SIAM J. DISCRETE MATH. (© 2008 Society for Industrial and Applied Mathematics
Vol. 22, No. 2, pp. 776-785

COMBINATORIAL PROPERTIES OF A ROOTED
GRAPH POLYNOMIAL*

DAVID EISENSTATT, GARY GORDON?¥, AND AMANDA REDLICHS

Abstract. For a rooted graph G, let EV(G;p) be the expected number of vertices reachable
from the root when each edge has an independent probability p of operating successfully. We exam-
ine combinatorial properties of this polynomial, proving that G is k-edge connected if and only if
EV/(G;1) = --- = EVF~1(G;1) = 0. We find bounds on the first and second derivatives of EV (G;p);
applications yield characterizations of rooted paths and cycles in terms of the polynomial. We prove
reconstruction results for rooted trees and a negative result concerning reconstruction of more com-
plicated rooted graphs. We also prove that the norm of the largest root of EV(G;p) in Q[é] gives a
sharp lower bound on the number of vertices of G.
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1. Introduction. Graph polynomials have a long history, dating to Birkhoff’s
use of the chromatic polynomial in an (unsuccessful) attempt to prove the four color
theorem [7]. Two other polynomials, the reliability polynomial [12] and the 2-variable
Tutte polynomial [8], also encode combinatorial data about the graph (the Tutte
polynomial specializes to both the chromatic and reliability polynomials). While the
original motivation for the study of these invariants is still important, much of the
current interest in the Tutte polynomial is not related to any of its applications. See
[9, 14] for some recent combinatorial applications.

It is in this spirit that we continue the study of the expected value polynomial
EV(G;p) applied to a rooted graph G, i.e., a graph with a distinguished vertex.
The polynomial was introduced in [1] and [2], extended to antimatroids in [18], and
applied to rooted graphs in [5, 19]. A closely related polynomial, called pair connected
reliability by Amin, Siegrist, and Slater in [3, 4] and Siegrist in [21, 22] and network
resilience by Colbourn in [13], is motivated by the reliability polynomial. A similar
polynomial has also been defined for (nonrooted) graphs [6, 23].

In this paper, we concentrate on combinatorial properties of the rooted graph and
their connection to the polynomial. In the sequel paper [15], we turn to applications,
including practical questions about optimal location for the root for a given graph,
randomness, and estimation.

Section 2 is concerned with bounds on the first and second derivatives of EV (G; p).
Applications of these bounds to the edge connectivity of the graph and graph recon-
struction are given. The main result is Theorem 2.7.

THEOREM 2.7. If G is a rooted graph, then G is k-edge connected if and only if
EV'(G;1) =--- = EVF-1)(G;1) = 0.
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COMBINATORIAL PROPERTIES ot

Section 3 examines the behavior of EV (G;p) under standard graph-theoretic con-
structions. We give limits on the possibility of reconstructing G from EV (G;p). When
G is a rooted cycle or a rooted path, reconstruction is possible; in almost all other
cases, it is not possible.

THEOREM 3.4.

(1) EV(G;p) = p+ -+ p" if and only if G is isomorphic to the rooted path

P,_1.
(2) EV(G;p) =2p+---+2p" 1+ (n—1)p" if and only if G is isomorphic to the
rooted cycle C,.

Conversely, Theorem 3.1 shows that any rooted graph is a subgraph of another
rooted graph with a linear expected value polynomial. In a slightly different direction,
Theorem 3.9 shows that rooted trees can be reconstructed from a family of expected
rank polynomials.

In section 4 we give connections between the maximum norm of the zeros of
EV(G;p) in C and the number of vertices of G. This section is motivated by the
study of the roots of the chromatic polynomial, which has connections to statistical
physics [10, 20]. Our main result is Theorem 4.3.

THEOREM 4.3. Let G be a connected rooted graph with n > 1 wvertices. Suppose
that the polynomial EV (G;r) =0 for some r € Q[i]. Then |r — 1] <n —1.

While many of the proofs given here are straightforward (especially those concern-
ing derivatives of the 1-variable polynomial), we believe the results are of sufficient
interest to warrant further study. These results show that the polynomial encodes
meaningful information about the rooted graph, but we also place bounds on how
successful such an approach can be (Theorem 3.1).

