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Abstract. A subtree is picked at random from the collection of all subtrees of a complete
graph. What is the probability the subtree spans? We find the surprising answer this question
and a few closely related questions.

1. INTRODUCTION. Trees are important in a variety of applications within mathe-
matics and the sciences. Indeed, MathSciNet lists nearly 18,000 articles with the word
“tree” in the title. To a mathematician, a tree is a connected graph with no cycles.1

Figure 1. This Joshua tree lives in the Mohave desert.

Our motivation here is the following, easy-to-digest question.

Question 1. Suppose we pick a tree, at random, among all the subtrees (spanning and
nonspanning) in a complete graph. What are the chances that it is a spanning tree?

http://dx.doi.org/10.4169/amer.math.monthly.122.5.424
MSC: Primary 05C05

1Banyan trees and some other tropical trees can have cycles. The authors know of no botanical examples
where trees are disconnected, although banana trees may be joined underground.
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For a quick example, consider the complete graph K4 (see Figure 2). Of the 38
subtrees of various sizes, there are a total of 16 spanning trees. If we select a sub-
tree at random, where each subtree has an equal chance of being selected (uniform
probability), then the probability our subtree spans is 16

38 ≈ 42%.

Figure 2. The complete graph K4 has four subtrees with one vertex (the four vertices), six subtrees with two
vertices, 12 subtrees with three vertices and 16 spanning trees using all four vertices.

We seek the asymptotic value of the limit: If pn is the probability we have selected a
spanning tree of the n-vertex complete graph Kn , we are after limn→∞ pn. We answer
this question completely in Theorem 4 at the end of Section 3. Like most mysteries,
you can ruin the surprise by skipping ahead. But there is a surprise waiting for you
there.

Why should you care about this? Well, here are a few reasons.

• Trees are fundamental structures in graph theory. Spanning trees in graphs give min-
imal ways to connect networks. Moreover, finding minimum weight spanning trees
in a network is the prototypical example of when the greedy algorithm produces an
optimal solution to a problem (see Section 2).

• Counting problems are fun. Most (discrete) probability problems are counting prob-
lems in disguise, and our problem can be phrased in a purely combinatorial way.

• Many (most?) mathematical questions, even well-motivated, interesting ones, have
a narrow appeal to specialists working in the area. Often, even the best questions
have answers that are not very interesting. But in this case, we are lucky: The moti-
vation behind our question is easy to understand, and the answer is interesting and
surprising.

• Solutions to typical problems often rely on results that are treated as a black box:
“We use Theorem X to prove Theorem Y.” This is how math gets done, and it
would be impossible to prove many (any?) of the deep theorems in mathematics
from scratch. But here, again, we’re lucky. The solution is easy to follow, requiring
nothing more than first year calculus.

• Finally, even when the question and answer are easy to understand, the proof may
not shed any light on why the answer is what it is. For instance, one of the basic

May 2015] PICK A TREE 425



proof techniques of combinatorics and graph theory is induction, which is very
useful but requires you to know the answer before you start. Here, the answer pops
out of the analysis.

It’s always a good idea to get some data. The probabilities for some values of n ≤
100 are given in Table 1.

Table 1. Probabilities of selecting a spanning tree in Kn . Do you recognize the limit?

n pn

10 0.617473
20 0.657876
30 0.669904
40 0.675689
50 0.679090
60 0.681329
70 0.682915
80 0.684097
90 0.685012
100 0.685741

In determining the limiting value of the probability, we’ll encounter the number e
three times.2 The key facts we’ll need are a very important, famous formula credited
to Arthur Cayley, one of the giants of 19th century English mathematics, and two
standard facts familiar to all calculus students.

This paper is organized as follows. Section 2 introduces Cayley’s formula, and
solves a warm-up problem.

Fix a vertex v in the complete graph Kn , and randomly choose a spanning tree T . What is the
probability v is a leaf in T ?

Section 3 outlines a proof of the main result (Theorem 4), although we sweep several
details under the rug. We conclude with some related questions and a few exercises in
Section 4.

