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Abstract

We consider a probabilistic antimatroidA on the ground setE, where each elemente ∈ E may
succeed with probabilitype. We focus on the expected rankER(A) of a subset ofE as a polynomial
in thepe. General formulas hold for arbitrary antimatroids, and simpler expressions are va
certain well-studied classes, including trees, rooted trees, posets, and finite subsets of the p
connect the Tutte polynomial of an antimatroid toER(A). WhenS is a finite subset of the plane wit
no three points collinear, we derive an expression for the expected rank that has surprising sy
properties. Corollaries include new formulas involving the beta invariant of subsets ofS and new
proofs of some known formulas.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction and mathematical preliminaries

There are many situations in reliability theory in which elements of a finite sE
(frequently the edge set of a graph) are assumed to succeed or fail with certain proba
In this paper, we will assume each elemente ∈ E is successfulor operational with
probability pe , and these probabilities operate independently. While these assum
are not always realistic in applications, they can still be very useful in modeling com
systems.

The computation of thereliability of a networkhas a long and varied history. Standa
references are [11,23,24]. Relatively less attention as been payed to the question
expected number of surviving components in a system. This is of interest in real-
applications, but it also gives rise to some interesting combinatorics. We will not con
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the applications here, but indicate in Section 5 some possible ways to apply the inv
considered here to models of physical systems.

Expected rank in graphs (for various rank functions) have been considered in [4
26] as thepair connected reliabilityand as theresiliencein [12]. Consideration of expecte
rank also appears in [2,6,7,27], although most of the structures considered are grap
trees, this topic is explored in [3]. Like the reliability, the expected rank is a polynomia
one or several variables) and this polynomial encodes combinatorial information abo
graph, finite point set, poset, and so on.

Our goal in this work is to unify some of the different approaches in the literatur
concentrating on the general class of antimatroids. While ordinary graphs do not gi
to antimatroids, there are several interesting combinatorial structures that are antim
These include the main application treated here, finite subsets of the plane, as well a
(in two different ways), trees and rooted trees.

The probabilistic approach allows short proofs of two results (Theorem 4.1 of [1
Corollary 4.4 of [13]), and several new identities involving free sets in restriction
antimatroids. The main theorem concerning finite subsets of the plane gives an exp
for this polynomial in terms of half-planes associated with the set.

The paper is organized as follows. This section includes the relevant definition
some old and new formulas for expected rank. Section 2 gives a relation between
variable expected rank function and the Tutte polynomial of the antimatroid. Sect
gives the key probabilistic expansion for the polynomial (Proposition 3.1) and applica
to trees and posets. Section 4 develops the theory for the application of these ideas
point sets, concentrating especially on finite subsets of the plane. Finally, there are
possibilities for research projects based on this work; we outline a few in Section 5.

Let G = (E, r) be an ordered pair, whereE = {1, . . . , n} andr : 2E → Z+ ∪ {0} is a
function (called therank function) from the subsets ofE to the non-negative integers. F
each elemente ∈ E, we assign an indeterminatepe , which we interpret as the probabili
that the elemente is successful or operational (so the probability thate is not operationa
is simply 1− pe). We assume elements operate independently, although we ma
assumptions about the indeterminatespe . Although this approach is probabilistic, mo
of the results given here can be considered purely combinatorially.

Our object of study in this paper is theexpected rank polynomial, which we define as
follows:

Definition 1.1.

ER(G)=
∑
S⊆E

r(S)
∏
i∈S
pi
∏
j /∈S
(1− pj ).

When the rank function satisfies certain conditions, we can obtain alternate formul
for ER(G). In this paper, we will concentrate onantimatroids. More extensive introduc
tions to the subject can be found in [8,21].

Definition 1.2. An antimatroid is a pairA = (E,F), whereE is a finite set andF is a
family of subsets ofE, called thefeasiblesets, satisfying:
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(F0) F �= ∅;
(F1) if X ∈F , thenX− {x} ∈F for somex ∈X;
(F2) if X ∈F , thenX ∪ {x} ∈ F for somex /∈X.

The rankr(S) of a subsetS is the size of the largest feasible subset ofS: r(S) =
maxF⊆S{|F |: F ∈ F}. Note thatr(E) = |E|. Throughout the paper, we assumeA is an
antimatroid on the ground setE with |E| = n, with feasible setsF .

We define thecontinuationsor boundaryof the feasible setF asΓ (F)= {e ∈ E − F :
F ∪ {e} ∈ F}. The next lemma is trivial, but useful.

Lemma 1.3. If S ⊆E, there is a uniqueF ⊆ S with r(S)= |F |.

Lemma 1.3 allows us to collect terms in the definition, which gives the next propos
We omit the proof, which is essentially the same as the proof of Proposition 2.2 of [3

Proposition 1.4. LetA be an antimatroid with feasible setsF . Then

ER(A)=
∑
F∈F

|F |
∏
e∈F
pe

∏
e∈Γ (F )

(1− pe).

We will also need the following property of antimatroids.

Lemma 1.5 [8, Definition 8.2.6].Let A be an antimatroid and supposeF ⊆ G, where
F,G ∈F . If F ∪ {x} ∈F for somex ∈E, thenG∪ {x} ∈F .

Deletion and contraction are very important operations in matroid theory, especia
they relate to invariants. We can also define these operations for antimatroids.