2. Derivatives and edge connectivity. Let G be a connected rooted graph
with edge set E, where each edge has the same independent probability p of being
operational. We give two equivalent formulations of the expected rank polynomial,
both of which will be important throughout this work. For a nonroot vertex v, let
Pr(v) denote the probability that v remains connected to the root. The following
result appears explicitly in [5] and implicitly in [13] and [3, 4].

DEFINITION 2.1 (Proposition 2.7 of [5]). Let G be a rooted graph, and let V be
all the nonroot vertices of G. Then

EV(Gip) = > _ Pr(v).

veV

We will also need the following deletion-contraction expansion for the polynomial.
PROPOSITION 2.2 (deletion-contraction: Proposition 2.3 of [5]). Let G be a rooted
graph, and let e (# loop) be an edge adjacent to the root. Then

EV(Gip) = (1—p)-EV(G —e;p) +p- EV(G/e;p) + p.

We will use the deletion-contraction formula of Proposition 2.2 repeatedly in this
section. Throughout this section, we will assume an edge e incident to the root is not
a loop (loops have no effect on the polynomial).

Ezample 2.3. We consider the expected rank polynomial EV (K,; p) for the rooted
complete graph. This example is important since any random graph can be thought
of as a subgraph of K,,. Obtaining closed form expressions for EV (K,;p) is difficult;
see [4] for one approach. When applying deletion-contraction to K,, multiple edges
arise, and this gives rise to a recursive formula for EV (K, ;p). (Replacing e by k
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Fi1c. 1. Graphs of EV (Ky;p)/(n—1) forn=2,...,10.

multiple edges can be thought of as increasing the probability that e succeeds from
p to 1 —¢*, where ¢ =1 —p.) If G’ is obtained from the rooted graph G by replacing
every edge of G by k parallel edges, then EV(G’) = EV(G;1 — ¢*). The proof of the
next proposition follows from this observation.

PROPOSITION 2.4. Let ¢q =1 —p. Then

n—1
EV(K,;p) = Z <n k 1>plq"1k (EV(Kn—k; 1—q¢") + k) .
k=1

For fixed p > 0, we have EV (K,,;p)/(n —1) — 1 as n — oo. This follows from a
famous result of Erdés and Rényi [17]. If p >> logn/n, then the probability that G
is connected approaches 1 as n — oo. Graphs of EV (K,;p)/(n — 1) for 2 <n < 10
appear in Figure 1.

We now turn our attention to the derivative EV'(G;p), which is closely related
to the connectivity of the rooted graph GG. We begin by deriving sharp bounds on the
size of EV'(G;p) and EV"(G;p).

We omit the straightforward proof of the lemma.

LEMMA 2.5. Let G be a rooted graph with an edge e incident to the root. Then for
allp € 10,1], 14+ EV(G/e;p) > EV (G — e;p), with equality possible only when p = 1.

It is easy to see that EV'(G;p) > 0 for all 0 < p < 1: increasing p increases the
expected number of vertices reachable from the root, so EV(G;p) is an increasing
function. We now give sharp upper and lower bounds on EV'(G;p) and an upper
bound on the second derivative |EV"(G; p)|.

PROPOSITION 2.6. Let G be a rooted graph with n edges. Then for all p € [0,1],
the following hold:

(1) EV'(G;p) > 0. This inequality is strict if G has an edge incident to the root

and p < 1.

(2) EV'(G;p) <n(n+1)/2.

(3) [EV'(G:p)| < (n— n(n+1)/3.

Proof. We prove (2)—the proofs of (1) and (3) are similar. We proceed by in-
duction on n, and the base case n = 0 is trivial. When n > 0, we differentiate the
formula 2.2:

EV'(G;p) = (1+ EV(G/e;p)) — EV(G — ¢;p)
+pEV'(G/e;p) + (1 —p)EV'(G — e;p).
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COMBINATORIAL PROPERTIES 779

If G has no edge e incident to the root, then EV'(G;p) = 0. Otherwise, we examine
each term in this formula.

