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Abstract

We consider a probabilistic antimatroid on the ground sek, where each elemerte E may
succeed with probability.. We focus on the expected raBIR(A) of a subset o as a polynomial
in the p.. General formulas hold for arbitrary antimatroids, and simpler expressions are valid for
certain well-studied classes, including trees, rooted trees, posets, and finite subsets of the plane. We
connect the Tutte polynomial of an antimatroidBB(A). Whens is a finite subset of the plane with
no three points collinear, we derive an expression for the expected rank that has surprising symmetry
properties. Corollaries include new formulas involving the beta invariant of subsétsofl new
proofs of some known formulas.
0 2003 Elsevier Inc. All rights reserved.
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1. Introduction and mathematical preliminaries

There are many situations in reliability theory in which elements of a finiteEset
(frequently the edge set of a graph) are assumed to succeed or fail with certain probabilities.
In this paper, we will assume each element E is successfulor operational with
probability p., and these probabilities operate independently. While these assumptions
are not always realistic in applications, they can still be very useful in modeling complex
systems.

The computation of theeliability of a networkhas a long and varied history. Standard
references are [11,23,24]. Relatively less attention as been payed to the question of the
expected number of surviving components in a system. This is of interest in real-world
applications, but it also gives rise to some interesting combinatorics. We will not consider
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the applications here, but indicate in Section 5 some possible ways to apply the invariants
considered here to models of physical systems.

Expected rank in graphs (for various rank functions) have been considered in [4,5,25,
26] as thepair connected reliabilityand as theesiliencein [12]. Consideration of expected
rank also appearsin [2,6,7,27], although most of the structures considered are graphs. For
trees, this topic is explored in [3]. Like the reliability, the expected rank is a polynomial (in
one or several variables) and this polynomial encodes combinatorial information about the
graph, finite point set, poset, and so on.

Our goal in this work is to unify some of the different approaches in the literature by
concentrating on the general class of antimatroids. While ordinary graphs do not give rise
to antimatroids, there are several interesting combinatorial structures that are antimatroids.
These include the main application treated here, finite subsets of the plane, as well as posets
(in two different ways), trees and rooted trees.

The probabilistic approach allows short proofs of two results (Theorem 4.1 of [1] and
Corollary 4.4 of [13]), and several new identities involving free sets in restrictions of
antimatroids. The main theorem concerning finite subsets of the plane gives an expression
for this polynomial in terms of half-planes associated with the set.

The paper is organized as follows. This section includes the relevant definitions and
some old and new formulas for expected rank. Section 2 gives a relation between a one-
variable expected rank function and the Tutte polynomial of the antimatroid. Section 3
gives the key probabilistic expansion for the polynomial (Proposition 3.1) and applications
to trees and posets. Section 4 develops the theory for the application of these ideas to finite
point sets, concentrating especially on finite subsets of the plane. Finally, there are several
possibilities for research projects based on this work; we outline a few in Section 5.

Let G = (E,r) be an ordered pair, whete = {1, ...,n} andr : 28 - Z+* U {0} is a
function (called theank function) from the subsets @ to the non-negative integers. For
each element € E, we assign an indeterminage, which we interpret as the probability
that the element is successful or operational (so the probability thé not operational
is simply 1— p.). We assume elements operate independently, although we make no
assumptions about the indeterminages Although this approach is probabilistic, most
of the results given here can be considered purely combinatorially.

Our object of study in this paper is tepected rank polynomialvhich we define as
follows:

Definition 1.1.

ERG) =) r)[]n]]a-pp.

SCE ieS  j¢S

When the rank function satisfies certain conditions, we can obtain alternate formulations
for ER(G). In this paper, we will concentrate amtimatroids More extensive introduc-
tions to the subject can be found in [8,21].

Definition 1.2. An antimatroid is a paid = (E, F), whereE is a finite set andF is a
family of subsets of, called thefeasiblesets, satisfying:
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(FO) F#0;
(F1) if X € 7, thenX — {x} € F for somex € X
(F2) if X € F,thenX U {x} € F for somex ¢ X.

The rankr(S) of a subsetS is the size of the largest feasible subsetSofr(S) =
maxrcs{|F|: F € F}. Note thatr(E) = |E|. Throughout the paper, we assumds an
antimatroid on the ground sé&t with |E| = n, with feasible sets.

We define theontinuationsor boundaryof the feasible sef’ asI'(F) ={e€ E — F:
F U {e} € F}. The next lemma is trivial, but useful.

Lemma1.3.If S C E, there is a uniqud’ C S with r(S) = | F|.

Lemma 1.3 allows us to collect terms in the definition, which gives the next proposition.
We omit the proof, which is essentially the same as the proof of Proposition 2.2 of [3].

Proposition 1.4. Let A be an antimatroid with feasible sefs. Then

ERA) =Y IFI[]re [] @—po.

FeF ecF  eel(F)

We will also need the following property of antimatroids.

Lemma 1.5 [8, Definition 8.2.6].Let A be an antimatroid and suppoge C G, where
F,GeF.If FU{x}e F forsomex € E,thenG U {x} € F.

