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ABSTRACT. We define a two-variable polynomial fG(t, z) for a greedoid G 
which generalizes the standard one-variable greedoid polynomial AG(t) . Several 
greedoid invariants (including the number of feasible sets, bases, and spanning 
sets) are easily shown to be evaluations of fG(t, z) . We prove (Theorem 2.8) 
that when G is a rooted directed arborescence, fG(t, z) completely determines 
the arborescence. We also show the polynomial is irreducible over Z[t, z] for 
arborescences with only one edge Piirected out of the distinguished vertex. When 
G is a matroid, fG(t, z) coincides with the Tutte polynomial. We also give 
an example to show Theorem 2.8 fails for full greedoids. This example also 
shows fG(t, z) does not distinguish rooted arborescences among the class of all 
greedoids. 

1. INTRODUCTION 

In this paper, we define a two-variable polynomial fG(t, z) for a greedoid 
G which generalizes the one-variable polynomial AG(t) given in [2, Section 
9.6]. The main theorem states that when G is a rooted directed arborescence, 

fG(t, z) completely determines the arborescence. All the graphs in this paper 
are finite. In this section, we recall some definitions from graph theory and 
define the polynomial. A more complete account of the graph theory can be 
found in [7], for example. 

Definition 1.1. Let D = (V(D) , E(D)) be a rooted directed graph (rooted di- 
graph), i.e., a directed graph with a distinguished vertex, denoted (*). (V(D) 
and E(D) represent the vertices and directed edges of D, respectively.) A 
rooted subdigraph F is a rooted arborescence if the root vertex * is in F and, 
for every vertex v in F, there is a unique directed path in F from * to v . 
Thus, rooted arborescences in digraphs correspond to rooted trees in undirected 
graphs. See Figure 1 for an example. 
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FIGURE 1 

Definition 1.2. A subdigraph F of a rooted digraph D is said to be feasible 
if F is a rooted arborescence. We will also call the edges of F a feasible set 
of edges, or simply a feasible set, when no confusion can arise. B C E(D) 
is called a basis if B is a maximal feasible set. It is a standard fact that all 
bases have the same cardinality. S C E(D) is a spanning set if S contains a 
basis. For any A c E(D), we define the rank of A, denoted r(A), as follows: 
r(A) = max{IFI: F C A, F is feasible}. 

For any A, B C E(D) and any x, y E E(D), the rank function satisfies the 
following: 

RI. r(A) <JAI. 
R2. If A C B, then r(A) < r(B). 
R3. If r(A) = r(A U {x}) = r(A U {y}), then r(A) = r(A U {x, y}) . 

Several remarks are in order here. Any function r: 2E , N satisfying prop- 
erties Rl-R3 defines a greedoid G on E . Then a set F is defined to be feasible 
iff r(F) = IFj . Greedoids can also be defined by specifying the collection of fea- 
sible sets. Bases and spanning sets are defined exactly as above, and it is again a 
standard exercise to show that all bases are equicardinal. In this context, rooted 
digraphs are termed directed branching greedoids. The rank function defined 
above is called the independence rank. It is also easy to construct examples of 
greedoids which are not directed branching greedoids. An extensive introduc- 
tion to greedoids can be found in [2]. Many earlier papers by Korte and Lovasz 
form the basis for [2]-see [6], for example. 

We now define a two-variable greedoid polynomial. 
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Definition 1.3. Let G be a greedoid, with rank function as defined above. De- 
fine fG(t, z) as follows: 

(1.3) G (t, Z) = tr(G)-r(A)zIAI-r(A) 
ACG 

In what follows, when confusion cannot result, we will occasionally write fG' 

f(G), or f(t, z) for fG(t, z) for ease of notation. 
The definition of fG is motivated by the Tutte polynomial of a matroid (or, 

more precisely, the corank-nullity version of the Tutte polynomial). A matroid 
can be defined as a greedoid whose rank function satisfies R2': r(A) < r(A U 
{x}) < r(A) + 1 (unit-rank increase). (Note that R2' implies R2.) The feasible 
sets of a matroid are called independent sets. General information about ma- 
troids can be found in [3] or [8], for example. One treatment of the Tutte poly- 
nomial concentrating on applications to graphs and codes can be found in [4]. 