2. CAYLEY’S FORMULA AND A WARM-UP PROBLEM. Suppose your boss
gives you the following job: Find the cheapest way to connect 100 cities using tele-
phone wires.3 You know how much it costs to connect each pair of cities. Immediately,
you realize that your network needs to be connected, but cycles are unnecessary.

This is the standard minimum weight spanning tree problem for a graph, and it
has an interesting history. Two slightly different greedy algorithms solve this prob-
lem completely, Kruskal’s algorithm and Prim’s algorithm. As is often the case in
mathematics, however, the discoveries were initially made by others. In this case,
Czech mathematicians Otakar Borůvka (1926) and Vojtĕch Jarnı́k (1930) showed that
greedy algorithms always find the cheapest spanning trees in any graph. J. B. Kruskal
(1956) rediscovered Borůvka’s algorithm and R. C. Prim (1957) rediscovered Jarnı́k’s.
Kruskal and Prim were both working for Bell Labs, so the problem was not solely of
academic interest. See [4] for an account of the history of this problem.

Greedy algorithms are fast because they avoid backtracking. The greedy algorithm
does what you might guess; you choose the cheapest “legal” edge you can (where

2That’s nothing compared to the number of times we’ll encounter the letter e.
3Your boss thinks it’s 1953, evidently.
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“legal” means avoiding cycles), and repeat until you have a spanning tree. But you
would like to impress your boss (usually a good idea), so you decide to first tell her
how many potential solutions there are.

In 1889, Arthur Cayley published a beautiful, simple formula counting the number
of spanning trees in the complete graph Kn .

Theorem 1 (Cayley’s Theorem). The number of spanning trees of Kn is nn−2.

Cayley was not the first person to discover this formula; J. J. Sylvester published
an equivalent formula in 1857, and C. W. Borchardt published the formula in 1860.
Cayley acknowledged Borchardt’s work in his 1889 paper, but Cayley extended the
formula and phrased it in modern graph-theoretic terms.

Cayley’s formula tells us how hopeless it is to examine all possible spanning trees
for a large complete graph. For instance, if we wish to connect 100 cities with wires
using the architecture of a tree, it would be impossible to look at each of the 10098 pos-
sibilities. For reference, the number of atoms in the observable universe is estimated to
be approximately 1080. At minimum, your boss should give you extra time to complete
this project.4

There are several beautiful proofs of Cayley’s formula. Aigner and Ziegler highlight
three different proofs in their entertaining book [1], and Moon gives several distinct
proofs in [5]. One standard proof, attributed to Prüfer,5 establishes a bijection between
sequences of length n − 2 and spanning trees of Kn .

To get the sequence (called the Prüfer code) for a labeled tree, do the following.

1. Find the leaf with the greatest label (a vertex is a leaf if it touches just one edge.)

2. Write down the label of the vertex adjacent to your leaf, then remove that leaf
(pruning the tree).

3. Repeat until only two vertices remain.

The process is completely reversible, and every possible sequence of length n − 2
can occur. This requires proof, but it also gives us our bijection.

Since there are nn−2 such sequences, there are also nn−2 labeled trees on n vertices.

Exercise 1. Find a tree whose Prüfer code is your phone number.

Now notice that the number of times any label appears in the code is one less than
the degree of the corresponding vertex. For instance, in Figure 3, the vertex labeled 5
has degree 4, and the label 5 appears three times in the code. This observation leads to
our first connection with a calculus problem.

Question 2. Fix a vertex of Kn . What is the probability that the vertex is a leaf of a
randomly chosen spanning tree of Kn?

Solution. To find the number of spanning trees that have vertex 1 (say) as a leaf, we
simply count the number of Prüfer codes that do not use the label 1. We still need to
create a sequence of length n − 2, but now there are only n − 1 symbols available. So
we get (n − 1)n−2 spanning trees where vertex 1 is a leaf.

4Of course, the point of using the greedy algorithm is that you don’t need to look at all 10098 spanning
trees to find the cheapest one: The greedy algorithm produces the cheapest very rapidly. But you don’t need to
tell your boss that.