Let A be an antimatroid and let{e} be a feasible singleton. ThenF is feasible in the
deletionA− e iff e /∈ F andF is feasible inA. F is feasible in thecontractionA/e iff
e /∈ F andF ∪ {e} is feasible inA. (The requirement that{e} is feasible guarantees∅ will
be feasible inA/e.)

Proposition 1.6 (Deletion–contraction).LetA be an antimatroid and let{e} ∈ F . Then

ER(A)= (1− pe)ER(A− e)+ peER(A/e)+ pe.

Proof. We writeER(A)= S1 + S2, whereS1 =∑
S: e∈S rA(S)

∏
i∈S pi

∏
j /∈S(1−pj) and

S2 =∑
S: e/∈S rA(S)

∏
i∈S pi

∏
j /∈S(1− pj ).

Now S2 = (1− pe)ER(A− e) becauserA(S)= rA−e(S) whenevere /∈ S, whererB(S)
denotes the rank ofS in the antimatroidB.

Whene ∈ S, we haverA(S)= rA/e(S − e)+ 1 by definition of the feasible sets in th
contractionA/e. Then

S1 =
∑

rA(S)
∏
pi
∏
(1−pj )=

∑ (
rA/e(S − e)+ 1

)∏
pi
∏
(1−pj )
S: e∈S i∈S j /∈S S: e∈S i∈S j /∈S
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= peER(A/e)+ pe
∑
S: e/∈S

∏
i∈S
pi
∏
j /∈S
(1− pj )= peER(A/e)+ pe,

where the term
∑
S: e/∈S

∏
i∈S pi

∏
j /∈S(1− pj )=∏

a∈S, a �=e(pa + (1− pa))= 1. ✷
The deletion–contraction recurrence can also be proved using a simple cond

probability argument and Proposition 3.1 below. For the reliability polynomial, th
referred to as thefactoring theorem. See [11] for more information about the reliabili
polynomial.

For an antimatroidA on the ground setE, define a setC ⊆ E to be convexif the
complementE −C is feasible. A convex setK is free if every subset ofK is also convex
Let Freedenote the collection of all free convex sets ofA.

Theβ-invariant of an antimatroidA can be defined as follows:

β(A)=
∑
K∈Free

(−1)|K |−1|K|.

See [13,16] for combinatorial interpretations ofβ(A) for several classes of antimatroid
but especially whenA is a finite subset of�n.

The β invariant will allow us to interpret the coefficients of the expected r
polynomial. IfF is feasible in the antimatroidA, we writeA|F for the antimatroid obtaine
by restriction toF ; equivalently,A|F is obtained by deleting the convex setE − F .

Proposition 1.7. LetA be an antimatroid with feasible setsF . Then

ER(A)=
∑

∅�=F∈F
β(A|F)

∏
e∈F
pe.

Proof. For convenience, we writeER(A)=∑
F∈F BF

∏
e∈F pe and recall thatβ(A|F)=∑

K∈CF (−1)|K |−1|K|, whereCF denotes the free convex sets ofA|F. We must show
BF = β(A|F).

By Proposition 1.4, a feasible setF ′ will contribute toBF iff F ∈ [F ′,F ′ ∪̇Γ (F ′)], i.e.,
iff F = F ′ ∪̇G for someG⊆ Γ [F ′]. But F = F ′ ∪̇G for G⊆ Γ [F ′] iff F − F ′ ∈ CF is
a free convex set ofA|F . Therefore

BF =
∑

F ′: F∈[F ′,F ′∪̇Γ (F ′)]
(−1)|F−F ′||F ′| =

∑
K∈CF

(−1)|K |(|F | − |K|)

=
∑
K∈CF

(−1)|K |−1|K| + |F |
∑
K∈CF

(−1)|K | = β(A|F),

where the final equality follows from the fact that
∑
K∈CF (−1)|K | = 0 by Proposition 5

of [18]. ✷
Formulas similar to those given in Propositions 1.6 and 1.7 hold for ordinary gr

See Propositions 2.1 and 2.3 of [7].
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As an application of Proposition 1.7, we give a very short proof of Proposition
of [16].

Proposition 1.8 [16, Proposition 4.6].LetA be an antimatroid on the ground setE with
|E| = n, and feasible setsF . Then

∑
∅�=F∈F

β(A|F)= n.

Proof. Setpe = 1 for all e ∈ E in ER(A). Then(ER(A)|pe=1) = n, since the expecte
rank isn when every element is certain to survive. By the formula of Proposition 1.7
get

∑
∅�=F∈F β(A|F)= n. ✷

More involved formulas involvingβ(A) also hold under certain conditions. S
Corollaries 2.6, 4.7, and 4.9 below.

2. The Tutte polynomial and derivatives

For applications to reliability, it is frequently true that we can assumepe = p for all e, so
the probability thate succeeds does not depend one. This allows us to obtain a one-variab
polynomial, which we denoteer(A;p). In this section, we consider this polynomial a
the Tutte polynomial.

The Tutte polynomialis a two-variable polynomial invariant which has been stud
extensively for graphs, matroids and greedoids. See [9] for much more information
its application to graphs and matroids. The Tutte polynomial for antimatroids and gree
was introduced in [17].

Definition 2.1. Let A be an antimatroid with rank functionr and ground setE. Then the
Tutte polynomial is defined by

f (A; t, z)=
∑
S⊆E

tr(E)−r(S)z|S|−r(S).