Deletion and contraction are very important operations in matroid theory, especially as
they relate to invariants. We can also define these operations for antimatroids.

Let A be an antimatroid and €t} be a feasible singleton. Theh is feasible in the
deletionA — ¢ iff ¢ ¢ F and F is feasible inA. F is feasible in thecontractionA /e iff
e ¢ F andF U {e} is feasible inA. (The requirement thdk} is feasible guarantegswill
be feasible iMA /e.)

Proposition 1.6 (Deletion—contraction).et A be an antimatroid and lefe} € . Then
ER(A) = (1— pe)ER(A —e) + p.ER(A/e) + pe.

Proof. We writtER(A) = S1 + Sz, whereS1 =} s, ,cs7a(S) [1;c5 Pi [1;45(1 — pj) and
S2=25. egs A [ics Pi [Tjes(X = p))-

Now S2 = (1 — p.)ER(A — ¢) because 4 (S) = ra—.(S) whenever ¢ S, whererg(S)
denotes the rank df in the antimatroidB.

Whene € S, we havers (S) =r4/.(S — e) + 1 by definition of the feasible sets in the
contractionA /e. Then

S1= Z rA(S)HPil_[(l—Pj)= Z (rA/e(S—e)+1)l_[p,~l_[(1_pj)

S: eeS ieS  j¢S S: eeS ieS  j¢S
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=pERA/) +p. Y []pi[[@—pj)=p.ERA/e) + pe,

S:egSieS ¢S
where the tern} . o5 [Ties Pi[1j¢s(X— Pj) =Ilses, age(Pa+ (1= pa))=1. O

The deletion—contraction recurrence can also be proved using a simple conditional
probability argument and Proposition 3.1 below. For the reliability polynomial, this is
referred to as théactoring theoremSee [11] for more information about the reliability
polynomial.

For an antimatroidd on the ground seE, define a seC < E to be convexif the
complementt — C is feasible. A convex sek is freeif every subset oK is also convex.

Let Freedenote the collection of all free convex sets4of
The g-invariant of an antimatroick can be defined as follows:

A= Y (KK,

K eFree

See [13,16] for combinatorial interpretations®fA) for several classes of antimatroids,
but especially whent is a finite subset aft”.

The B invariant will allow us to interpret the coefficients of the expected rank
polynomial. If F is feasible in the antimatroid, we write A| F for the antimatroid obtained
by restriction toF; equivalently,A| F is obtained by deleting the convex det- F.

Proposition 1.7. Let A be an antimatroid with feasible sefs. Then

ERA) = Y BAIF)[]pe

W#£FeF ecF

Proof. For convenience, we WriteR(A) =) . Br [ [, pe and recall tha(A|F) =
ZKEcF(—l)‘K|—1|K|, whereCr denotes the free convex sets AfF. We must show
Br = B(A|F). )

By Proposition 1.4, a feasible s&t will contribute toBy iff F € [F/, FFUT'(F)],i.e.,
iff F=F UG forsomeG CI'[F'].ButF=F UGforGCTI[Fiff F—F eCris
a free convex set ol | F. Therefore

Bp = > DFENF = Y (—DKI(1F| - |K))

F': Fe[F',F'UI(F")] KeCr
=Y ED)EHK IR Y (DK = AP,
KeCp KeCp

where the final equality follows from the fact thit .., (—1)!%! = 0 by Proposition 5
of [18]. O

Formulas similar to those given in Propositions 1.6 and 1.7 hold for ordinary graphs.
See Propositions 2.1 and 2.3 of [7].
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As an application of Proposition 1.7, we give a very short proof of Proposition 4.6
of [16].

Proposition 1.8 [16, Proposition 4.6]Let A be an antimatroid on the ground s&t with
|E| = n, and feasible set%. Then

Z B(A|F) =n.

W£FeF

Proof. Setp, =1 for all e € E in ER(A). Then(ER(A)|,,=1) = n, since the expected
rank isn when every element is certain to survive. By the formula of Proposition 1.7, we

get) gy rer B(AIF)=n. O

More involved formulas involving8(A) also hold under certain conditions. See
Corollaries 2.6, 4.7, and 4.9 below.

2. The Tutte polynomial and derivatives

For applications to reliability, it is frequently true that we can asspme p forall e, so
the probability that succeeds does not depenckoiihis allows us to obtain a one-variable
polynomial, which we denoter(A; p). In this section, we consider this polynomial and
the Tutte polynomial.

The Tutte polynomiais a two-variable polynomial invariant which has been studied
extensively for graphs, matroids and greedoids. See [9] for much more information about
its application to graphs and matroids. The Tutte polynomial for antimatroids and greedoids
was introduced in [17].