First, note that 1 + EV(G/e;p) < n since EV(G/e;1) =n — 1 and EV(G;p) is
an increasing function. Also, EV (G — e;p) > 0 is clear. Finally,

pEV'(G/e;p) + (1 = p)EV'(G — e;p) < (n—1)n/2

by induction. Putting the pieces together gives EV'(G;p) < n(n+1)/2. 0
Notes.
1. The lower bound in Proposition 2.6(1) is sharp for all 2-edge connected graphs
at p = 1. For the rooted cycle C,,

n—1
EV'(Cpn;p) = Z 2kp* =t —n(n —1)p" 1,
k=1

so EV'(Cp;1) = 0.

2. The upper bound in Proposition 2.6(2) is also sharp for rooted paths with
n edges. If P, denotes the rooted path on n edges with the root located at
a leaf, then

n

EV(Pn—i-l;p) = Zpka
k=1

$0 EV'(Pyy151) = > p_1k = n(n + 1)/2. The converse is also true when
p=1.1f EV/(G;1) = n(n+1)/2, then G is a rooted path (Lemma 3.3(1)).

3. Note that it is not possible to bound EV'(G;p) in terms of the number of
vertices: if G is a graph with two vertices joined by k edges, then EV (G;p) =
1—(1-p)k, so EV'(G;0) = k.

4. The bounds of Proposition 2.6(3) are sharp for paths (upper bound) and
cycles (lower bound) with n edges (P,+1 and C,,), again at p = 1. We will
also prove a converse for the lower bound: If EV”(G;1) = —(n—1)n(n+1)/3,
then G is the rooted cycle C,, (Lemma 3.3(2)).

It is possible to derive bounds for even higher derivatives in this fashion, but these
bounds will not be sharp, in general, with the exception of the lower bound for the
third derivative. Further, the expected value polynomials of paths and cycles do not
have maximal and minimal derivatives of all orders at p = 1.

Note that the second derivative of the deletion-contraction formula in Proposi-
tion 2.2 simplifies when p = 1:

EV"(G;1) =2EV'(G/e;1) —2EV'(G — e;1) + EV"(G/e; 1).

This allows us to rewrite the upper bound in Proposition 2.6(3) in terms of the number
of vertices of G, since G/e has one fewer vertex than G.

Recall that G is k-edge connected if removing fewer than k£ edges from G can-
not disconnect GG. The next result shows that k-edge connectivity is determined by

EV(G;p).
THEOREM 2.7. If G is a rooted graph, then G is k-edge connected if and only if
EV'(G;1) = --- = EVF-1(G;1) = 0.

Proof. From Definition 2.1, we have

V(Gip) =) Pr(v),

veV
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780 DAVID EISENSTAT, GARY GORDON, AND AMANDA REDLICH

where Pr(v) is the probability that v is connected to the root. Fix v and let Sy,..., S,
be the minimal subsets of E that, when removed, disconnect v from the root. Let F'(.5)
be the probability that all edges in S fail. Then we can compute Pr(v) in terms of
F(S) via inclusion-exclusion:

Pr(v)=1—F(S;)—---—F(Sp) + F(S1US82)+--- £ F(S1U---US,).

Now F(S;) = (1—p)I%, so Pr(v) =1+ 37", a;(1 — p)’. Clearly, if k is the size of
the smallest S;, then a; = --- = agp—1 = 0 and a; # 0 (in fact, we must have a; < 0).
Finally, summing over all vertices gives the result. 1]

As a quick check, note that EV’/(T;1) > 0 for any tree having n > 0 edges,
so Theorem 2.7 shows that any tree is 1-edge connected. For the cycle C,,, we have
EV'(Cp;1) = 0 (see the remarks immediately following Proposition 2.6), but
EV"(Cp;1) = —(n — 1)n(n + 1)/3, so the theorem gives a verification that cycles
are 2-edge connected.

When G is not rooted, Proposition 2.2 of [6] shows that EV’/(G; 1) = 0 if and only
if G is connected, where EV (G} p) is defined using the matroid (cycle) rank function.
In this case, the value of |[EV'(G;1)| is just the number of isthmuses of G. Thus,
Theorem 2.7 is a rooted generalization of this result.

