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Abstract 
An extension of canonical projection allowing the projection of objects from higher 
dimensional space onto quasicrystalline structures is developed. In particular, we create 
symmetric chaotic attractors in 5-dimensionsal space and then project them to the plane 
such that the resulting image exhibits the structure of a quasicrystalline tiling. These 
images give a new visual expression of the higher dimensional symmetry of the 
corresponding attractor. 
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1. Introduction 
Penrose tilings are remarkable patterns with no translational repetition but which 
nonetheless are repetitive in the sense that any finite patch that appears once in the tiling 
must appear infinitely often. Moreover, Penrose tilings have local 5-fold symmetry which 
results in a diffraction pattern with 5-fold rotational symmetry — such a diffraction 
pattern is impossible for patterns which have crystallographic structure. Hence, Penrose 
tilings are one of the simplest examples of what are now known as quasicrystals. Figure 1 
shows an example of a Penrose tiling. Penrose tilings may be created in various ways, but 
the method of canonical projection is central to our techniques. Figure 2 shows a single 5-
dimensional hypercube projected onto a plane where the bold edges correspond to 
canonical projection. We will describe and generalize canonical projection in Sections 3 
and 4, but for now, we note that it is based upon projecting only select lattice points in 5-
dimensional space and hence may be viewed as a kind of limited projection from 5-
dimensional space.  

Chaos is ordinarily associated with a high level of randomness and 
unpredictability. Symmetry is associated with structure and pattern. Remarkably, these 
phenomenon may occur simultaneously. Indeed, chaotic attractors with various 
symmetries have been the subject of considerable recent study because of the intrigue of 
those seemingly conflicting behaviors and the aesthetic appearance of the results. These 
studies have included chaotic attractors with cyclic and dihedral symmetry, and also 
frieze and planar crystallographic symmetry [1-4] along with higher dimensional point 
groups and general space groups [5-8]. Figure 2 shows a chaotic attractor with cm 
symmetry that was created in the manner described in [5] and which will be further 
described in the next section.  

In this paper we generalize the canonical projection method; we call the 
generalization "quasicrytalline projection". It will allow us to project periodic chaotic 
attractors in 5-dimensional space to the plane in a way that is consistent with the 
quasicrystalline tiling that results from the corresponding lattice. Our examples offer 
aesthetically pleasing quasicrytalline patterns that give glimpses into the five dimensional 
symmetry of the attractor. 

 
2. Symmetric Chaotic Attractors 
The symmetry group cm is a planar crystallographic group and hence includes 
translations by the integer lattice. In the International Tables [9] we see the additional 
symmetries of cm are generated by )2/1,2/1( ++ yx  and ),( yx− .  
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 To facilitate the construction of functions with these symmetries, we can 

represent the symmetries via a single matrix in homogeneous coordinates.  The point 
),( yx  is )1,,( yx  in homogenous coordinates. Thus we see 
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)1,,( yx = )1,2/1,2/1( ++ yx  which represents the first symmetry 

mentioned above. In a similar way, the matrix 
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symmetry. We compute the "position group" generated by these symmetries by finding 
the modified matrix product closure of the generators. The modification required is that 
we reduce the entries of the last row, except the rightmost "1", (those entries 
corresponding to translations) modulo 1. This is the form we use in our implementation. 
Thus, the position group represents the symmetry group modulo the lattice. In the case of 
the symmetry group cm, there are 4 elements of the position group. For us, the following 
theorem from [5] tells us how to create functions with any dimensional crystallographic 
symmetry. 
Theorem.  Let P be a position group on a lattice L in ℜn , and let f be a periodic 
function mod L.  Then the function ∑

∈

−+=
P

xxx
p

1 )))(f(p(p)i( rrr  mod L has the translational 

symmetries of the lattice L and the symmetries of the position group P. 
 
Thus our strategy for creating chaotic attractors exhibiting quaiscrytalline structure is as 
follows. We randomly produce finite 5-dimensional Fourier series and select a 5-
dimensional position group. We use them to construct the function )i(xr , described in the 
Theorem, and thus we know the function has the desired symmetries. We numerically 
test functions created that way to estimate their Ljapunov exponent. When the highest 
Ljapunov exponent is between 0.01 and 0.3, we render low resolution images of 
projections of the attractor. Such a Ljapunov exponent is indicative of chaos, but is not so 
expansive that we expect difficulty in rendering it. We then select the results of 
promising experiments for further investigation. 
 
3. Penrose Tilings and Canonical Projection 
As we remarked earlier, Penrose tilings have local five-fold symmetry but no 
translational symmetry. Penrose described them in [10] and descriptions of several 
techniques for constructing them are given in [11-12]. In particular, methods for 
constructing Penrose tilings include the following:  
• they may be constructed using matching rules on two prototiles (which are rhombs);  
• they may be created by successive substitution according to rules (whereby the tiles 

in a tiling are replaced by smaller versions of the themselves);  
• they may be constructed via pentagrids (the Penrose tiling is dual to a tiling created 

by five families of parallel lines); and  
• they may be constructed via "canonical" projection from higher dimensional space.  
These techniques may be easily generalized to produce quasicrystalline tilings other than 
the Penrose tilings, but we will describe canonical projection as it would be used to to 
create a Penrose tiling.  