We also note that other definitions of rank in greedoids or rooted digraphs 
give rise to corresponding polynomials via (1.3). For example, the basis rank in 
a greedoid, denoted ,8(A), is defined by ,B(A) = max{IBnAI: B is a basis}. We 
remark that using #1(A) in (1.3) gives a polynomial which does not distinguish 
rooted arborescences, i.e., Theorem 2.8 below is not true for this polynomial. 
In fact, this polynomial is the same for any rooted arborescence on n edges. 
We do not explore the various possibilities and interrelations here; see [1] and 
[5] for details. 

In Section 2, we concentrate on rooted digraphs, proving the main theorem 
concerning rooted arborescences, namely, that if T1 and T2 are both rooted 
arborescences with f(T ) = f(T2), then T1 and T2 are isomorphic rooted 
digraphs. We also give some results concerning the reducibility of fT(t, z) 

over Z[t, z], when T is a rooted arborescence. In Section 3, we discuss the 
generalizations to greedoids and matroids and give some counterexamples. In 
particular, we show the polynomial fG(t, z) does not distinguish the class of 
rooted arborescences, i.e., we give an example where fG(t, z) = fD(t, z) with 
D a rooted arborescence and G a greedoid which is not a directed branching 
greedoid. 

2. ROOTED DIGRAPHS 

We begin with some properties of the polynomial defined in Section 1. 
The statements in the following lemma are easy to establish. 

Lemma 2.1. Let D be a rooted digraph. 
a. The coefficient of tr(D)- Iis the outdegree of *. 

b. fD(l , 1) = 21E(D)I 

c. fD(I , 0) = the number offeasible sets. 
d. fD(O, 1) = the number of spanning sets. 
e. fD(O, 0) = the number of bases. 

f If D is an arborescence, then for any term Cta zb in fD' a > b. Further, 
a=b implies a=b=0. 
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The next lemma gives several ways to check whether D is a rooted arbores- 
cence from the polynomial fD(t, z) . 

Lemma 2.2. The following are equivalent: 
a. D is an arborescence. 
b. fD(o 1) = 1. 
c. In every term the z exponent < the t exponent. 
d. There is no pure z term. 

Proof. a X b. D is an arborescence if and only if the number of spanning 
sets is 1, or, by Lemma 2.1.d, fD(0 1) = 1 . 

a => c. If D is an arborescence, then r(D) = IE(D)I > JAl > r(A) for any 
subset A of edges of D. Hence, r(D) - r(A) > JAl - r(A). 

c = d. Obvious. 

d = a. If there is no pure z term, then for every subset of edges A, r(D) = 

r(A) implies JAl = r(A). In particular, then, IE(D)I = r(D). Thus, D itself is 
a feasible set, so D is an arborescence. 

We recall the definition of the direct sum of rooted digraphs. We note that 
our formulation of this definition will essentially be an internal direct sum; the 
external direct sum can be defined similarly. 

Definition 2.3. Let D1 and D2 be subsets of edges of D. Then D is the direct 
sum of D1 and D2, written D = D1i E D2, if D1 n D2 = 0, D1 u D2 =D, and 
the feasible sets of D are precisely the unions of feasible sets of D1 and D2. 

Proposition 2.4. If D = Di ED D2, then f(D) = f(D1) - f(D2) . 

Proof. Let F be the set of feasible sets in D, and F, and F2 those in D1 and 
D2, respectively. Then F = {F u F': F E F1, F' E F2}. Note first that by the 
definition of direct sum, there exist bases B1 in F, and B2 in F2 such that 
r(D) = 1B1 1 + IB21 = r(D,) + r(D2) . Now let A be a subset of edges of D . Since 
A = A1 U A2, with A1 in D1 and A2 in D2, then there is F1 E F1, F2 E F2 
with F1 C A1, F2 0 A2 such that r(A) = IF,1 + IF21 = r(A1) + r(A2). Thus, 

tr(D)-r(A) IAI-r(A) = tr(DI)-r(AI)zJAI I-r(AI)][tr(D2)-r(A2)z1A2I-r(A2)I 

Finally, since every subset A of edges of D splits up into a union of subsets 
from D1 and D2, and every such union gives rise to a subset A, we see that 

E tr(D)-r(A)zIAI-r(A) 

ACE(D) 

(E tr(Dt )-r(AI) z lAlIl-r(AIt) )( E tr(D2)-r(A2 )zIlA21 1-r(A2)) 

AI CE(DI) A2 C E(D2) 

Hence f(D) = f(D1) * f(D2), as desired. 
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As usual, deletion of an edge e means erasing it from the digraph and con- 
traction of e means erasing e and identifying the two endpoints of e. We 
will not contract loops. We now prove a proposition showing how f(D) can 
be computed recursively by contracting and deleting an edge. This is similar to 
the standard deletion-contraction development of the Tutte polynomial for an 
ordinary graph (or matroid) [4]. 