3. Reconstructing graphs and an embedding theorem. EV(G;p) is de-
fined via connectivity; thus, it is not surprising that graph reconstruction is not pos-
sible using this invariant. The next theorem, one of the main results of this section,
is a negative reconstruction result.

THEOREM 3.1. Let G be a rooted graph. Then there is a rooted graph G’ such that
G is an induced subgraph of G' and EV(G') = kp for some positive integer k.

Proof. Let EV(G;p) = aip + asp® + -+ + a,p™, where a; € Z and a,, # 0.
We first show how to find a graph H; with the property that EV (G @ Hy;p) has
degree less than n. We then iterate this procedure, eventually producing a graph
G'=GoH & - ®H,_ so that EV(G';p) is a linear polynomial.

Case 1. a,, < 0. Let Hy be the direct sum of a,, copies of the path P, 1, the path
with n edges, with each path rooted at a vertex of degree 1. Since EV (P,411;p) =
> h_, p", we find that the degree of EV (G & H;) is at most n — 1.

Case 2. a, > 0. First attach k n-cycles to the root of G, where k(n — 1) > ay,
and call the new graph G;. Now EV(Gy;p) = b,p™ + -+ has degree n, and b, =
an — k(n — 1) < 0, by construction. Now proceed as in Case 1.

Now iterate this procedure to produce rooted graphs Hs, Hs,... so that the
degree of EV(G @ Hy @ --- ® Hy,) is at most n — k. This process will terminate when
k=n-—1. ]

Ezample 3.2. We apply (a variation of) the procedure described in the proof of
Theorem 3.1 to the rooted cycle Cs. First, note that EV(Cs;p) = 2p + 2p* — 2p3.
We attach a tree H; with EV(Hy;p) = p + p? + 2p?®, as in Figure 2. This gives
EV(Cs & Hy;p) = 3p + 3p>.

Now let Hy = Co @ Cy @ Oy, so EV (Ha;p) = 6p — 3p2. Thus EV(G';p) = 9p,
where G' = Cs @ H, @ Hs.

For example, if we let Ay denote the rooted graph formed by k parallel edges,
then EV(Cy @ Cy @ Cy @ Ca;p) = EV (A3 ® A3 @ Cs;p) = 8p — 4p*.

Given Theorem 3.1, it is quite easy to construct nonisomorphic graphs with the
same expected value polynomial. However, for certain classes of graphs, G can be
uniquely reconstructed from EV (G; p). We now show how rooted cycles are completely
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So G’

F1c. 2. EV(Sg;p) = EV(G';p) = 9p.

determined (within the class of all rooted graphs) by these polynomials. Recall that
P,,+1 denotes the rooted path with n edges.

LEMMA 3.3. Let G be a rooted graph with n edges.

(1) EV'(G;1) = (n+ 1)n/2 if and only if G is isomorphic to Py 1.

(2) EV"(G;1) = —(n+ 1)n(n —1)/3 if and only if G is isomorphic to C,.

Proof. We prove (1) and leave the similar proof of (2) to the reader. From the
remarks following the proof of Proposition 2.6(2), EV'(P,11;1) = n(n +1)/2.

For the converse, we use induction. If G has one edge, then there is nothing to
prove. Now suppose n > 1 and EV'(G;1) = (n+ 1)n/2. If G has no edges incident
to the root, then EV’'(G;1) = 0, so we may assume that e is incident to the root.
Then, as in the proof of Proposition 2.6(2), we have EV'(G;1) =1+ EV(G/e;1) —
EV(G —e;1)+ EV/(G/e; 1).

Now EV(G/e;1) < n —1 (since G — e has n — 1 edges) and EV(G —e;1) > 0.
Thus,

EV'(G/e;1) = EV'(G;1) — EV(G/e; 1) + EV(G —e;1) — 1,

which gives EV'(G/e;1) > (n+1)n/2—(n—1)—1 = n(n—1)/2. By Proposition 2.6(2),
we have EV'(G/e; 1) = n(n — 1)/2, which forces each of the inequalities given above
to be equalities. Thus, EV (G —e;1) = 0, so e is the only edge incident to the root of
G, and EV(G/e;1) =n — 1, so G/e is connected. Furthermore, since EV'(G/e;1) =
n(n —1)/2, we have that G/e is isomorphic to the path P,, by induction.