Definition 2.1. Let A be an antimatroid with rank functionand ground sef. Then the
Tutte polynomial is defined by

f(Ait,z) = Z tr(E)—r(S)ZISI—r(S).
SCE

The Tutte polynomial can also be written as a sum over all feasible sets (instead of all
subsets):

Proposition 2.2[15, Theorem 2.2]Let A be an antimatroid with ground sét and feasible
setsF. Then

f(A; 1, 2)= Z t\E\—IF\(Z + 1)\5\—|F\—|F(F)\_
FeF

The antimatroid Tutte polynomial also satisfies a deletion—contraction recursion. We
write f(A) instead off (A; ¢, z) for simplicity.
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Proposition 2.3[17, Proposition 3.2]Let A be an antimatroid and lefe} € F. Then
fA) = f(Afe)+ 1"V TAI f(A—e).

This result holds for all greedoids (not just antimatroids), and generalizes the matroid
recursion. When the antimatroid is a rooted tfeethe Tutte polynomial completely
determines the rooted tree (Theorem 2.8 of [17]YT1) = f(T») iff T1 and T» are
isomorphic.

The next result connects the one-variable expected rank polyneniigl p) with the
Tutte polynomialf (A; ¢, z).

Proposition 2.4. AssumeA is an antimatroid on the ground sét, with |E| =n. Then

1- 9f /11—
er(A; p) =np"f(—p, L) -p" - p)—f<—p, L).
p 1-—p ot p 1-p

Proof. We analyze the two terms separately. By Definition 2.1,

1-—
f(—p, L) => pP"@—py" ¥ sincer(E) = |E|=n.
p 1-p)

Thus,

n 1_p p n—
np f(77m)=nzps(l—l7) 81, 1)
SCE

For the other term, we have

of (i-p r \_ _ IS|=nt+1(q _ n—1s]
at( > ’1—1’)_32—(n r($))p L= p .

Thus,

af (1—
Pt - p)—f(Tp L) =3 (1= r(®) P pyIS. )

SCE
Subtracting Eq. (2) from Eq. (1) yields s r(S) p!S! (1 — p)"~15], as desired. O
The next result is another formula involving derivatives:

Proposition 2.5. Let A be an antimatroid in which-(A — ¢) = n — 1 for all feasible
singletonge}. Thener’(A; 1) =n.
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Proof. We lete be a feasible element and proceed using inductiom.0By Proposi-
tion 1.6, we have

er(A; p)=0—p)-er(A—e; p)+p-er(A/e; p)+ p.
Differentiating yields
er'(A;p)=Q—p)-er'(A—e;p)—er(A—e; p)+er(Ale; p)+p-er'(Ale; p) + 1.

By hypothesis, the antimatroid — ¢ has no loops, so evaluating at = 1 gives
er(A —e; 1) =n — 1. Furtherer(A/e; 1) = n — 1 for any antimatroid, andr’'(A/e; 1) =
n — 1 by induction. O

There are several classes of antimatroids for which— ¢) = n — 1 for all feasiblee.
For example, finite point sets, chordal graphs, trees, rooted trees (with pruned feasible sets),
and posets (using double shelling to define feasible sets) all satisfy this proposition.

We conclude this section by applying Proposition 2.5 to the formula from Proposi-
tion 1.7, giving a new relation satisfied B(A). The proof of the next result follows
immediately from Proposition 2.5.

Corollary 2.6. Let A be an antimatroid in which-(A — ¢) = n — 1 for all feasible
singletonge}. Then

Y IFIB(AIF) =n.

FeF

3. A probabilistic expansion of ER(A) and some antimatroid classes

Let A be an antimatroid on the ground sEtand lete € E. AssumeS C E is the
surviving subset of elements. Now define an indicator random variade to be 0
or 1 depending on whether or netcontributes to the rank of. Thus,I(e) = 1 if
r(S —e) <r(S),andl(e) =0 if r(S —e) =r(S). Write Pr(e) for the probability that
I(e) =1. ThenE(I(e)) = Pr(e), where E(I(e)) is the expected value of the random
variablel (¢). The linearity of expected value immediately gives the next proposition.

Proposition 3.1.

ERA) = Z Pr(e).

ecE

Proposition 3.1 appears explicitly for graphs in the work of Colbourn [11] and Amin,
Siegrist, and Slater [4,5,25,26].

The remainder of this section is devoted to interpreting the expected rank polynomial
for trees (both rooted and unrooted) and posets (which can form an antimatroid in two
different ways).
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Rooted treed_et T be a rooted tree with a distinguished vertex, and define an antimatroid
on the edge sdf so thatF C E is feasible if the edges df form a rooted subtree (with the
same root ag’). Then the convex sets are tbemplementsf the rooted subtrees. Rooted
trees are important in several applications to network design.

The next result appears in [3]. The proof follows immediately from Proposition 3.1.

Corollary 3.2 [3, Theorem 2.4]Let T be a rooted tree. Then

ERT)=) [] re

veVeeP(v)

Unrooted trees When no root vertex is specified in a tr@g we can still define an
antimatroid on the edge sét. The feasible sets in this antimatroid are the edges of the
complementsf subtrees of". The resulting antimatroid is called tipeuningantimatroid,
as the feasible sets are precisely those sets that can be succgsivelgfrom the tree,
leaving a connected subtree at each step. The convex sets are the subtrees themselves.
When an edge that is incident to vertices andw is deleted from a tre&, the tree is
separated into two components. Call these comporgrits andC,(w) and note that one
of these components will have no edges whéna leaf ofT.
We now use Proposition 3.1 to give a short proof of Theorem 3.3 of [3].