Proposition 2.5. Let D be a rooted digraph, with distinguished vertex *. Let e 
be an edge emanating from *, i.e., {e} is a feasible set. Then 

fD(t, Z) = fD/e(t z) + tr(D)-r(D-e) fD-e(t z). 
Proof. Let e be an edge emanating from *. We know that 

(1) fD(t,Z) = E tr(D)-r(A)zIAI-r(A)+ E tr(D)-r(A)zIAI-r(A) 

eEACE(D) e 4 ACE(D) 

First, assume e E A C E(D) . There exists a maximal feasible set in A con- 
taining e; this fact is straightforward. We then see that r(D/e) = r(D) - 

1, r(A/e) = r(A) - 1 and IA/el = Al - 1, so since tr(D)-r(A)zIAI-r(A) _ 

t(r(D)-1)-(r(A)-1)z(IAI-1)-(r(A)-1) we have 

E tr(D)-r(A)zIAI-r(A) tr(D)-r(A')zIA'-r(A') = fDe(t Z) 
eEACE(D) A'CE(D/e) 

Now assume e 0 A C E(D). Note that if A' corresponds to A in the 
deletion D - e, then JAl = IA'l and r(A) = r(A'). Thus, 

fD-e(t Z) = E tr(D-e)-r(A)zIAl-r(A) Sotr(D)-r(D-e)fD (t 
A CE(D-e) 

E tr(D)-r(A) zJAI-r(A) 

e(4ACE(D) 

Hence, from equation (1), fD(t, z) = fD/e(t IZ) + tr(D)r(De) fDe(t, Z) 

We now give an example where we use Proposition 2.5 to compute fD(t, z). 

Example 2.6. In Figure 2, the deleted and contracted graphs are placed beneath 
the parent graph. The computations of fD for the remaining digraphs is routine. 

Weobtain fD(t Z) =(t3 +t2 +2t+1)z2 +(2t3 +4t2 +6t+3)z+(t +3t +5t+3). 

We now restrict our attention to rooted arborescences T. The following 
proposition is the first step toward showing that fT(t, z) distinguishes arbores- 
cences, but is of interest in its own right. 

Proposition 2.7. Let T be a rooted arborescence with distinguished vertex *, 

and suppose deg(*) = 1. Then fT(t, z) is irreducible over Z[t, z]. 

Proof. Assume T is a rooted arborescence, and deg(*) = 1 . Let e be the one 
edge adjacent to *. From Proposition 2.4, fT(t, z) = fT/e(t, z)+ 

tr(T r(Te)fT-e(t, z). Note first that T - e has no edge connected to *, so 



292 GARY GORDON AND ELIZABETH MCMAHON 
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FIGURE 2 

T - e contains no feasible sets, hence r(A') = 0, for every subset A' of 
edges of T - e. Let n = jE(T)j. Then r(T) = n, so we have fT(t,z) = 

fTle(t 9 Z) + t fT-e(t Z) . 

Now, 

fT-e (t~ ~z) =tr(T-e)-r(A') IA'l-r(A') zIA' = (z + 1)n1 
A'CE(T-e) A'CE(T-e) 

Thus, fT(t, Z) =fT/e(t,Z)+ tn(Z+ 1)n. 

Next, in fTle(t I z), the highest power of t that appears is r(T/e) = n - 1; 
the highest power of z that could appear is at most n - 2, by Lemma 2.1 f. 
Thus, fT(t, z) = Z + fI (t, z), where the largest power of z that appears 
in f1(t,z) is at most n-2. 