Now we have a rooted graph G with exactly one edge e incident to the root such
that G/e is the path P,. This forces G to be the path P, 1. 0

An immediate consequence of Lemma 3.3 is the following.

THEOREM 3.4.

(1) EV(G;p) = p+---+p" if and only if G is isomorphic to the rooted path

n—1-
(2) EV(G;p) =2p+---+2p" L+ (n—1)p" if and only if G is isomorphic to the
rooted cycle C,.

Obviously, for any positive integer k, it is possible to produce k nonisomorphic

rooted trees, all sharing the same expected value polynomial. On the other hand,
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it is possible to uniquely reconstruct a rooted tree from a sequence of expected rank
polynomials. We begin with a definition.

DEFINITION 3.5. Let G be a rooted graph. Then the expected rank k polynomial
is defined by

EVi(Gip) = Y M -p)F,
ACE:r(A)=k

where r(A) is the number of vertices in the component of A containing the root (not
including the Toot).

Thus, EVi(G;p) is the probability that exactly k vertices are connected to the
root. The proof of the next proposition is immediate.

PROPOSITION 3.6. Let G be a rooted graph with n + 1 vertices. Then

(1) Yr_i EVi(G;p) =1, and

(2) EV(G;p) =Y 1_, k- EVi(G;p).

To keep track of this sequence of expected rank k polynomials, it is convenient to
introduce a 2-variable generating function.

DEFINITION 3.7. Let T be a rooted tree, and let X (T') be a tree with a single edge
e adjacent to the root such that X(T)/e = T. Then define F(T;p,q) recursively as
follows:

F(e) =1,
F(X(T)) =q+pF(T),
F(IheTy) = F(Ih)F(T»).

The connection between the generating function F(T;p,q) and the sequence of
rank k expected rank polynomials EVy(T'; p) is made explicit in the next proposition.

PROPOSITION 3.8. F(T;p,q) is uniquely recoverable from the sequence of polyno-
mials EVy, ..., EV,, where EV}, is the probability that exactly k vertices are connected
to the root.

Proof. Let EVj.(p) = p*gr(p). Then set ¢ =1 —p, so p =1 — ¢, and it is easy to
show that F(T) = >, p*gx(1 — ). Thus, we can recover F(T') from the sequence of
polynomials, and this operation is easily invertible. |

We now prove that rooted trees can be uniquely reconstructed from their sequence
of rank k expected rank polynomials {EVj, ..., EV,,}.

THEOREM 3.9. Let T be a rooted tree. Then F(T(p,q)) uniquely determines T up
to isomorphism.

Proof. Tt suffices to show that for all T, F(X(T)) is irreducible over Z[p, g]. The
result then follows by induction: if F(T';p, q) factors, we reconstruct the rooted trees
corresponding to the factors inductively. If F(T;p,q) is irreducible, we will have
T = X(T") for some rooted tree T, and F(T";p,q) = p~Y(F(T;p,q) — q), so we
can reconstruct 77 (and hence, T) inductively again.

Now write F(T) = g + pG(p, q) for some polynomial G(p,q), and suppose that
F(X(T)) = AB. Then F(X(T)) = (14+pA’)(¢+pB’) for some 2-variable polynomials
A" and B'. If ¢ | B', then q | (¢ + pB’), so q | F(X(T)), which cannot be the case
since F(X (T')) has exactly one pure p term, p", corresponding to all n edges operating
successfully.

Hence g does not divide B’, and we let ¢p® with ¢ # 0 be the pure p term in
B’ of lowest degree. Then F(X(T)) contains a term ¢p® that cannot be canceled by
p?A'B’. As a result, A’ =0, and the factorization is trivial. |
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The sequence {EVy, ..., EV,} is equivalent to the (greedoid) Tutte polynomial of
a rooted tree, which encodes information about the number of rooted subtrees of size
k with exactly [ leaves. More information about rooted tree reconstruction from this
version of the Tutte polynomial can be found in [2, 11]. (Unrooted tree reconstruction
is not possible in general—see [16].)