Corollary 3.3[3, Theorem 3.3]Let T be an unrooted tree with| = n. Then

ER(T)=< > Pe( [T o+ J] pb>>—n]_[pe.

ecE(T) beC,(v) beC,(w) ecE

Proof. Let e € E be an edge off, and suppose is the set of edges df which are
operational. Ther (¢) = 1 iff e is operational and eithe¥ > C.(v) or § 2 C.(v). (C.(v)
andC,.(w) are precisely the two minimal sets of edges thaetquires to be operational in
order for/ (e¢) = 1.) Let Es denote the probabilistic event that the ed§ese operational.
Then

Pr(e) = pe Pr(Ec,(v) V Ec,(w)) = Pe( l_[ p»+ l_[ Pb) - H Pe-

beC,(v) beC,(w) eeE

This remains valid even i€, (v) = @ or C.(w) = @ (which occurs wher is a leaf), as
Pr(e) = p. in this case. The formula now follows from Proposition 3.0

Partially ordered setsWe briefly review some definitions. Lét be the ground set of the
posetP. F is anorder idealin P if x € F andy < x impliesy € F. G is anorder filterif

x € G andy > x impliesy € G. (Some authors refer to order idealsdmsvnset@and order
filters asupsets)
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Posets give rise to antimatroids in at least two ways.idibal poset antimatroidi ; (P)
has its feasible sets the order idealsrf (This antimatroid is simply called theoset
greedoidin [8,21].)

Thedouble shelling poset antimatroiélp (P) has feasible sets

F={FUG: Fisanideal and; is a filter}.
These antimatroids arise in the study of bottleneck functions.

Corollary 3.4. Let P be a poset on the ground sEt

D ERA(P) =) _]] ra-

ecEa<e
2) ER(AD(P>)=Zpe(]"[pa+]"[pb— I1 p)
ecE a<e b>e c<e Of c>e

Proof. (1) Since the feasible sets of;(P) are the order ideals, we havde) = 1
precisely when the operational subsetmfcontains the order ideal induced by i.e.,
when{a: a <e} C §. ThusPr(e) = Hage Pa, and the result follows from Proposition 3.1.

(2) Let F, be the probabilistic event that the elements less thare operational and
G. the event that the elements greater tlaare operational. Then, as in the proof of
Corollary 3.3,Pr(e) = p. Pr(F, v G.), and the rest of this proof is the same as the proof
of Corollary 3.3. O

There are striking similarities between the formulas for trees (Corollaries 3.2 and 3.3)
and the corresponding formulas for the two antimatroids associated with a poset
(Corollary 3.4). The first such similarity between Corollaries 3.2 and 3.4(1) is not a
coincidence; the pruning antimatroid on rooted trees is an example of a ideal poset
antimatroid, so the rooted tree formula of Corollary 3.2 is simply a special case of the poset
formula Corollary 3.4(1). For unrooted trees Corollary 3.3 and double shelling antimatroids
Corollary 3.4(2), the correspondence does not have a simple interpretation, since these
antimatroids are independent. Neverthel&sg¢) = p. Pr(A Vv B) for disjoint eventsA
andB in both cases.

As an example of the differences between the two antimatroids associated with a poset,
we computeER(A; (P) andER(A p (P) for the posets; and P, of Fig. 1.

Then ER(A;(P1)) = p1 + p2 + pip2p3 + p2psa and ER(A[(P2)) = p1 + pa +
pip2 + pip2p3, but note that the one-variable polynoméalA;(P1)) = er(A;(P2)) =
2p + p? + p3. This follows from Example 3.1 of [15], which shows that these two posets
have the Tutte polynomials, and Proposition 2.4.

For the double shelling posets, we ¢R(Ap(P1)) = p1 + p2 + p3 + p4 (since each
element is feasible) anBR(A p(P2)) = p1+ p3 + pa+ pip2 + p2p3 — pipzps. In this
caseer(Ap(Py) = 4p # 3p +2p® — p> = er(Ap(P2)).

We conclude this section by using Corollary 3.4(2) to comp(t€p (P)) for a posetP
giving rise to a double shelling antimatraid, (P). A bottleneck in a poset is an element
which is not maximal or minimal, but is comparable to every elemeit.of
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P Pa

Fig. 1.

We now give a short proof of a result of Edelman and Reiner [13].

Proposition 3.5 [13, Corollary 4.4].Let P be a poset wittb bottlenecks and associated
double shelling antimatroidi p (P). Theng(Ap(P)) = —b.

Proof. By Proposition 1.7,8(Ap(P)) is the coefficient of[[,.p p. i ER(Ap(P)).
Fore € P, let F, be the ideal generated kyand G, be the filter generated by. By
Corollary 3.4(2),

Prey=[] pa+ [[ Po— [] pe

ackF, beG, ceF, UG,

so we have a contribution @¢f-1) to this coefficient precisely wheR, U G, = P, ande is
neither maximal nor minimal. (Whenis the maximum or minimum element of a poset,
thenPr(e) = p..) But this condition is equivalent tobeing a bottleneck i?. O

4. Finite subsets of the plane

Let A be a finite subset 6i?, and forC C A, let C denote the convex hull af in 2.