The Tutte polynomial can also be written as a sum over all feasible sets (instead
subsets):

Proposition 2.2 [15, Theorem 2.2].LetA be an antimatroid with ground setE and feasible
setsF . Then

f (A; t, z)=
∑
F∈F

t |E|−|F |(z+ 1)|E|−|F |−|Γ (F )|.

The antimatroid Tutte polynomial also satisfies a deletion–contraction recursio
write f (A) instead off (A; t, z) for simplicity.
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Proposition 2.3 [17, Proposition 3.2].LetA be an antimatroid and let{e} ∈ F . Then

f (A)= f (A/e)+ tr(A)−r(A−e)f (A− e).

This result holds for all greedoids (not just antimatroids), and generalizes the m
recursion. When the antimatroid is a rooted treeT , the Tutte polynomial completel
determines the rooted tree (Theorem 2.8 of [17]):f (T1) = f (T2) iff T1 and T2 are
isomorphic.

The next result connects the one-variable expected rank polynomialer(A;p) with the
Tutte polynomialf (A; t, z).

Proposition 2.4. AssumeA is an antimatroid on the ground setE, with |E| = n. Then

er(A;p)= npnf
(

1−p
p

,
p

1− p
)

− pn−1(1− p)∂f
∂t

(
1−p
p

,
p

1− p
)
.

Proof. We analyze the two terms separately. By Definition 2.1,

f

(
1− p
p

,
p

1−p
)

=
∑
S⊆E

p|S|−n(1− p)n−|S| sincer(E)= |E| = n.

Thus,

npnf

(
1− p
p

,
p

1− p
)

= n
∑
S⊆E

p|S|(1− p)n−|S|. (1)

For the other term, we have

∂f

∂t

(
1− p
p

,
p

1− p
)

=
∑
S⊆E

(
n− r(S))p|S|−n+1(1− p)n−|S|.

Thus,

pn−1(1− p)∂f
∂t

(
1−p
p

,
p

1− p
)

=
∑
S⊆E

(
n− r(S))p|S|(1− p)n−|S|. (2)

Subtracting Eq. (2) from Eq. (1) yields
∑
S⊆E r(S)p|S|(1− p)n−|S|, as desired. ✷

The next result is another formula involving derivatives:

Proposition 2.5. Let A be an antimatroid in whichr(A − e) = n − 1 for all feasible
singletons{e}. Thener ′(A;1)= n.
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Proof. We let e be a feasible element and proceed using induction onn. By Proposi-
tion 1.6, we have

er(A;p)= (1− p) · er(A− e;p)+ p · er(A/e;p)+ p.
Differentiating yields

er ′(A;p)= (1−p) · er ′(A− e;p)− er(A− e;p)+ er(A/e;p)+ p · er ′(A/e;p)+ 1.

By hypothesis, the antimatroidA − e has no loops, so evaluating atp = 1 gives
er(A− e;1)= n− 1. Further,er(A/e;1)= n− 1 for any antimatroid, ander ′(A/e;1)=
n− 1 by induction. ✷

There are several classes of antimatroids for whichr(A− e)= n− 1 for all feasiblee.
For example, finite point sets, chordal graphs, trees, rooted trees (with pruned feasib
and posets (using double shelling to define feasible sets) all satisfy this proposition.

We conclude this section by applying Proposition 2.5 to the formula from Pro
tion 1.7, giving a new relation satisfied byβ(A). The proof of the next result follow
immediately from Proposition 2.5.

Corollary 2.6. Let A be an antimatroid in whichr(A − e) = n − 1 for all feasible
singletons{e}. Then ∑

F∈F
|F |β(A|F)= n.

3. A probabilistic expansion of ER(A) and some antimatroid classes

Let A be an antimatroid on the ground setE and lete ∈ E. AssumeS ⊆ E is the
surviving subset of elements. Now define an indicator random variableI (e) to be 0
or 1 depending on whether or note contributes to the rank ofS. Thus, I (e) = 1 if
r(S − e) < r(S), andI (e) = 0 if r(S − e) = r(S). Write Pr(e) for the probability that
I (e) = 1. ThenE(I (e)) = Pr(e), whereE(I (e)) is the expected value of the rando
variableI (e). The linearity of expected value immediately gives the next proposition.

Proposition 3.1.

ER(A)=
∑
e∈E

Pr(e).

Proposition 3.1 appears explicitly for graphs in the work of Colbourn [11] and A
Siegrist, and Slater [4,5,25,26].

The remainder of this section is devoted to interpreting the expected rank polyn
for trees (both rooted and unrooted) and posets (which can form an antimatroid
different ways).
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Rooted trees: Let T be a rooted tree with a distinguished vertex, and define an antima
on the edge setE so thatF ⊆E is feasible if the edges ofF form a rooted subtree (with th
same root asT ). Then the convex sets are thecomplementsof the rooted subtrees. Roote
trees are important in several applications to network design.

The next result appears in [3]. The proof follows immediately from Proposition 3.1

Corollary 3.2 [3, Theorem 2.4].LetT be a rooted tree. Then

ER(T )=
∑
v∈V

∏
e∈P(v)

pe.

Unrooted trees: When no root vertex is specified in a treeT , we can still define an
antimatroid on the edge setE. The feasible sets in this antimatroid are the edges o
complementsof subtrees ofT . The resulting antimatroid is called thepruningantimatroid,
as the feasible sets are precisely those sets that can be successivelyprunedfrom the tree,
leaving a connected subtree at each step. The convex sets are the subtrees themse

When an edgee that is incident to verticesv andw is deleted from a treeT , the tree is
separated into two components. Call these componentsCe(v) andCe(w) and note that one
of these components will have no edges whene is a leaf ofT .

