=
⎛
⎝
⎜

⎞
⎠
⎟  and 

2
1

- x
p

=
⎛
⎝
⎜

⎞
⎠
⎟  then x is a nonleaf in a branched component. 

(b) If 
2

1
+ x
p

=
⎛
⎝
⎜

⎞
⎠
⎟  and 

2
1

- x
p

= -
⎛
⎝
⎜

⎞
⎠
⎟  then x is a cycle element in a stumpy component. 

(c) If 
2

1
+ x
p

= -
⎛
⎝
⎜

⎞
⎠
⎟  and 

2
1

- x
p

=
⎛
⎝
⎜

⎞
⎠
⎟   then x is a leaf in a stumpy component. 

(d) If 
2

1
+ x
p

= -
⎛
⎝
⎜

⎞
⎠
⎟  and 

2
1

- x
p

= -
⎛
⎝
⎜

⎞
⎠
⎟  then x is a leaf in a branched component. 

 
 Proof:  Lemma 14 showed that the vertices in the branched components have equal Legendre 

symbols.  We saw that for x ≠ -2 , 
2

1
+ x
p

=
⎛
⎝
⎜

⎞
⎠
⎟  if and only if x has parents; hence 

2
1

+ x
p

= -
⎛
⎝
⎜

⎞
⎠
⎟  if and only 

if x is a leaf. Checking the Legendre symbol values for the leaf and nonleaf positions gives the results. � 
 
In order to count the actual number of vertices in each of the geometric classes, we use the following 
results on sums of the Jacobi symbol on quadratic forms. 
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Lemma 16: 

(a)  Let p > 2  and a b p2 4 0− ≠ mod , then 
x ax b

px

p 2

1
1

+ +⎛
⎝
⎜

⎞
⎠
⎟ = −

=
∑  . 

(b)  Let p > 2 , then 
4

1
12

1

−⎛
⎝
⎜

⎞
⎠
⎟ = −

−⎛
⎝
⎜

⎞
⎠
⎟

=
∑ x

p px

p

 . 

 Proof: Part (a) is Theorem 8.2 in Hua [6] and (b) is 
−⎛

⎝
⎜

⎞
⎠
⎟

1
p

 times a special case. � 

 
Theorem 17: In the function digraph fdp(s(x)) 

(a) the total number of nonleaf vertices in the branched components is 1
1
4

1
+ −

−⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟p

p
  

(b) the total number of cycle vertices in the stumpy components is 
1
4

2
1

p
p

− +
−⎛

⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟   

 

(c) the total number of leaf vertices in the stumpy components is 
1
4

2
1

p
p

− +
−⎛

⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟   

(d) the total number of leaf vertices in the branched components is 
1
4

1
p

p
−

−⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟   

 Proof: First consider (d). The total number of leaf vertices in the branched components is  
1
4

1
2

1
2

1
−

+⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ −

−⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

=
∑ x

p
x

px

p

 where we take care to notice that the terms are zero for x = ±2  and 

those vertices are not leaves.  Expanding, we see   
1
4

1
2 2 4 2

1
−

+⎛
⎝
⎜

⎞
⎠
⎟ −

−⎛
⎝
⎜

⎞
⎠
⎟ +

−⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

=
∑ x

p
x

p
x

px

p

 = 

1
4

1
p

p
−

−⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟  where we use Theorem 16(b) and the fact that 

x
px

p ⎛
⎝
⎜

⎞
⎠
⎟ =

=
∑

1
0 .  Next consider (a). The total 

number of nonleaf vertices in the branched components is  1+
1
4

1
2

1
2

1
+

+⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ +

−⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

=
∑ x

p
x

px

p

 where we 

take care to notice that the terms of the sum are 2 for x = ±2  and those vertices are not leaves hence we 
need to add 1 to get the correct count.  Expanding as above gives the desired result.  We can handle (b) 
and (c) in a similar way or note that we already know from Lemma 13(a) that these numbers must be 
equal and hence are half of the vertices not accounted for in (a) and (d). � 
 

 For example, consider p = 239.  Since 
−⎛

⎝⎜
⎞
⎠⎟ = −

1
239

1 we see that by Theorem 17 (d) that the number 

of leaves in the branched components is ( )1
4

239 1 60− − = . 
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 The next lemma gives a technical identity that provides the key inductive step in the theorem that 
follows the lemma.  Informally speaking, it shows that we can follow a chain of sums of paths 
multiplied by inverses of elements in the tree leading to 0 to get a path in the "next" tree of the 
appropriate size. 
 

Lemma 18: Suppose r, s(r) and s2(r) are nonzero elements in fdp(s(x)).  If ( )1
s( )

s( ) s( )
r

M + N  is a parent 

of ( )1
2

2 2

s ( ) s ( ) s ( )
r

M + N  then either ( )1
r

M + N  or ( )1
r

M N−  is a parent of ( )1
s( )

s( ) s( )
r

M + N 10. 