Now, suppose fT(t z) = g(t, z)h(t, z) is a factorization of fT(t , z) over 
Z[t, z]. Write g(t, z) = trys + gl (t, z), where s is the largest power of z that 
appears throughout g, and r is the largest power of t that appears among terms 
containing zS . In a similar fashion, write h(t, z) = tuzv + h, (t, z), with v the 
largest power of z and u the largest power of t, given v. Since all exponents 



A GREEDOID POLYNOMIAL 293 

that appear are greater than or equal to 0, we have s + v = n - I and r + u = n, 
and (WLOG) r < s (ifboth r > s and u > v, then n = r+u > s+v+2 = n+l). 
Thus, in g(t, z), there is at least one term where the z exponent is greater 
than or equal to the t exponent; first, select the terms where the z exponent 
exceeds the t exponent by the greatest amount (possibly zero), then, among all 

a b such terms, choose t z with a + b maximal. 
Now, fT(t, z) has a constant term, corresponding to A = T, hence h(t, z) 

has a constant term, in particular, a term where the z exponent is equal to the t 
exponent. So as above in g(t, z), select all terms where the z exponent exceeds 
the t exponent by the most (possibly zero) in h(t, z), and then among those, 

pick out t zd where c + d is maximal. Now, in g(t, z)h(t, z), mta+czb+d 
cannot be cancelled by any other term or we violate the choice of a, b, c and 
d. Hence, we have b+d > a+c. However, by Lemma 2.1 f, b+d < a+c, 
so b + d = a + c, and again by the same Lemma, b + d = a + c = 0, whence 
a = b = c = d = 0. Thus, r = s = O, so g(t. z) = ?1, by choice of r and 
s . Thus, the factorization of fT(t, z) is trivial, so fT(t, z) is irreducible, as 
desired. 

We can now prove the main theorem of this section. 

Theorem 2.8. Let T1 and T2 be rooted arborescences. If f(T1) = f(T2), then 

1- 2 

Proof. Let T1 and T2 be rooted arborescences with distinguished vertices *1 
and *2 , respectively, such that f( T ) = f( T2). Since IE( T) l can be determined 
from f(T), we may assume that IE(T1)l = IE(T2)I = n. We will prove the 
result by induction on n. 

If n = 1, then for i = 1, 2, Ti has one edge emanating from * i, so T, T2 . 
Now let n > 1. Assume we have arborescences T1 and T2 with f(TI) = 

f(T2). Since deg(*i) can also be determined from f(Ti) by Lemma 2.1 .a, we 
let k = deg(*d). 

Case 1. k = 1. Let ei be the edge emanating from *i for i = 1,2 (so 
T1 and T2 look as in Figure 3). From Proposition 2.5, f(Ti) = f(Tilei) + 

tr(Ti)-r(Ti-ei)f((Ti - e,) , and, as in the proof of the previous proposition, f(Ti) = 

f(Tl/e.) + t'(z + 1)" n-iHence, f(T1l/e,) = f(T2/e2) . By induction, since each 
Tilei has n - 1 edges, we have T1l/e, T2/e2. However, since deg(*1) = 1, 
Ti is uniquely determined by Ti/ei (see Figure 3). Hence T1 t 'T2, and we 
have the result. 

Case 2. k > 1 . Each Ti is the direct sum of k components, Ti, I Ti,k 
one for each edge emanating from *i . By Proposition 2.4, for i = 1, 2, 

k 

f(Ti) = ff(Tii) 
j=1 
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*~~--~ 

FIGURE 3 

By Proposition 2.7, each f (Ti j) iS irreducible. Since Z[t, z] is a unique 
factorization domain, 

k k 

rjr f T j)- = rj f T2,j) 
j=l j=l 

implies that, after renumbering, f(Tj j) = f(T2 j) for all j. But then, by 
induction, T,,j '--T2,j, since each T-'j must have fewer than n edges (as 
k > 1 ). Thus, T, 

- 
T2, and we are done. 

3. GENERALIZATION TO GREEDOIDS AND EXAMPLES 

As noted above, several of the ideas developed for rooted digraphs carry 
over directly to the more general greedoid structure. We begin this section by 
relating the polynomial fG(t, z) defined on a greedoid G to the one variable 
polynomial AG(t) defined in [1, Section 6]. We will need to define deletion and 
contraction for greedoids. 