5You might think that Prüfer is the origin of the word proof in mathematics. You would be wrong.
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Figure 3. A spanning tree of K9 with Prüfer code 9577955

Since the total number of spanning trees is nn−2, we find the probability that vertex
1 is a leaf is

(
n − 1

n

)n−2

.

Then L’Hôpital’s rule (applied to the log of this expression) gives a limiting probability
of 1/e = 0.3678 . . . .

Most calculus texts give some of the historical background on L’Hôpital and his re-
lationship with the Bernoullis. Although the rule was discovered by Johann Bernoulli,
it is called L’Hôpital’s rule because of a “curious business arrangement” the two men
agreed upon. In fact, L’Hôpital acknowledged Bernoulli’s discovery of the rule, but
Bernoulli believed he did not receive sufficient credit.

As a final application of this procedure, here’s another homework problem.

Exercise 2. What is the limiting probability that neither vertices 1 nor 2 are leaves in
a randomly chosen spanning tree of Kn?

3. THE PROBABILITY OUR SUBTREE SPANS. We return to our main question:
What is the limiting probability that a randomly chosen subtree of Kn is a spanning
tree? To compute our probability, we will need to count the number of subtrees ak in
Kn with k vertices, for 1 ≤ k ≤ n. But this is easy.

• Choose k vertices in
(n

k

)
ways.

• Create a tree using these vertices in kk−2 ways (Cayley’s formula).

Putting these two steps together gives us the number of subtrees with k vertices:

ak =
(

n

k

)
kk−2.

Now we need to estimate the probability pn of picking a spanning tree:

pn = # spanning trees

total # of trees
= an

an + an−1 + · · · + a1
.

We know an = nn−2. To estimate this fraction, we will concentrate on the denom-
inator an + an−1 + · · · + a1. The key to estimating this sum is to look at the ratio of
consecutive terms. Assuming 1 ≤ k < n, a little algebra gives us

ak+1

ak
=

( n
k+1

)
(k + 1)k−1(n
k

)
kk−2

= (n − k)

(
k + 1

k

)k−2

.
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If k is reasonably large, then we can estimate
(

k+1
k

)k−2
, again using L’Hôpital’s

rule. (This particular limit is important because it gives the effective interest rate for
continuous compounding.) Then limk→∞

(
k+1

k

)k−2 = e ≈ 2.71828. If you’re keeping
score, this is our second encounter with e.

Although these terms approach e, they converge rather slowly. Here are the first 10
values:

k

(
k + 1

k

)k−2

1 0.5
2 1.

3 1.33333
4 1.5625
5 1.728
6 1.85262
7 1.94966
8 2.02729
9 2.09075
10 2.14359.

We may (somewhat safely) conclude the following.

Proposition 2. For k < n, with k sufficiently large, we have ak+1 ≈ e(n − k)ak .

Applying Proposition 2 repeatedly gives us a recursive way to compare the size of
an−k with an . In particular, we see

an ≈ e · 1 · an−1 ≈ e2 · 1 · 2 · an−2 ≈ · · · ≈ ekk!an−k .

We summarize this relationship with a proposition.

Proposition 3. Let am be the number of subtrees of Kn that have exactly m vertices,
for 1 ≤ m ≤ n. Then an−k ≈ an

k!ek .

We’re almost done. We can now use Proposition 3 to estimate
∑n

k=1 ak :

(an + an−1 + · · · + a1) ≈ an

(
1 + (1/e) + (1/e)2

2!
+ · · · + (1/e)k

k!
+ · · ·

)
.

This sum should remind you of a very familiar Taylor series. The series ex =
∞∑

k=0

xk

k!

is probably the most important power series you encounter in calculus. If we evaluate6

at x = (1/e), we get

an + an−1 + · · · + a1 ≈ an

(
e(1/e)

)
.

Then the limiting probability is

pn ≈ an

ane(1/e)
= (1/e)(1/e) = 0.692201 . . . .

Hence, we have the answer to our main question.
6This is our last encounter with e, and note that e appears twice here: in the Taylor series and the evaluation.
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Theorem 4. Choose a subtree at random from the family of all subtrees of the com-
plete graph Kn. Then the probability that the subtree is a spanning tree approaches
(1/e)(1/e) = 0.692201 . . . as n → ∞.