We now use Proposition 3.1 to give a short proof of Theorem 3.3 of [3].

Corollary 3.3 [3, Theorem 3.3].LetT be an unrooted tree with|E| = n. Then

ER(T )=
( ∑
e∈E(T )

pe

( ∏
b∈Ce(v)

pb +
∏

b∈Ce(w)
pb

))
− n

∏
e∈E
pe.

Proof. Let e ∈ E be an edge ofT , and supposeS is the set of edges ofT which are
operational. ThenI (e)= 1 iff e is operational and eitherS ⊇ Ce(v) or S ⊇ Ce(v). (Ce(v)
andCe(w) are precisely the two minimal sets of edges thate requires to be operational i
order forI (e)= 1.) LetES denote the probabilistic event that the edgesS are operational
Then

Pr(e)= pePr(ECe(v) ∨ECe(w))= pe
( ∏
b∈Ce(v)

pb +
∏

b∈Ce(w)
pb

)
−
∏
e∈E
pe.

This remains valid even ifCe(v) = ∅ or Ce(w) = ∅ (which occurs whene is a leaf), as
Pr(e)= pe in this case. The formula now follows from Proposition 3.1.✷

Partially ordered sets: We briefly review some definitions. LetE be the ground set of th
posetP . F is anorder idealin P if x ∈ F andy � x impliesy ∈ F. G is anorder filter if
x ∈G andy � x impliesy ∈G. (Some authors refer to order ideals asdownsetsand order
filters asupsets.)
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Posets give rise to antimatroids in at least two ways. Theideal poset antimatroidAI (P )
has its feasible sets the order ideals ofP . (This antimatroid is simply called theposet
greedoidin [8,21].)

Thedouble shelling poset antimatroidAD(P) has feasible sets

F = {F ∪G: F is an ideal andG is a filter}.
These antimatroids arise in the study of bottleneck functions.

Corollary 3.4. LetP be a poset on the ground setE.

(1) ER
(
AI(P )

)=
∑
e∈E

∏
a�e

pa.

(2) ER
(
AD(P)

)=
∑
e∈E
pe

(∏
a<e

pa +
∏
b>e

pb −
∏

c<e or c>e

pc

)
.

Proof. (1) Since the feasible sets ofAI (P ) are the order ideals, we haveI (e) = 1
precisely when the operational subset ofE contains the order ideal induced bye, i.e.,
when{a: a � e} ⊆ S. ThusPr(e)=∏

a�e pa, and the result follows from Proposition 3.
(2) Let Fe be the probabilistic event that the elements less thane are operational an

Ge the event that the elements greater thane are operational. Then, as in the proof
Corollary 3.3,Pr(e)= pePr(Fe ∨Ge), and the rest of this proof is the same as the pr
of Corollary 3.3. ✷

There are striking similarities between the formulas for trees (Corollaries 3.2 an
and the corresponding formulas for the two antimatroids associated with a
(Corollary 3.4). The first such similarity between Corollaries 3.2 and 3.4(1) is n
coincidence; the pruning antimatroid on rooted trees is an example of a ideal
antimatroid, so the rooted tree formula of Corollary 3.2 is simply a special case of the
formula Corollary 3.4(1). For unrooted trees Corollary 3.3 and double shelling antima
Corollary 3.4(2), the correspondence does not have a simple interpretation, since
antimatroids are independent. Nevertheless,Pr(e) = pePr(A ∨ B) for disjoint eventsA
andB in both cases.

As an example of the differences between the two antimatroids associated with a
we computeER(AI (P ) andER(AD(P ) for the posetsP1 andP2 of Fig. 1.

Then ER(AI (P1)) = p1 + p2 + p1p2p3 + p2p4 and ER(AI (P2)) = p1 + p4 +
p1p2 + p1p2p3, but note that the one-variable polynomialer(AI (P1)) = er(AI (P2)) =
2p+ p2 +p3. This follows from Example 3.1 of [15], which shows that these two po
have the Tutte polynomials, and Proposition 2.4.

For the double shelling posets, we getER(AD(P1))= p1 + p2 + p3 + p4 (since each
element is feasible) andER(AD(P2))= p1 + p3 + p4 + p1p2 + p2p3 − p1p2p3. In this
case,er(AD(P1))= 4p �= 3p+ 2p2 − p3 = er(AD(P2)).

We conclude this section by using Corollary 3.4(2) to computeβ(AD(P)) for a posetP
giving rise to a double shelling antimatroidAD(P). A bottlenecke in a poset is an elemen
which is not maximal or minimal, but is comparable to every element ofP .
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We now give a short proof of a result of Edelman and Reiner [13].

Proposition 3.5 [13, Corollary 4.4].Let P be a poset withb bottlenecks and associate
double shelling antimatroidAD(P). Thenβ(AD(P))= −b.

Proof. By Proposition 1.7,β(AD(P)) is the coefficient of
∏
e∈P pe in ER(AD(P )).