 Proof: Notice that a vertex x is a parent of y if and only if s(x) - y is zero.  Direct computation 
verifies that 

is  

 
( )( )4 2 4 2 42 2 2 2 4 2 2 2 2 4

2
M + MN + N r MN r + r M MN + N r + MN r + r

r
− − − −

s( )
 

which identical to  

 ( ) ( )−
⎛
⎝⎜

⎞
⎠⎟

−
⎛

⎝
⎜

⎞

⎠
⎟2

1 12
2

2 2s ( ) s
s( )

s( ) s( )
s ( )

s ( ) s ( )r
r

M + N   
r

M + N .  

Now the last expression is zero by the hypothesis and hence one of the factors of the first expression is 
zero.  This gives the claim. � 
 
Lemma 12 gave a multiplicative relationship between vertices that were 2-ancestors.  The following 
result involves both addition of k-ancestors and multiplication by inverses of tree elements in the 0-
component. This connects the existence of tree elements in the 0-component to the existence of vertices 
with higher ancestory. 
 
Theorem 19: If M and N are k-ancestors in fdp(s(x)) for some k ≥ 2 and if r is a predecessor of 0 such 

that s ( )k r− =1 0  then M and something of the form 
1
r

M + N( )′  are k+1-ancestors where ′N  is a vertex 

such that ′N and M are k-ancestors.  Moreover, if M is at level k+2 or higher, then there are 2k vertices that 
are k+1-ancestors with M. 

Proof: Proceed by induction on k.  When k = 2 we claim that 
1
r

M + N( )  is a 3-ancestor of M.  We are 

assuming s(r) = 0 and hence r2 = 2; from Lemma 12 we saw MN is a 2-ancestor of s(M) and hence we 

need only show s( ( ))
1
r

M + N = MN .  Notice that

 s( ( )) ( ) ( )
1 1

2 2
1
22

2 2 2 2

r
M + N =

r
M + MN + N = MN + M + N 4 = MN− −  

where the last equality holds since M and N are 2-ancestors implies that M 2 + N 2 = 4.  Also, if M is at 

 ( ) ( )4r r
M + N   

r
M + N

r
M N   

r
M + Ns ( )

s( )
s( ) s( ) s ( )

s( )
s( ) s( )

1 1 1 1⎛
⎝⎜

⎞
⎠⎟ −

⎛
⎝⎜

⎞
⎠⎟

−⎛
⎝⎜

⎞
⎠⎟ −

⎛
⎝⎜

⎞
⎠⎟
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level 4 or higher we know that 
1
r

M + N( )  is also at level 4 or higher since s ( )3 M  is not a cycle 

element. Thus, 
1
r

M + N( )  is its own “0-ancestor”, it has one 1-ancestor (its additive inverse), and two 2-

ancestors from the reasoning in the remark after Lemma 14. All of those are 3-ancestors of M and hence we 
have four 3-ancestors of M. 

 When k = 3, we know that M and N are 3-ancestors means s(M) and s(N) are 2-ancestors.  By the 

the k=2 induction step, we can assume that s(M) has a 3-ancestor of the form 
1

s( )
(s( ) s( ))

r
M + N .  Now 

we need to show s( ( ))
s( )

(s( ) s( ))
1 1
r

M + N =
r

M + N  or s( ( ))
s( )

(s( ) s( ))
1 1
r

M N =
r

M + N− .  First note 

that M and N are 3-ancestors if and only if s2(M) = - s2(N) which is if and only if 
4 2 2 44 4 4 0M M + N + N =− − .  Now direct computation using the fact that 4 24 2r = r − 15 shows that: 

 

 s( ( ))
s( )

(s( ) s( )) s( ( ))
s( )

(s( ) s( ))
1 1 1 1
r

M + N
r

M + N
r

M N
r

M + N−
⎛
⎝⎜

⎞
⎠⎟

− −
⎛
⎝⎜

⎞
⎠⎟

 

  

       =  
r r

M M + N + N
4

4 4 44 2
4 2 2 4

s( )
( )− −  

 
which is zero since M and N are 3-ancestors.  Hence one of the two conditions required must hold. Thus 

we have found a 4-ancestor A
r

M N= ±
1

( ) of M and we can rename N if desired to avoid the minus sign. 

Now suppose M  is at level at least k+2. We see A must be at the same level since s Mk +1( ) is not a cycle 
element. We know that A is its own “0-ancestor”, it has one 1-ancestor, two 2-ancestors, and four 3-
ancestors by induction.  All of those are 4-ancestors of M and hence M has eight 4-ancestors. 
 Now suppose we have shown the theorem up to k-1 and want to show it for k.  By renaming N if 

need be (to avoid minus signs) we can assume that s(M) and 
1

s( )
(s( ) s( ))

r
M + N  are k-ancestors and 

s2(M) and 
1

2
2 2

s ( )
(s ( ) s ( ))

r
M + N  are k-1-ancestors with s

s( )
(s( ) s( ))

s ( )
(s ( ) s ( ))

1 1
2

2 2

r
M + N =

r
M + N

⎛
⎝⎜

⎞
⎠⎟

. 