Truth in advertising note: Our proof isn’t a complete proof. We’ve omitted the de-
tails about how accurate the approximations are, but they do work out. See [2] for the
missing pieces.

4. MORE QUESTIONS, ANSWERS, AND SURPRISES. The choice to use a
uniform probability is somewhat arbitrary. What if we change the rules for picking
subtrees? Instead of each subtree having an equal chance of being chosen (so the
probability of choosing a subtree with only one edge is the same as the probability of
choosing a spanning tree, for example), a natural choice is to weight the probability by
the number of edges the tree contains. In this scenario, what happens to the probability
of selecting a spanning tree?

Question 3. Suppose we pick a tree, at random, among all the subtrees (spanning
and nonspanning) in a complete graph, where the probability of choosing a subtree is
proportional to the number of edges in the subtree. What are the chances it spans?

Before giving the answer, we give a famous example to illustrate the difference
between these two probability measures.

All schools report “average class size.” There are two popular ways to do this.

1. First choose a student at random, then ask her to randomly choose one of her
classes.

2. List all classes taught at the school, then randomly choose one of them.

Colleges and universities typically measure “average class size” using the latter
technique. Why? It turns out that this always gives a lower average! This was first
noticed by Feld and Grofman in 1977 in [3] in an article in an education journal. This
curious fact also explains why your Facebook friends seem to have more friends than
you do, and why almost everyone believes they are one of the weakest people at the
gym.

In our application, think of the classes as the subtrees and edges as the students.
Although we are not concerned with the average size of a subtree here, it’s easy to use
Theorem 4 to show the “average” subtree of Kn is a spanning tree.

Returning to Question 3, we call our unweighted probabilities pn and our weighted
versions qn . As expected, weighting subtrees by their size increases the chances of
selecting a spanning tree, i.e., pn < qn . Table 2 gives data for these values when n ≤
100.

The rather surprising fact is that in the limit, weighting doesn’t matter: the limiting
probabilities are the same!

Theorem 5. Let pn be the uniform, unweighted probability of choosing a spanning
tree of Kn, and let qn be the weighted probability of choosing a spanning tree (with
weight proportional to the number of edges of the subtree). Then

lim
n→∞

pn = lim
n→∞

qn = e−e−1 = 0.692201 . . . .
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Table 2. Probabilities of selecting a spanning tree using uniform and weighted probabilities.

n pn qn

10 0.617473 0.652736
20 0.657876 0.672725
30 0.669904 0.679294
40 0.675689 0.682552
50 0.679090 0.684497
60 0.681329 0.685789
70 0.682915 0.686711
80 0.684097 0.687401
90 0.685012 0.687936
100 0.685741 0.688365

Proof sketch. As with pn , we can get a simple expression for qn:

qn = nan

nan + (n − 1)an−1 + · · · + 2a2 + a1
.

Let bk = kak . Then, arguing as we did for pn, we get

bn−k ≈
(

n − k

n

)
bn

k!ek
.

Then
∞∑

k=0

bn−k ≈ bne1/e

(
1 − 1

en

)
, which gives qn → e−e−1

.

Here are two more things for you to try at home.

Exercise 3. Prove the fact that average class size is greater when reported by students
than it is when reported by the registrar.

Exercise 4. As a final challenge, try computing the limiting probability for the com-
plete bipartite graph Kn,n . Here are the data for values of n ≤ 1000.

n pn

50 0.475495
100 0.477349
150 0.477953
200 0.478253
250 0.478432
300 0.478551
350 0.478636
400 0.478699
450 0.478749
500 0.478788

1000 0.478965

Can you guess the limit? It might be useful to note that
(
(1/e)(1/e)

)2 ≈ 0.479142.

[Hint: The number of spanning trees in the complete bipartite graph Kr,s is r s−1sr−1.
Let tk be the number of subtrees of Kn,n avoiding exactly k vertices. Then show the
ratio tk/t0 ≈ 2k

ek k!
when n is large.]
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