For e ∈ P , let Fe be the ideal generated bye andGe be the filter generated bye. By
Corollary 3.4(2),

Pr(e)=
∏
a∈Fe

pa +
∏
b∈Ge

pb −
∏

c∈Fe∪Ge
pc,

so we have a contribution of(−1) to this coefficient precisely whenFe ∪Ge = P , ande is
neither maximal nor minimal. (Whene is the maximum or minimum element of a pos
thenPr(e)= pe .) But this condition is equivalent toe being a bottleneck inP . ✷

4. Finite subsets of the plane

LetA be a finite subset of�2, and forC ⊆A, letC denote the convex hull ofC in �2.
A has an antimatroid structure that is easiest to describe in terms of its convex s
particular, a setC ⊆A is convexif C = C ∩A. Thus, a setC is not convex inA precisely
when some point ofA−C is in the convex hull ofC.

A point x ∈ A is extremeif x /∈ A− {x}. Thus,x is extreme iffA− {x} is convex. As
usual,F ⊆ A is feasible ifA− F is convex; a feasible setF can be built by successive
pruning points fromA such that each point is extreme at the time it is pruned.

Finite point sets in�n are among the most well-studied classes of antimatroids. Ind
this class motivated the term ‘antimatroid’ as the convex closure operator satisfi
‘anti-exchange’ axiom (compared with the Steinitz–MacLane exchange axiom for cl
in matroids) [19]. Antimatroids can be thought of as abstract convexity structures
analogous way that matroids are abstract dependence structures.
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Our interpretation of elementsx ∈A operating with independent probabilitiespx has an
interesting interpretation for this class of antimatroids. If the points ofA represent nodes i
a network, then we are interested in sending a message from the extreme nodes ofA to the
internal nodes. Suppose no internal node can receive a message until it becomes ‘
i.e, it is extreme. Then the expected rank polynomial measures how far the messa
penetrate to the interior of the configuration.

For an elementx ∈ A and a subsetG ⊆ A, we say thatx matters toG if either
r(G ∪ {x})= r(G)+ 1 (if x /∈G) or if r(G− {x})= r(G)− 1 (if x ∈G). For a givenx,
computation of the subsets to whichx matters is equivalent to computingPr(x), which can
then be used to compute the polynomialER(A) by Proposition 3.1.

Lemma 4.1. LetA be a finite subset of�n and letx ∈A. Thenx matters to a subsetG iff
andG⊇ F , whereF is minimal such thatx is extreme inA− F .

Proof. First note that ifF is minimal such thatx is extreme inA− F , thenF must be
a feasible set. Thus, the minimal setsFi satisfyingx extreme inA− Fi are precisely the
minimal feasible sets satisfyingFi ∪ {x} is also feasible. Now supposex /∈ G ⊆ A has
r(G∪ {x})= r(G)+ 1. Then, by Lemma 1.3,G∪ {x} contains a unique maximal feasib
setFG, andx ∈ FG. ThenFG contains a minimal feasible setF with x extreme inA−F .
A similar argument holds ifx ∈G, applied toG− {x}.

Conversely, supposeG⊇ Fi for some minimal setFi satisfyingx extreme inA− Fi .
Then r(Fi ∪ {x}) = r(Fi) + 1, so r(G ∪ {x}) = r(G) + 1 (if x /∈ G) sinceG ⊇ Fi by
Lemmas 1.3 and 1.5. (Ifx ∈G, apply this argument toG− {x}.) ✷

Note that whenx is extreme, the lemma shows thatx matters to all subsetsS of A.
In �2, the minimal feasible setsFi that matter to an interior pointx can be cyclically
ordered in a natural way. Sincex is extreme inA− Fi , there is a lineLi throughx and an
open half-planeHi determined by the lineLi such thatFi = A ∩Hi. We can associate t
eachFi a unit normal vectorvi based atx such thatvi is normal to the lineLi andvi is
contained in the half planeHi . We now order theFi cyclically according to the anglevi
makes with a fixed reference line (say the horizontal line throughx).

This correspondence is illustrated in Fig. 2. In the example, forx = 7, we have the
following minimal feasible sets, in counterclockwise cyclic order:F1 = {3}, F2 = {4},
F3 = {1,2,5,6}. Note that these sets are disjoint (which is not true in general) and
only 3 of the 12 feasible sets determined by half-planes are minimal.

This association of a half-space with each minimal feasible setFi remains valid in�n
for n > 2, but it is no longer meaningful to order the sets cyclically.

If x is not an extreme or interior point ofA, thenx is on the boundary ofA. In �2, this
meansx is on a line segmentL between two extreme pointsrx andsx . LetRx andSx be the
intersections of the half-open segments[rx, x) and(x, sx ] withA, so thatRx∪Sx = L−{x}
andRx ∩ Sx = ∅.

For S ⊆ A, we write Pr(S) to represent the probability the setS is operational. Fo
S,T ⊆A, we also writePr(S ∨ T ) to represent the probability that the elements ofS or T
are operational.
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Fig. 2. (a) Minimal feasible setF3 = {1,2,5,6}. (b) All half-plane feasible sets forx = 7.

Lemma 4.2. LetA be a finite subset of�2, and writepS =∏
x∈S px.

(1) If x is extreme, then

Pr(x)= px;

(2) If x is not extreme butx is not an interior point ofA, then

Pr(x)= px(pRx + pSx )− pL,

where Rx = [rx, x) ∩ A, Sx = (x, sx] ∩ A and L is the boundary line segme
containingx;

(3) If x is an interior point ofA andF1, . . . ,Fk are the minimal feasible sets, order
cyclically, withx extreme inA−Fi , then

Pr(x)= px
(

k∑
i=1

pFi −
k∑
i=1

pFi∪Fi+1

)
+ pA,

where the subscripts are computed modulok.