A has an antimatroid structure that is easiest to describe in terms of its convex sets. In
particular, a se€ C A is convexf C = C N A. Thus, a se€ is not convex inA precisely
when some point oA — C is in the convex hull of”.

A pointx € A is extremef x ¢ A — {x}. Thus,x is extreme iffA — {x} is convex. As
usual,F C A is feasible ifA — F' is convex; a feasible st can be built by successively
pruning points fromA such that each point is extreme at the time it is pruned.

Finite point sets im" are among the most well-studied classes of antimatroids. Indeed,
this class motivated the term ‘antimatroid’ as the convex closure operator satisfies an
‘anti-exchange’ axiom (compared with the Steinitz—MacLane exchange axiom for closure
in matroids) [19]. Antimatroids can be thought of as abstract convexity structures in an
analogous way that matroids are abstract dependence structures.
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Our interpretation of elementse A operating with independent probabilitips has an
interesting interpretation for this class of antimatroids. If the point4 tépresent nodes in
a network, then we are interested in sending a message from the extreme nadestod
internal nodes. Suppose no internal node can receive a message until it becomes ‘visible,
i.e, it is extreme. Then the expected rank polynomial measures how far the message can
penetrate to the interior of the configuration.

For an elementkt € A and a subsetG C A, we say thatr matters toG if either
r(GU{xH=r(G)+1(fx ¢ G)orif r(G—{x}) =r(G) — 1 (if x € G). For a givenx,
computation of the subsets to whiglmatters is equivalent to computiig(x), which can
then be used to compute the polynoni&(A) by Proposition 3.1.

Lemma4.1. Let A be a finite subset ok” and letx € A. Thenx matters to a subset iff
andG D F, whereF is minimal such that is extreme iMA — F.

Proof. First note that ifF is minimal such thak is extreme inA — F, then F must be
a feasible set. Thus, the minimal séissatisfyingx extreme inA — F; are precisely the
minimal feasible sets satisfyingj; U {x} is also feasible. Now suppose¢ G C A has
r(GU{x})=r(G)+ 1. Then, by Lemma 1.37 U {x} contains a unique maximal feasible
setFg, andx € Fg. ThenFg contains a minimal feasible sétwith x extreme inA — F.
A similar argument holds it € G, applied toG — {x}.

Conversely, supposé 2 F; for some minimal sef; satisfyingx extreme inA — F;.
Thenr(F; U{x}) =r(F;)+ 1, s0r(GU{x}) =r(G) + 1 (if x ¢ G) sinceG 2 F; by
Lemmas 1.3 and 1.5. (i € G, apply this argumentt¢ — {x}.) O

Note that whenx is extreme, the lemma shows thatmatters to all subset$ of A.
In 92, the minimal feasible set$; that matter to an interior point can be cyclically
ordered in a natural way. Sinaeis extreme inA — F;, there is a linel.; throughx and an
open half-plandd; determined by the liné; such thatF; = A N H;. We can associate to
eachF; a unit normal vectop; based at such that; is normal to the linel.; andv; is
contained in the half plan#&;. We now order theF; cyclically according to the angle
makes with a fixed reference line (say the horizontal line throggh

This correspondence is illustrated in Fig. 2. In the examplexfer 7, we have the
following minimal feasible sets, in counterclockwise cyclic ordef:= {3}, F> = {4},
F3=1{1,2,5, 6}. Note that these sets are disjoint (which is not true in general) and that
only 3 of the 12 feasible sets determined by half-planes are minimal.

This association of a half-space with each minimal feasibl&se¢mains valid irth”
forn > 2, but it is no longer meaningful to order the sets cyclically.

If x is not an extreme or interior point ¢f, thenx is on the boundary of. In %2, this
meanst is on a line segmerit between two extreme points ands,. Let R, andsS, be the
intersections of the half-open segmelmts x) and(x, s, ] with A, sothatR, US, = L —{x}
andR, NS, =07.

For § C A, we write Pr(S) to represent the probability the s&tis operational. For
S, T € A, we also writePr(S v T) to represent the probability that the elements @i T
are operational.
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(@) (b)
Fig. 2. (a) Minimal feasible seff3 = {1, 2, 5, 6}. (b) All half-plane feasible sets far=7.

Lemma4.2. Let A be a finite subset 0k?, and write ps =[], 5 Px-

(1) If x is extreme, then

Pr(x) = px;

(2) If x is not extreme but is not an interior point of4, then

Pr(x) = px(pr, + ps,) — PL,

where R, = [ry,x) N A, S, = (x,s5,] N A and L is the boundary line segment
containingx;

(3) If x is an interior point ofA and Fy, ..., F; are the minimal feasible sets, ordered
cyclically, withx extreme inA — F;, then

k k
Pr() = e (2 =Y p) pa

i=1 i=1

where the subscripts are computed modulo

Proof. (1) If x is extreme, thenr matters to all subsets, sowill increase the rank of
any subset iffx is operational, i.e.Pr(x) = p.. (This argument is valid for any feasible
singleton in any antimatroid.)