Definition 3.1. Let G = (E, F) be a greedoid, with A C E . Define the deletion 
G - A = (E - A, Fe) by specifying the feasible sets F, = )F C E - A: F E FB 
and, if A is feasible, define the contraction GhA = (E - A,F2) by F2e= eF C 

-A: FuA E F . Thus G- A and GdA are both greedoids on the ground set 
* - A . The reader can check that these definitions correspond to the intuitive 
ideas of deletion and contraction given in Section 2 when G is a rooted digraph. 

Wernow state the greedoid version of Proposition 2.5, the proof of which is 
essentially the same as before. 
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Proposition 3.2. Let G = (E, F) be a greedoid and let {e} be a feasible set. 
Then fG(t,z) = fG/e(t Z) + tr(G)r(Ge)fGe(t Z) 

Since every greedoid of positive rank must have a feasible singleton, this 
proposition gives a recursive way to compute fG(t, z) . On the other hand, if 
r(G) = 0, then it is easy to see fG(t, z) = (z + i)n, where n = JEl. 

The greedoid polynomial AG(t) is usually defined in terms of basis activities. 
Although the definition given below depends on an ordering of the elements of 
E, the polynomial is independent of the particular ordering. If ext(B) is the 
set of elements of E externally active in a basis B for some given ordering 0 
(that is, x is externally active in B if B < (B u x) - y for all y in B such 
that (B u x) - y is a basis) and BG is the collection of all bases, then 

G (t) = t t 

BEBG 

Finally, recall e is a coloop in G iff e is in every basis of G. Again, more 
details can be found in [1] or [2]. 

Theorem 3.3. Let G = (E, F) be a greedoid, with IEI = n. Then AG(t) = 

fG(0, t- 1). 
Proof. First note that if r(G) = 0, then AG(t) = tn and fG(t,z) = (z + i)n, 

so the theorem is true in this case. Next, assume r(G) > 0. Let {e} be a 
feasible set. We will show fG(t, z) satisfies the same recursion as AG(t) (see 
[2, Theorem 9.6.2]). 

Case 1. e is a coloop in G. Then r(G) > r(G - e), so fG(O,t - 1) = 

fG/e(o,t - 1) by Proposition 3.2. 

Case 2. e is not a coloop in G. Then r(G) = r(G - e), so again by 3.2, 
fG(05t t-1) = 

fGle(O ,t -1) + fG-e(? t - ) 
But this is the same recursion from the reference mentioned above; since 

fG(O, t - 1) and AG(t) agree on trivial greedoids, we are done. 

The following proposition follows immediately from the corank-nullity de- 
velopment for the Tutte polynomial of a matroid [4] and the definition of fG 

Proposition 3.4. If G = (E, F) is a matroid, then TG(x,y) = fG(x - 1 ,y - 1), 
where TG(x, y) is the Tutte polynomial of G. 

It is also worth interpreting the recursion given by 3.2 in the case when G is 
a matroid. In this case, {e} is feasible if and only if e is not a loop. If e is 
not an isthmus (coloop), then r(G) = r(G - e), so 3.2 gives fG = fG/e + fG-e . 
If e is an isthmus, we have (by convention) G - e = G/e, r(G) = r(G/e) + 1, 
and t = x - 1, so 3.2 yields fG = fG/e + (x - O)fG-e = XfG/e. Finally, since 

z = y- 1, we have fG = y n where r(G) = 0 and JEl = n, i.e., G consists of n 
loops. These recursions are (essentially) the standard Tutte deletion-contraction 
recursion for matroids. See [4] or [7], for example. 
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It is also easy to generalize Lemmas 2.1, 2.2 and Proposition 2.4 to the gree- 
doid case. We state these generalizations here for completeness. Recall that a 
greedoid G is full if r(G) = IE(G)I, i.e., E is a feasible set. 

Lemma 3.5. Let G be a greedoid. 
a. The coefficient of trl Iis the number offeasible singletons, where r = r(D). 
b. fG( l, 1 ) = 2 J() 

c. fG(I, 0) = the number offeasible sets. 
d. fG(O, 1) = the number of spanning sets. 
e. fG(0, 0) = the number of bases. 
f If G is a full greedoid, then for any term CtaZb in fG' a > b. Further, 

a = b implies a = b = O. 

Lemma 3.6. The following are equivalent: 
1. G is a full greedoid. 
2. fG(O0 1) = 1 
3. In every term the z exponent < the t exponent. 
4. There is no pure z term. 