 We can now apply Lemma 18 to get a k+1 ancestor of M of the desired form.  When M is at level at least 
k+2, using the induction steps to complete the tree surrounding this new vertex gives the desired 2k vertices 
which are k+1-ancestors with M. � 
 
 We will refer to Figure 6 to provide some illustrations of this theorem in fd239(s(x)).  Notice that 
s(99) = 0 and the multiplicative inverse of r = 99 is 169.  Now M = 112 and N = 102 are 2-ancestors 
appearing at level 4 in the branched component containing a 4-cycle.  Note 
1

169 112 102 77
r

M + N = + =( ) ( )  which is a 3-ancestor with M.  Also, 65, which appears at level 2, and 
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230, which is a cycle element, are 2-ancestors.  Note 
1

169 230 65 143
r

M + N = + =( ) ( )  is at level 3 in the 

next tree; hence 65 and 143 are 3-ancestors.  Also s2(36) = 0 and the multiplicative inverse of r = 36 is 

166.  Therefore we are able to lift to level 4 via 17)143230(166)(1 =+=N+M
r

; hence 17 and 143 are 

4-ancestors18.   
 Notice we are able to use Theorem 19 to find elements at the same level in a tree associated with a 
cycle element and we also are able to use the theorem to find elements at a higher level in the next tree 
associated with a cycle element having more distant ancestry.  Thus it can be used both to complete trees 
and to lift levels.  We put these ideas together in our main theorem about the tree structure in fdp(s(x)). 
 
Theorem 20: The tree leading to any vertex at level 2 in fdp(s(x)) is a complete binary tree and is 
isomorphic to the tree leading to the vertex 0. 
 
 Proof: Suppose the leaves in the 0-component reach level d.  Then if r is such a leaf in that 
component, s ( )d r− =2 0 . Now if d ≥ 3 we can use Theorem 19 on vertices at height 2 with a cycle 
element that gives a 2-ancestor to produce a 3-ancestor at level 3.  If d ≥ 4 we can use this vertex and a 
cycle vertex to get a vertex at level 4.  We can repeat this d - 2 times resulting in a vertex at height d.  
We can then use Theorem 19 and the vertices at height d to see that all the trees in the branched 
components are complete binary trees from level 2 up to height d.   
 Lastly, we need to show that if any component has reached level d+1, then we can reverse the 
identity used to raise to level d + 1 (in Lemma 18) to solve for an r that leads to 0 in one more step, 
contradicting our choice of d.  In particular, we can assume that r is at level d in the tree leading to 0 and 
that there is vertex R at level d+1 in some other branched component. By the induction to level d we 
know the trees to level d are complete, in fact, trees rooted to depth d or less from any vertex are 
complete. Now s(R) is at level d and the trees are complete to that level.  Thus, s(R) must be obtainable 
from the process of lifting described in Theorem 19.  In particular, we can find a cycle vertex M and a 
vertex N at level d so that  s(M) and s(N) are d-ancestors lifting to s(R).  That is, 

 
1
r

M + N = R ,     *(s( ) s( )) s( ) ( )  

and 

 
1 2 2 2

s( )
(s ( ) s ( )) s ( )

r
M + N = R  

and from that it follows that 

 s (s( ) s( ))
s( )

(s ( ) s ( ))
1 1 2 2

r
M + N =

r
M + N .⎛

⎝⎜
⎞
⎠⎟  

We need only show that s( ( ))
1
R

M + N = r  or s( ( ))
1
R

M N = r−  to show that the tree leading to 0 rises 

to level d + 1.  Now  an identity similar to that appearing in Lemma 18 is 

 s (s( ) s( ))
s( )

(s ( ) s ( ))
1 1 2 2

r
M + N

r
M + N⎛

⎝⎜
⎞
⎠⎟ −         

 =
r r M N rMN r + M + N rMN + r .

2
4 42 2 2 2 2 2

2 s( )
( )( )− − − − − −  
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We noted above that the left hand side must be zero.  If we assume the first factor of the right hand side 

is zero and simplify using (*) we get s( ( ))
1
R

M + N = r  and the other possibility arises from the other 

factor.  In this way we see all the trees in branched components have the same height which completes 
the proof. � 
 
 Notice that knowing that the trees are uniform complete binary trees along with knowledge of 
the number of leaves in the branched components now allows us to compute the number of branched 
cycle elements, c, and the depth, d, of the trees.  For example, when p = 239 we checked that there are 
60 leaves in the branched components.  Since there are 2c - 1 trees associated with level 2 vertices each 
of which will have 2 2d − leaves we see ( ) ( )2 1 2 60 15 22 2c d− = =− ; by equating the odd factors and 
powers of two we see 2c - 1 = 15 and 2 22 2d − =  so c = 8 and d = 4 which is correct. 
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