(2) If x is a boundary point that is not extreme, thematters to all subsets which
containR, or Sy. Thus,Pr(x) = pxPr(Ry v Sx) = px(pr, + Ps,) — pr, as in the proof
of Corollary 3.4(2).
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(3) Arguing as in case (2), we haW®r(x) = p,Pr(F1 Vv Fo Vv --- Vv F;). To compute
Pr(F1Vv FoVv-- -V Fy), we must show that every set containing safnés counted precisely
once by the expression

k k
Dx (ZPF; - ZPF,UF,-H) + pa. (%)
i=1

i=1

Let S C A. Then each seff; C S accounts foiS (with a coefficient of+-1 for each such
set) and each consecutive péjruU F; 1 C S accounts foiS (with a coefficient of—1 for
each such pair and where subscripts are computed ma@lulthere are several cases to
consider:

Case 1. S does not contairF; for anyi, 1 <i < k. Thenx does not matter t& (by
Lemma 4.1), saS does not contribute tér(x). Since S contains nof;, S will not
contribute to(x), either, sas is not counted byx).

For the remaining caseS,D> F; for somei, 1 <i < k. Then, by Lemma 4.1 matters
to S, so we must show§ is accounted for precisely once ().

Case 2. S = A. Then S is counted by every term ig«), so each of the& terms pp,
contributes+1, each of thek terms pr,ur,,, (computed moduld) contributes—1, and
the termp4 contributest+1. Thus,S is accounted for precisely once.

Case 3. § D F; for somei, butS # A. Lety ¢ S and renumber the indices of the minimal
feasible sets (if necessary) so that Fi. (Every element ofA — {x} is in at least one
minimal feasible sef;.) Continue the renumbering in counterclockwise cyclic order. Then
F1 € S. Leta andb be smallest and largest integers (respectively) suchfhat S and

F, CS.

Claim. F, € S for all ¢ with a < ¢ < b. (By definition ofa andb, F; £ S fori <a and
i > b.) To see why the claim is true, letbe some integer betweemandb. Then ifa = b

ora + 1= b, there is nothing to prove, so assume « > 1. Let H, and H,, be the half-
planes associated t6, and F;, (respectively), as in Fig. 3. Thel, € H, U H, is clear.
But F; =H;nAforalli,soF.C F,UF;,. Thus,S D F, U F, D F, for all ¢ betweeru

andb.

To finish the proof of case (3), now note th&is accounted for irb — a + 1 terms
of the form pf, for ¢ such thatz < ¢ < b (with coefficient+1), andb — a terms of the
form prur,, for c such thata < ¢ < b — 1 (having coefficient-1). This completes the
accounting forS. O

For example, in the configuration of Fig. 2, we hake(7) = psp7 + pap7 +

P1P2P5P6PT — P3P4PT — PLP2P3P5P6PT — P1P2P4pspep7 + pa. Using Proposition 3.1
then gives the entire polynomial &R(A) =), .z Pr(x).
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Fig. 3.

As an immediate application, we can use Lemma 4.2 to give a very short proof of the
main theorem of [1], which characterizes the beta invariant for finite subsets of the plane.
(This proof does not extend to higher dimensions; see Theorem 1.1 of [13].)

Corollary 4.3 [1, Theorem 4.1]Let A be a finite subset 6k?, and letint(A) denote the
set of interior points ofA. Then

Z (—D'KI=Y K| = |int(A)].

K eFree

Proof. By Proposition 1.78(A) is the coefficient of the monomials in ER(A). Let ¢,
be the coefficient op4 in the polynomialPr(x). By Proposition 3.18(A) =), 4 ¢x-
Now, by Lemma 4.2, we have, = 1 if x € int(A) and ¢, = 0 otherwise. This gives
B(A) = |int(A)], and the formula given follows from the definition 8tA). O

The next lemma is the key to understanding the structuteRgft) when the points of
A are in general position in the plane. In this situation, the 8gts F; 1 are simply the
complements of some other minimal feasible BgtAs a result, the resulting polynomial
satisfies a striking symmetry condition.

Theorem 4.4. Let A be a finite subset k2 with no three points on a line. Lete A be an
interior point. LetFy, ..., F; be the minimal feasible sets withextreme inA — F;. Then

k k
Prix) = Px(ZPﬂ) — > pa-F + pa.

i=1 i=1

Proof. We must show, for given, thatA — (F; U F;;1) = F; for somej, and conversely,
A — F; = F,, U F,,, 11 for somem. (As usual, all subscripts are between 1 anahd are
computed modulé@.) The result then follows by Lemma 4.2(3).
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Other points of A

No points of 4
L

Mo points of 4

F

Fig. 4. Configuration for the proof of Theorem 4.4.