Consider the standard integer lattice of 5-dimensional space tiled by 5-
dimensional unit hypercubes. The vector )1,1,1,1,1(=u  is fixed by the fifth turn that shifts 
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coordinates, Rxxr )1,()( rrr = , that is represented by the 6 by 6 homogeneous coordinate 
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R . We construct an irrational 2-dimensional subspace E 

perpendicular to u; here "irrational" means that the subspace intersects the lattice only at 
the origin. We let ⊥E  denote the 3-dimensional subspace of 5-dimensional space that is 
orthogonal to E. For this hypercube lattice, consider the Voronoï cell around the origin. 
These are the points which are at least as close to the origin as to any other lattice point. 
Thus, the Voronoï cell around the origin is a 5-dimensional hypercube with vertices 
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1 . We let C denote compact set that is the projection of this 

Voronoï cell onto ⊥E . Canonical projection is the projection onto E of the points of the 
integer lattice in 5-dimensional space that project onto C in ⊥E . Roughly speaking, the 
compact set C in ⊥E  corresponds to a thin cylinder in 5-dimensional space that is "near" 
E. Figure 2 shows the Voronoï cell projected onto E. The thick edges correspond to those 
(few) that would be projected under canonical projection and they could form the 
beginning of a Penrose tiling. We get the tiling in E by projecting the points and edges of 
the 5-dimensional lattice (not just one hypercube) that lie in the cylinder. To be more 
precise, to get a true Penrose tiling, we need to take an appropriate translational shift of 
the Voronoï cell to avoid a singular arrangement. The references and our implementation 
discuss this. Also note that while we have described the projection in terms of 5-
dimensional space, canonical projection is more general and, in fact, we have not used 
particular features of )(xr rr  or the role of 5-dimensional space except to explain what a 
Voronoï cell would look like in the space. 
 
4. Quasicrystalline Projection 
We have seen that the projection method can be used to create quasicrystalline tilings. 
However, the method is only designed for the projection of select lattice points. We face 
the difficulty of projecting chaotic attractors which wander around 5-dimensional space. 
However, our attractors are periodic with the period of the each of the lattice coordinates. 

We could identify the vertices in 5-dimensional space that lie in the cylinder and 
then project each of the points of the attractor added to that (integer) vertex. This induces 
noticeable visual bias since not every point which is projected under that scheme would 
have been in the cylinder, nor would every point of the attractor that lies in the cylinder 
arise that way. That is, the bias comes from missing some points in the cylinder and 
projecting some outside of the cylinder. The mistakes come in hypercube fractional 
clumps, which as we see in Figure 2, can be thicker in some regions and thinner in others. 

Thus we turn to our generalization of canonical projection, which we call 
quasicrystalline projection. The goal is simple and compelling: we project only the points 
of the attractor that lie in the cylinder. Accomplishing this is computationally expensive. 
We first note that our attractor points have coordinates between 0 and 1. Thus, a point 
which is in the cylinder will have integer part which is a projected point or some of the 
coordinates may be one less than the nearest projected lattice point. Thus, we create a list 
of all the integer lattice points in 5-dimensional space that are in the cylinder and which 
are close enough to the origin to project onto our finite screen; we add 0 or -1 to each 
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coordinate in all of the 32 possible ways, and then remove duplicates from that extended 
list. We then add each point in the attractor to each 5-tuple in the extended list and test 
whether it lies in the cylinder. Testing whether a single point lies in the cylinder requires 
projecting the point, finding its distance in the direction of the 10 normals to the facets of 
C, and then testing 10 inequalities. If the projection of a point to ⊥E does lie in C, we 
project the point to E; otherwise, we do not project the point. As we do the projection, we 
maintain the frequency count of the number of times each pixel is visited. Even though 
we want to project millions of iterations of the function and there are hundreds of  5-
tuples in our extended list, the computation is tractable and we see the results of several 
experiments in the next section. 
 
5. Examples of Quaiscrystalline Projection 
For our illustrations we take E to be the subspace of 5-dimensional space generated by: 
( ))5/8cos(),5/6cos(),5/4cos(),5/2cos(),5/0cos( πππππ  and 
( ))5/8sin(),5/6sin(),5/4sin(),5/2sin(),5/0sin( πππππ . The space  ⊥E  is generated by 
the vectors ( ))5/16cos(),5/12cos(),5/8cos(),5/4cos(),5/0cos( πππππ  and 
( ))5/16sin(),5/12sin(),5/8sin(),5/4sin(),5/0sin( πππππ  and )1,1,1,1,1( . We use a shift 
of the Voronoï cell by (0, 0, 0.696, 0.879, 1.11803) to avoid a singular arrangement. 
Those choices, along with the quasicrystalline projection techniques in general, is enough 
to specify the specific quasicrystalline projection that we are using. 