Proof. (1) If x is extreme, thenx matters to all subsets, sox will increase the rank o
any subset iffx is operational, i.e.,Pr(x) = px. (This argument is valid for any feasib
singleton in any antimatroid.)

(2) If x is a boundary point that is not extreme, thenx matters to all subsets whic
containRx or Sx . Thus,Pr(x)= pxPr(Rx ∨ Sx)= px(pRx + pSx )− pL, as in the proof
of Corollary 3.4(2).
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(3) Arguing as in case (2), we havePr(x) = pxPr(F1 ∨ F2 ∨ · · · ∨ Fk). To compute
Pr(F1∨F2∨· · ·∨Fk), we must show that every set containing someFi is counted precisely
once by the expression

px

(
k∑
i=1

pFi −
k∑
i=1

pFi∪Fi+1

)
+ pA. (∗)

Let S ⊆A. Then each setFi ⊆ S accounts forS (with a coefficient of+1 for each such
set) and each consecutive pairFi ∪ Fi+1 ⊆ S accounts forS (with a coefficient of−1 for
each such pair and where subscripts are computed modulok). There are several cases
consider:

Case 1. S does not containFi for any i, 1 � i � k. Thenx does not matter toS (by
Lemma 4.1), soS does not contribute toPr(x). SinceS contains noFi , S will not
contribute to(∗), either, soS is not counted by(∗).

For the remaining cases,S ⊇ Fi for somei, 1� i � k. Then, by Lemma 4.1,x matters
to S, so we must showS is accounted for precisely once in(∗).

Case 2. S = A. ThenS is counted by every term in(∗), so each of thek termspFi
contributes+1, each of thek termspFi∪Fi+1 (computed modulok) contributes−1, and
the termpA contributes+1. Thus,S is accounted for precisely once.

Case 3. S ⊇ Fi for somei, butS �= A. Let y /∈ S and renumber the indices of the minim
feasible sets (if necessary) so thaty ∈ F1. (Every element ofA − {x} is in at least one
minimal feasible setFi .) Continue the renumbering in counterclockwise cyclic order. T
F1 �⊆ S. Let a andb be smallest and largest integers (respectively) such thatFa ⊆ S and
Fb ⊆ S.

Claim. Fc ⊆ S for all c with a � c � b. (By definition ofa andb, Fi �⊆ S for i < a and
i > b.) To see why the claim is true, letc be some integer betweena andb. Then ifa = b
or a + 1 = b, there is nothing to prove, so assumeb − a > 1. LetHa andHb be the half-
planes associated toFa andFb (respectively), as in Fig. 3. ThenHc ⊆ Ha ∪Hb is clear.
But Fi =Hi ∩A for all i, soFc ⊆ Fa ∪ Fb. Thus,S ⊇ Fa ∪ Fb ⊇ Fc for all c betweena
andb.

To finish the proof of case (3), now note thatS is accounted for inb − a + 1 terms
of the formpFc for c such thata � c � b (with coefficient+1), andb − a terms of the
form pFi∪Fi+1 for c such thata � c � b − 1 (having coefficient−1). This completes th
accounting forS. ✷

For example, in the configuration of Fig. 2, we havePr(7) = p3p7 + p4p7 +
p1p2p5p6p7 −p3p4p7 −p1p2p3p5p6p7 −p1p2p4p5p6p7 + pA. Using Proposition 3.1
then gives the entire polynomial asER(A)=∑

x∈E Pr(x).
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As an immediate application, we can use Lemma 4.2 to give a very short proof
main theorem of [1], which characterizes the beta invariant for finite subsets of the
(This proof does not extend to higher dimensions; see Theorem 1.1 of [13].)

Corollary 4.3 [1, Theorem 4.1].LetA be a finite subset of�2, and letint(A) denote the
set of interior points ofA. Then

∑
K∈Free

(−1)|K |−1|K| = ∣∣int(A)
∣∣.

Proof. By Proposition 1.7,β(A) is the coefficient of the monomialpA in ER(A). Let cx
be the coefficient ofpA in the polynomialPr(x). By Proposition 3.1,β(A) =∑

x∈A cx .
Now, by Lemma 4.2, we havecx = 1 if x ∈ int(A) and cx = 0 otherwise. This give
β(A)= |int(A)|, and the formula given follows from the definition ofβ(A). ✷

The next lemma is the key to understanding the structure ofER(A) when the points o
A are in general position in the plane. In this situation, the setsFi ∪ Fi+1 are simply the
complements of some other minimal feasible setFj . As a result, the resulting polynomi
satisfies a striking symmetry condition.

Theorem 4.4. LetA be a finite subset of�2 with no three points on a line. Letx ∈A be an
interior point. LetF1, . . . ,Fk be the minimal feasible sets withx extreme inA−Fi . Then

Pr(x)= px
(

k∑
i=1

pFi

)
−

k∑
i=1

pA−Fi + pA.

Proof. We must show, fori given, thatA− (Fi ∪Fi+1)= Fj for somej , and conversely
A− Fi = Fm ∪ Fm+1 for somem. (As usual, all subscripts are between 1 andk and are
computed modulok.) The result then follows by Lemma 4.2(3).
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Fig. 4. Configuration for the proof of Theorem 4.4.