We first show thatA — (F; U F;+1) is a minimal feasible set. Suppoge is a
minimal feasible set, and Igt be a corresponding line through and H the half-space
corresponding td.. Order the points of = {e1, ..., ¢,;} So that they are encountered in
this order ad. rotates counterclockwise abauthrough the region determined &

Now rotateL clockwise abouk, and lety € A be the first point ofA — F that L meets.
Note thatZ will meety prior to meeting any points af, sinceF is minimal and no three
points are collinear im. Call this rotated lineL .

Now we rotatel, counterclockwise about As L sweeps through the region determined
by the angle/yxei, L must meet some points of — F (by minimality of F). Let
Z =1{z1,...,zs} be this set of points, listed in the order they are encountered.

Continue rotating counterclockwise, and lebe the first point ofA — F met. LetL,,
be the line throughr andw. Then, as the line sweeps through the anglecw, it passes
through some points af, sayes, ..., ¢; for somer with 1 < ¢ < r. The configuration is
shown in Fig. 4.

ThenF — {e1} U Z must contain some minimal feasible €ewith x extreme inA — G.
Note thatx is interior to the triangleAe1yz; for all 1 <i < s, soG 2 Z. By definition
of w, we must haves = {¢;11,...,¢,} U Z. Clearly, F and G are consecutive minimal
feasible sets.

ThenK = A — (F U G) is also a minimal feasible set withextreme inA — K. To see
this, first note there is a ling’ throughx separatingF" U G from the rest ofA. (We can
constructL’ by rotating clockwise by a small angle the line throughandx.) Then, in
rotatingL’ either clockwise or counterclockwise, we will encounter pointg of G before
meeting eithel or w, which ensures minimality ok .

For the converse, leF' be the same minimal feasible set as before, and ratate
clockwise until it passes through, then rotate counterclockwise by a small angle, and call
this line L’. Let H' be the half-plane containing that is determined by.". Theny ¢ H’
andZ C H'. Arguing as above, we can find a minimal feasible Géwith x extreme in
A—G'andZ C G'C H' nA. ThenG’ andK are consecutive minimal feasible sets, and
G'UK = A — F, as desired. O
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For example, in the configuration of Fig. 2, we have

ER(A) = p1+ p2+ p3 + pa+ pips + p2pe + p3p7 + pap7
+ p1pspe + p2ps5pe — P3PAPT — 2P1P2P5P6 + P3PAPsPT + P3PAPePT
+ p1p2pspep7 — P1P3PAPSPT — P2P3PAP6PT — P1P2P3P5P6DT
— P1P2p4ap5p6PT — P1P3PAP5P6PT — P2P3papspep7 + 3pa.

Note that the coefficient gb1 p2 psps is —2. We can interpret this coefficient in two ways.
From the viewpoint of Theorem 4.4, the 48t 4, 7} is a minimal feasible set for =5, so
A—1{3,4,7} =11, 2,5, 6} contributes a coefficient of 1 to the coefficient ofp1 p2psps.
But {3, 4, 7} is also a minimal feasible set far= 6, so a contribution of-1 arises from
this set, too.

From the viewpoint of Proposition 1.7, we hageéA|{1, 2,5, 6}) = —2. This interpre-
tation is a bit more difficult to understand geometrically, since the free convex sets in the
restrictionA|{1, 2, 5, 6} depend on the position of the elementsiof F. One consequence
of this interpretation is thgt (A| F) can take on any (positive or negative) integer value.

We conclude this section by giving several results for the reduced one-variable
polynomialer(A) obtained fromER(A) by setting eaclp, = p. As usual, this corresponds
to the situation when each element has the same probability of success.

Corollary 4.5. Let A be a subset of points in the plane with no three points collinear,
and write eXp) =Y/ ;a;p'. Then

(1) a1 = the number of extreme points
(2) a, =the number of interior points
3) ai = —ap41—; foralli withl <i <n.

Proof. (1) From Lemma 4.2, we haver(x) includes the ternp, iff x is extreme. The
result follows immediately.

(2) This is Theorem 4.1 of [1] (see Corollary 4.3).

(3) Let x be an interior point. By Theorem 4.4, each minimal feasible/satith x
extreme inA — F gives rise to two terms iRr(x); pxpr and—pa_r. But, if |F| =m,
then p, pr has degreen + 1, while —p4_r has degre@ — m. The result now follows
from Proposition 3.1. O

This result is consistent with the observation thgfl) = n, since, for points in general
position, every point is either interior (and thus contributes to the coefficiept por
exterior (and so contributes to the coefficientdf and the coefficients of the other terms
of er(p) cancel in pairs. This also implies, for example, that i§ odd, then the coefficient
of p"*+D/2 must be zero.

We note that the antimatroid operation of deletion is troublesome for finite point sets.
While A — x is a well-defined antimatroid, it is not possible to associate a finite point set
S to A — x so that the feasible sets df — x and S coincide (so the class of finite point
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sets is not closed under the antimatroid deletion operation). Nevertheless, we can still use
deletion and contraction (which causes no problems for antimatroids in general), provided
A — x is correctly interpreted. A more complete discussion of this problem and various
solutions appears in [1].

The next result is analogous to Proposition 2.5.

Proposition 4.6. Let A be a subset of points in the plane with no three points collinear.
Then

er’(A; 1) =0.