Figure 4 shows our first illustration of a quasicrystalline projection along with the 
corresponding quasicrystalline tiling. The generators of the position group are given in 
the appendix and there we also see the position group has 160 elements. Each of the 
symmetry groups used in our examples include )(xr rr  from Section 3 as a generator. 
There is no reason that objects must have the symmetry of )(xr rr  in order to be projected 
with quasicrystalline projection; however, in practice, we found no interesting examples 
of attractors using quasicrytalline projection on attractors without the symmetry of )(xr rr . 
This is reasonable since the structure of quasicrstalline tilings is subtle, so having no 
portions of the object highlight the local symmetry would make it difficult to observe any 
structure. Notice in Figure 4 the small local 5-fold rotational symmetric regions appear to 
be scattered and often repeated. The red regions correspond to a regions visited least 
often while the colors move through the hues toward magenta as the number of visits to 
the pixel location increases. We use a logarithmic bias toward giving more color change 
to the higher frequencies; this highlights the detail in the most visited regions. This also 
results in the prominence of red and orange. The large number of features is consistent 
with the relatively large position group. Notice that the pattern in any rhomb may differ 
from the same rhomb in another position unless the rhombs have similar local 
configurations; in that case, we can observe the consistency.  
 Figure 5 shows a chaotic attractor exhibiting quasicrystalline structure and also 
featuring many glides. The position group has 160 elements in this illustration too. Here 
we have chosen a palette for the image aesthetically; here green corresponds to the 
regions visited a low number of times. In this image mirrors are apparent; this results in a 
wandering and changing floral-like pattern.  

Figure 6 shows another chaotic attractor exhibiting quasicrystalline structure. The 
position group has size 10 and is generated by )(xr rr  and a central inversion. This group is 
as small as is possible if )(xr rr  and any independent symmetry is to be included in the 
position group. Hence, this attractor is more generic than our other examples. This image 
has striking swirls and while the inversion adds structure and repetition, there are no 
apparent local mirrors. Purple corresponds to the regions with a low number of visits.   
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Figure 7 shows a chaotic attractor exhibiting quasicrystalline structure where the 

position group involves many mirrors. Indeed, the five directions of parallel highlights 
are apparent which is quite suggestive of the multigrid construction method for Penrose 
tilings. It appears like a sky with lights aligned, but still scattered. Here black/brown 
corresponds to regions visited a small number of times. 

A J script that would allow readers to duplicate Figure 6 with a generic palette 
may be obtained from [13]. A few more of our examples of attractors exhibiting 
quasicrystalline structure also appear there.  

We have seen that quasicrystalline projection allows us to display chaotic 
attractors in 5-dimensional space in a way so that the underlying quasicrystalline 
structure and higher symmetry are both visible. These provide examples of aesthetic 
patterns with little overall structure but with the rich local structure of quasicrystals.  
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Appendix: Figure Symmetries and Position Group Closure 
Each of the figures of chaotic attractors exhibiting quasicrystalline symmetry has the 5-
fold symmetry of the map )(xr rr  that was defined in Section 3. Each of the symmetry 
groups also has a single additional generator corresponding to the matrices F4, F5, F6 
and F7, given below, where the numbers correspond to the figure numbers. A few J 
expressions implementing and applying position group closure are given after the 
matrices. The position group for Figure 4 has 160 elements. The position groups for the 
remaining figures have size 160, 10, and 80, respectively.  
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F7 . 

 
Below we offer J functions for computation of the position group closure required for the 
construction of symmetry chaotic attractors in the Theorem of Section 2. In particular, 
Prods^:_~ applied to a list of generators will produce the position group. We assume 
the matrix R from Section 3 and F4 above have been defined.  
  
   prods=:\:~@~.@(**|)@([,(,/)@:((+/ . *)"2/)) 
   tr=:(5 6$0),5 1#1 0 
   Prods=:[: ~. tr"_ |"2 prods 
 
   #Prods^:_~ R,:F4 
160 
 
The last result above verifies that the number of elements in the position group associated 
with Figure 4 is 160. 
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Fig. 1.  A Penrose rhomb tiling. 

 
Fig. 2. Projection and canonical projection (bold) of a hypercube. 
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Fig. 3.  A chaotic attractor with cm symmetry. 

 

 
Fig. 4. A chaotic attractor exhibiting quasicrystalline structure and the overlying Penrose 

tiliing. 
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Fig. 5. A chaotic attractor exhibiting quasicrystalline structure and many glides. 

 
Fig. 6. A chaotic attractor exhibiting quasicrystalline structure and a central inversion. 
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Fig. 7. A chaotic attractor exhibiting quasicrystalline structure and many reflections. 

 

 