We first show thatA − (Fi ∪ Fi+1) is a minimal feasible set. SupposeF is a
minimal feasible set, and letL be a corresponding line throughx, andH the half-space
corresponding toL. Order the points ofF = {e1, . . . , er} so that they are encountered
this order asL rotates counterclockwise aboutx through the region determined byF .

Now rotateL clockwise aboutx, and lety ∈A be the first point ofA−F thatLmeets.
Note thatL will meety prior to meeting any points ofF , sinceF is minimal and no three
points are collinear inA. Call this rotated lineLy .

Now we rotateL counterclockwise aboutx. AsL sweeps through the region determin
by the angle� yxe1, L must meet some points ofA − F (by minimality of F ). Let
Z = {z1, . . . , zs} be this set of points, listed in the order they are encountered.

Continue rotating counterclockwise, and letw be the first point ofA− F met. LetLw
be the line throughx andw. Then, as the line sweeps through the angle� zsxw, it passes
through some points ofF , saye1, . . . , et for somet with 1 � t � r. The configuration is
shown in Fig. 4.

ThenF −{e1} ∪Z must contain some minimal feasible setG with x extreme inA−G.
Note thatx is interior to the triangle�e1yzi for all 1 � i � s, soG ⊇ Z. By definition
of w, we must haveG = {et+1, . . . , er } ∪ Z. Clearly,F andG are consecutive minima
feasible sets.

ThenK =A− (F ∪G) is also a minimal feasible set withx extreme inA−K. To see
this, first note there is a lineL′ throughx separatingF ∪G from the rest ofA. (We can
constructL′ by rotating clockwise by a small angle the line throughe1 andx.) Then, in
rotatingL′ either clockwise or counterclockwise, we will encounter points ofF ∪G before
meeting eithery orw, which ensures minimality ofK.

For the converse, letF be the same minimal feasible set as before, and rotaL
clockwise until it passes througher , then rotate counterclockwise by a small angle, and
this lineL′. LetH ′ be the half-plane containingw that is determined byL′. Theny /∈H ′
andZ ⊆ H ′. Arguing as above, we can find a minimal feasible setG′ with x extreme in
A−G′ andZ ⊆G′ ⊆H ′ ∩A. ThenG′ andK are consecutive minimal feasible sets, a
G′ ∪K =A− F , as desired. ✷
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For example, in the configuration of Fig. 2, we have

ER(A)= p1 + p2 + p3 + p4 + p1p5 + p2p6 + p3p7 + p4p7

+ p1p5p6 + p2p5p6 −p3p4p7 − 2p1p2p5p6 + p3p4p5p7 + p3p4p6p7

+ p1p2p5p6p7 − p1p3p4p5p7 − p2p3p4p6p7 − p1p2p3p5p6p7

− p1p2p4p5p6p7 −p1p3p4p5p6p7 −p2p3p4p5p6p7 + 3pA.

Note that the coefficient ofp1p2p5p6 is −2. We can interpret this coefficient in two way
From the viewpoint of Theorem 4.4, the set{3,4,7} is a minimal feasible set forx = 5, so
A− {3,4,7} = {1,2,5,6} contributes a coefficient of−1 to the coefficient ofp1p2p5p6.
But {3,4,7} is also a minimal feasible set forx = 6, so a contribution of−1 arises from
this set, too.

From the viewpoint of Proposition 1.7, we haveβ(A|{1,2,5,6})= −2. This interpre-
tation is a bit more difficult to understand geometrically, since the free convex sets
restrictionA|{1,2,5,6} depend on the position of the elements ofA−F . One consequenc
of this interpretation is thatβ(A|F) can take on any (positive or negative) integer value

We conclude this section by giving several results for the reduced one-va
polynomialer(A) obtained fromER(A) by setting eachpx = p. As usual, this correspond
to the situation when each element has the same probability of success.

Corollary 4.5. LetA be a subset ofn points in the plane with no three points colline
and write er(p)=∑n

i=1 aip
i . Then

(1) a1 = the number of extreme points;
(2) an = the number of interior points;
(3) ai = −an+1−i for all i with 1< i < n.

Proof. (1) From Lemma 4.2, we havePr(x) includes the termpx iff x is extreme. The
result follows immediately.

(2) This is Theorem 4.1 of [1] (see Corollary 4.3).
(3) Let x be an interior point. By Theorem 4.4, each minimal feasible setF with x

extreme inA− F gives rise to two terms inPr(x); pxpF and−pA−F . But, if |F | =m,
thenpxpF has degreem + 1, while −pA−F has degreen − m. The result now follows
from Proposition 3.1. ✷

This result is consistent with the observation thater(1)= n, since, for points in genera
position, every point is either interior (and thus contributes to the coefficient ofpn) or
exterior (and so contributes to the coefficient ofp), and the coefficients of the other term
of er(p) cancel in pairs. This also implies, for example, that ifn is odd, then the coefficien
of p(n+1)/2 must be zero.

We note that the antimatroid operation of deletion is troublesome for finite point
While A− x is a well-defined antimatroid, it is not possible to associate a finite poin
S to A− x so that the feasible sets ofA− x andS coincide (so the class of finite poin
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sets is not closed under the antimatroid deletion operation). Nevertheless, we can s
deletion and contraction (which causes no problems for antimatroids in general), pr
A − x is correctly interpreted. A more complete discussion of this problem and va
solutions appears in [1].

The next result is analogous to Proposition 2.5.