Proof. Let x be an extreme point of. We take the second derivative of both sides of the
deletion—contraction recursion given in Proposition 1.6 and use induction. This gives

er’(A; p)=2er' (A/x)+ p-er”(A/x) — 2er’ (A — x) + (1 — per’ (A — x).

Now er’(A/x; 1) = n — 1 by Proposition 2.5 applied td /x. Further, the same result
applied toA — x giveser’(A — x; 1) = n — 1. (The hypothesis that no three pointsdoére
collinear ensures thatA — x — y) =n — 2 for all y, as required by Proposition 2.5.)

Finally, we haveer”(A/x) = 0 by induction. Putting the pieces together gives the
result. O

This result is false for points that are not in general position. For exampleisfthe
5-point configuration formed by the corners a square, together with its barycenter, we have
er(A) =4p + 4p® — 4p* + p5, which giveser” (1) = —4.

As a corollary of Proposition 4.6, we get another formula involving the beta invariant.
We omit the straightforward proof.

Corollary 4.7. Let A be a subset ot points in the plane with no three points collinear.
Then

Y IFI(IF] = 1)B(AIF) =0.

FeF

The next result is our final evaluation ef(p).

Corollary 4.8. Let A be a subset ot points in the plane with no three points collinear. If
n is odd, then ef—1) = —n.

Proof. Write er(p) = >"_, a; p' and note that andn + 1 — k have the same parity for
all k. The result follows from Corollary 4.5.0

This result also gives rise to another identity involving the beta invariant.
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Fig. 5. A counterexample to Corollary 4.8 for even

Corollary 4.9. Let A be a subset of points in the plane with no three points collinear. If
n is odd, then

Y. DIFIBAIF) =—n.

P#£FeF

Corollary 4.8 is false for even. As an example, consider the 6-point configuration of
Fig. 5. Therer(p) = 4p + 3p% + p° — p* — 3p° +2pb, soer(—1) = 2.

5. Directionsfor futureresearch
We conclude by indicating a few possible research projects based on this work.
5.1. Other classes of antimatroids

There are several important classes of antimatroids that we did not consider in this paper.
For example, simplicial shelling in chordal graphs induces an antimatroid structure on the
vertices. For this class, there is a characterizatigd(df) [16]; it is possible that a detailed
examination of the structure &R(A) or the one-variable evaluati@r(A) for this class
could give information about the combinatorial significancg @i | F) for feasible setg-.

Other classes of interest include vertex search in graphs and digraphs, edge search
in graphs and vertex pruning in trees. The search antimatroids have some interesting
polynomial invariants, studied in [22]. Edge pruning in trees and rooted trees is treated
in [3].

5.2. Uniform expected rank and integrals

Whenp is uniformly distributed, it makes sense to compute the expected rank as a real
number. In [2], the following operation is introduced:

1

EV(A) = / er(A)dp.
0
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For example, for the configuration of Fig. 2, we have
1
EV(A) =/4p+4p2+p3— p°—4p°+3pTdp~3.22.. ..
0

This corresponds to the situation when there is no information about the distributipn of
considered as a random variable.

It would be interesting to explore this real invariant as a combinatorial exercise. In
particular, among alk-point configurations having interior points, what configuration
maximizes the integral? Does moving a point toward the boundary of the configuration
always increase this value? Are there two configuratibnsnd A, on the same number
of points withEV(A1) = EV(A2), but A1 and A2 not combinatorially equivalent?

It should also be interesting to apply this invariant to some of the other classes of
antimatroids mentioned above. Trees and rooted trees are considered in [3], and rooted
graphs are treated in [6] (although the edges of general rooted graphs do not form
antimatroids).

5.3. Other probabilistic distributions

For ‘real-world’ applications, the assumption of uniform distribution pis almost
surely wrong. It makes more sense to assume some density furfationon [0, 1], and
then comput&V(A; f) = fol er(A) f(p)dp. For example, thBetadistribution gives a 2-
parameter family (specifying the mean and standard deviation). See [10] (or any standard
text on statistics) for descriptions of this distribution and others. A serious study of this
topic should include real data on the reliability of components in the system being modeled.

5.4. Finite subsets in higher dimensions

In Section 4, we concentrated on planar configurations. It would be interesting to extend
the characterizations &fr(x) given in Lemma 4.2 and Theorem 4.4 to higher dimensions.
For example, the main theorem (Theorem 1.1) of [13] extends Corollary 4.3 to higher
dimensions, proving a conjecture of [3] (also independently proven by Klain in [20], and
extended to oriented matroids in [14]). It may be possible to give a relatively short proof
of this general result (similar to the proof we give of Corollary 4.3).

This approach may be promising, since it is straightforward to generalize parts (1) and
(2) of Lemma 4.2 to any dimension. In particular, if we could show Brét) contributed
a coefficient of(—1)" wheneverx is interior, the proof would follow immediately from
Proposition 3.1 and the generalization of parts (1) and (2) of Lemma 4.2. Such a proof
would require a deeper understanding of the geometry of minimal feasible $&ts in
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