The (unordered) direct sum of two greedoids is defined in precisely the same 
way the direct sum of two rooted digraphs was defined. That is, the feasible 
sets of G1 E G2 are precisely the disjoint unions of the feasible sets of G1 and 
G2. The proof of the next proposition is essentially the same as the proof of 
2.4. 

Proposition 3.7. If G = G1 E G2, then f(G) = f(GI) * f(G2). 

As with matroids, a special case of this proposition describes the behaviour 
of f(G) for loops and isthmuses. In a greedoid G, an element e is a loop 
if it is in no feasible set, and e is an isthmus if F is feasible precisely when 
F u {e} is feasible (i.e., e can be added to or deleted from any feasible set). 
Then, if e is a loop, we get f(G) = (z + 1) * f(G - e), and, when e is an 
isthmus f(G) = (t + 1) * f(G/e) . 

We now give two counterexamples to show Theorem 2.8 cannot be extended 
to rooted digraphs which are not arborescences (Example 3.8) or to full gree- 
doids (Example 3.9). Example 3.9 also shows fG does not distinguish the class 
of rooted arborescences. 

Example 3.8. Let D1 and D2 be the two digraphs of Figure 4. Then the reader 
may easily verify that f(D1) = f(D2) = (z + 1)(t2z + t2 + t + 1), but D1 and 
D2 are clearly not isomorphic. 

Example 3.9. Let E = {a, b, c} and define full greedoids G1 = (E, F1) and 
G2 = (E, F2) with feasible sets given by F1 = {0 {al, {b}, {a, b} {a, c}, 
{a, b, c}} and F2 = {0, {a}, {b}, {a, c}, {b, c}, {a, b, c}} . G1 is the directed 
branching greedoid (rooted digraph) of Figure 5. Again, the reader can check 
f(G) =f(G2) =(t3+ t2)z + (t3 + 2t2 + 2t + 1) = (t + l)(t2z + t + t + ). 
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DF D2 

FIGURE 4 

However, it is easy to show that G2 cannot be isomorphic to a rooted digraph, 
so GI and G2 are not isomorphic. Since GI is a rooted arborescence, this also 
shows f(G) is unable to distinguish rooted arborescences within the class of 
all greedoids (or even full greedoids, by 3.6). We also note that although f(G2) 
factors, G2 cannot be expressed as a direct sum of non-trivial greedoids. Thus, 
the converse to 3.7 is false. 

C a b 

FIGURE 5 

Remark 3.10 . The definition of an isthmus in a greedoid, as given in the dis- 
cussion following 3.7, is not uniformly accepted. In [2], for example, a coloop 
is defined as an element e which is in every basis of the greedoid. Thus, for 
full greedoids (in particular, rooted arborescences), every edge is a coloop. Our 
definition is motivated by the direct sum properties of isthmuses in matroid 
theory. Using our definition, an edge in a rooted digraph is an isthmus if and 
only if it emanates from * and its terminal vertex has out-degree zero. For 
example, in Figure 5, while every edge is a coloop, only b is an isthmus. 
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Remark 3.1 1. If we define g(G) = tr(G) f(G), then we can rewrite the recur- 
sion given in 3.2 as g(G) = t1 Ig(G/e) + g(G - e). This follows from the fact 
that r(G/e) = r(G) - 1 when {e} is a feasible set. We also note that 3.7 holds 
for g(G), i.e., if G = GI E G2, then g(G) = g(G1) - g(G2) . 

Remark 3.12. Since there is a one-to-one correspondence between rooted di- 
rected arborescences and rooted undirected arborescences, Proposition 2.7 and 
Theorem 2.8 hold for rooted (undirected) graphs. The other results in Section 2 
can also be translated to the undirected case. We leave the details to the reader. 

We conclude with some conjectures and problems. 
1. Show that Theorem 2.8 is true for a larger class of rooted digraphs, e.g. 

for {D: every edge of D is in some feasible set}. 
2. By Theorem 2.8, f(T) determines T when T is a rooted arborescence, 

thus T can be reconstructed from f(T) in this case. In fact, the proof of the 
theorem gives a recursive algorithm for doing this. It would be interesting to 
construct other algorithms for reconstruction. 
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