Proposition 4.6. LetA be a subset ofn points in the plane with no three points colline
Then

er ′′(A;1)= 0.

Proof. Let x be an extreme point ofA. We take the second derivative of both sides of
deletion–contraction recursion given in Proposition 1.6 and use induction. This give

er ′′(A;p)= 2er ′(A/x)+ p · er ′′(A/x)− 2er ′(A− x)+ (1− p)er ′′(A− x).

Now er ′(A/x;1) = n − 1 by Proposition 2.5 applied toA/x. Further, the same resu
applied toA− x giveser ′(A− x;1)= n− 1. (The hypothesis that no three points ofA are
collinear ensures thatr(A− x − y)= n− 2 for all y, as required by Proposition 2.5.)

Finally, we haveer ′′(A/x) = 0 by induction. Putting the pieces together gives
result. ✷

This result is false for points that are not in general position. For example, ifA is the
5-point configuration formed by the corners a square, together with its barycenter, w
er(A)= 4p+ 4p3 − 4p4 + p5, which giveser ′′(1)= −4.

As a corollary of Proposition 4.6, we get another formula involving the beta invar
We omit the straightforward proof.

Corollary 4.7. LetA be a subset ofn points in the plane with no three points colline
Then

∑
F∈F

|F |(|F | − 1
)
β(A|F)= 0.

The next result is our final evaluation ofer(p).

Corollary 4.8. LetA be a subset ofn points in the plane with no three points collinear.
n is odd, then er(−1)= −n.

Proof. Write er(p) =∑n
i=1 aip

i and note thatk andn+ 1 − k have the same parity fo
all k. The result follows from Corollary 4.5.✷

This result also gives rise to another identity involving the beta invariant.



316 G. Gordon / Advances in Applied Mathematics 32 (2004) 299–318

If

of

paper.
on the
d

search
resting
eated

a real
Fig. 5. A counterexample to Corollary 4.8 for evenn.

Corollary 4.9. LetA be a subset ofn points in the plane with no three points collinear.
n is odd, then

∑
∅�=F∈F

(−1)|F |β(A|F)= −n.

Corollary 4.8 is false for evenn. As an example, consider the 6-point configuration
Fig. 5. Thener(p)= 4p+ 3p2 +p3 − p4 − 3p5 + 2p6, soer(−1)= 2.

5. Directions for future research

We conclude by indicating a few possible research projects based on this work.

5.1. Other classes of antimatroids

There are several important classes of antimatroids that we did not consider in this
For example, simplicial shelling in chordal graphs induces an antimatroid structure
vertices. For this class, there is a characterization ofβ(A) [16]; it is possible that a detaile
examination of the structure ofER(A) or the one-variable evaluationer(A) for this class
could give information about the combinatorial significance ofβ(A|F) for feasible setsF .

Other classes of interest include vertex search in graphs and digraphs, edge
in graphs and vertex pruning in trees. The search antimatroids have some inte
polynomial invariants, studied in [22]. Edge pruning in trees and rooted trees is tr
in [3].

5.2. Uniform expected rank and integrals

Whenp is uniformly distributed, it makes sense to compute the expected rank as
number. In [2], the following operation is introduced:

EV(A)=
1∫

er(A)dp.
0
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For example, for the configuration of Fig. 2, we have

EV(A)=
1∫

0

4p+ 4p2 + p3 − p5 − 4p5 + 3p7 dp≈ 3.22. . . .

This corresponds to the situation when there is no information about the distributionp
considered as a random variable.

It would be interesting to explore this real invariant as a combinatorial exercis
particular, among alln-point configurations havingk interior points, what configuratio
maximizes the integral? Does moving a point toward the boundary of the configu
always increase this value? Are there two configurationsA1 andA2 on the same numbe
of points withEV(A1)= EV(A2), butA1 andA2 not combinatorially equivalent?

It should also be interesting to apply this invariant to some of the other class
antimatroids mentioned above. Trees and rooted trees are considered in [3], and
graphs are treated in [6] (although the edges of general rooted graphs do no
antimatroids).

5.3. Other probabilistic distributions

For ‘real-world’ applications, the assumption of uniform distribution onp is almost
surely wrong. It makes more sense to assume some density functionf (p) on [0,1], and
then computeEV(A;f )= ∫ 1

0 er(A)f (p)dp. For example, theBetadistribution gives a 2-
parameter family (specifying the mean and standard deviation). See [10] (or any st
text on statistics) for descriptions of this distribution and others. A serious study o
topic should include real data on the reliability of components in the system being mo

5.4. Finite subsets in higher dimensions

In Section 4, we concentrated on planar configurations. It would be interesting to e
the characterizations ofPr(x) given in Lemma 4.2 and Theorem 4.4 to higher dimensio
For example, the main theorem (Theorem 1.1) of [13] extends Corollary 4.3 to h
dimensions, proving a conjecture of [3] (also independently proven by Klain in [20]
extended to oriented matroids in [14]). It may be possible to give a relatively short
of this general result (similar to the proof we give of Corollary 4.3).

This approach may be promising, since it is straightforward to generalize parts (1
(2) of Lemma 4.2 to any dimension. In particular, if we could show thatPr(x) contributed
a coefficient of(−1)n wheneverx is interior, the proof would follow immediately from
Proposition 3.1 and the generalization of parts (1) and (2) of Lemma 4.2. Such a
would require a deeper understanding of the geometry of minimal feasible sets in�n.
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