4. Zeros of the polynomial. Proposition 3.1 of [19] shows that the largest
rational root of EV(G;p) is a lower bound on the number of vertices (including the
root). We generalize this result now, extending the bound to the absolute value of the
largest rational root.

PROPOSITION 4.1. Let G be a connected rooted graph with n > 1 vertices. Suppose
the polynomial EV (G;r) =0 for some r € Q. Then |r — 1| <n —1.

Proof. Let f(p) = EV(G;p+ 1). Then we can write

f(p) = (a —bp)g(p),

where a/b =r —1 and g € Z[p]. f(0) =a-g(0) =n—1,s0 a | (n—1); and since
la/b] < lal, |r —1] <n-—1. O

We can extend this result further, to the case where the root r € QJi].

PROPOSITION 4.2. Let G be a connected rooted graph with n > 1 vertices. Suppose
the polynomial EV (G;r) =0 for some r € Q[i] — Q. Then |r —1|> <n — 1.

Proof. Again, let f(p) = EV(G;p+ 1), and write (a + bi)/c = r — 1 for integers
a,b, and c. Then

f(p) = (a® +b* — 2a(cp) + (cp)?)g(p),

where g(p) € Z[p]. Since n — 1 = £(0) = (a® + b?)g(0) and a® + b? | n — 1, we have
@+ =lctr—1D2>|r—1%s0 |r—12 < (n—1). 0

Putting Propositions 4.1 and 4.2 together gives the following.

THEOREM 4.3. Let G be a connected rooted graph with n > 1 vertices. Suppose
that the polynomial EV (G;r) =0 for some r € Q[i]. Then |r — 1] <n —1.

All of these bounds are sharp. For the rational roots of Proposition 4.1, let G be
a graph with one vertex connected to the root by two edges and k vertices connected
by one edge. Then EV (Gy1;p) = (k+ 2)p — p?, which has a root at p = k + 2. For the
lower bound, if we let G2 be a tree with polynomial kp + p?, then EV(Ga;p) has a
root at p = —k.

For the imaginary rational roots of Proposition 4.2, let a®> + b?> = ¢ be a
Pythagorean triple, and let T be a tree with polynomial ((a—1)2+b%)p+2(a—1)p?+p3.
Then EV(T;p) has roots at p =1—a £ bi, and T has ((a—1)+1)2+ b2 +1=c?+1
vertices and |1 —a £ bi — 1| = ¢

The next result is applicable to any polynomial f(p) with positive integer coeffi-
cients and f(0) = 0.

PROPOSITION 4.4. Let T be a tree with n > 1 wvertices. Suppose the polynomial
EV(T;z) =0 for some z € C. Then |z| <n —2.

Proof. EV(T;p) = nip + nap? + -+ + ngp” for positive integers n;. Let C' =
ny+---4+ng_1. Then C <n-—2,sincen; +---+np,=n—1.

When C = 0, EV(T;p) = np®, which has zeros only at p = 0. Otherwise, we
can assume that C' > 1. Suppose to the contrary that |z| > C. Then

| —n2®| > Ol > nylz| + - g |28 > naz - g 2R

)

and z is clearly not a zero. |
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When T is a tree, Proposition 4.4 allows us to drop the restriction that r» € Q[z].

COROLLARY 4.5. Let T be a tree with n > 1 wvertices. Suppose the polynomial
EV(T;p) has a zero at p=z € C. Then |z — 1| <n — 1.

Unfortunately, this bound does not extend to all graphs and all complex zeros.
For example, let G = K4 @ T, where T is a tree such that EV(T;p) = p + p? + p> +
p* + p°® + 5pS. Then EV(G;p) = 4p + Tp? + p® — 20p* + 22p° — p®, which has a zero
near p = 21. G, however, has only 14 vertices and 16 edges.

Similar constructions work with larger complete graphs, where we attach the
smallest tree that will make the leading coefficient of EV (G;p) equal to —1.

It would be interesting to determine what other restrictions exist on zeros of
the polynomial. This is similar to much of the current research on the chromatic
polynomial of a graph [10, 20].

Acknowledgments. We thank Jennifer Feder and Greg Francos for useful dis-
cussions and the anonymous referee for several suggestions.
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