Due Wednesday, March 28th

SETS

1. List the elements in the set: \(\mathcal{P}(\mathcal{P}(\emptyset)) \). How many elements are in \(\mathcal{P}(\mathcal{P}(\emptyset)) \)? List them if you want!

2. Let \(A, B \) be subsets of some universal set. Prove that

 (a) \(\overline{A} = A \)

 (b) \(A \cap B = \overline{A} \cup \overline{B} \).

 (c) \(A \times B \subseteq \overline{A} \times \overline{B} \)

3. Let \(S \) and \(T \) be arbitrary sets. Prove that

 \[\mathcal{P}(S) \cup \mathcal{P}(T) = \mathcal{P}(S \cup T) \text{ iff } S \subseteq T \text{ or } T \subseteq S. \]

4. Define \(n\mathbb{Z} = \{na \mid a \in \mathbb{Z} \} \) for any \(n > 0 \). Now fix some \(n, m > 0 \). Prove that \(n\mathbb{Z} \cap m\mathbb{Z} \) is a set of the form \(k\mathbb{Z} \) for some \(k > 0 \).

5. For sets \(A, B, \) and \(C \) show that

 \[A \times (B \cup C) = (A \times B) \cup (A \times C). \]

6. For sets \(S \) and \(T \) define their **symmetric difference** to be the set

 \[S \triangle T := S \setminus T \cup T \setminus S. \]

 (a) Draw the symmetric difference as a Venn Diagram.

 (b) Using part (a) conjecture and prove another (simpler) description for the symmetric difference.