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1. Introduction

The connections between algebra and finite geometry are very old, with theorems
about configurations of points dating to ancient Greece. In these notes, we will put
a matroid theoretic spin on these results, with matroid representations playing the
central role.

Recall the definition of a matroid via independent sets I.

Definition 1.1. Let E be a finite set and let I be a family of subsets of E. Then
the family I forms the independent sets of a matroid M if:

(I1) I 6= ∅
(I2) If J ∈ I and I ⊆ J , then I ∈ I
(I3) If I, J ∈ I with |I| < |J |, then there is some element x ∈ J − I with

I ∪ {x} ∈ I

We begin with an example to show how a finite collection of vectors can be used
to create a picture of the matroid.

Example 1.2. Let N be the following 3× 5 matrix:

N =


a b c d e

0 0 0 1 1
0 1 1 0 0
1 1 0 1 0


Our immediate goal is to produce a configuration that represents the linear depen-
dences of the columns of N . We use the following procedure:

• Each column vector will be represented by a point;
• If three vectors u, v and w are linearly dependent, then the corresponding

three points will be collinear.

Notice that columns a, b and c are linearly dependent. That means the corre-
sponding three points will be collinear. This process shows that the matroid M
corresponding to the matrix N is what we have depicted in Fig. 1.

You can view the picture as a dimension reducing procedure (see Fig. 2): The
rank of the matroid is 3; this is simply the size of the largest independent set.
This is (conveniently) also the rank of the matrix. But the picture in Figure 1 is
2-dimensional, even though the vectors live in R3. This works generally for rank 3
matrices: Draw the vectors and find a plane in free position that meets each of the
lines determined by the vectors. The picture of the matroid (which we’ll simply
call “the matroid”) will then correspond to the points of intersection of the lines
with the distinguished plane.

There are three key questions to consider:
1
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Figure 1. The matroid corresponding to the matrix N .

(1, 0, 0)

(0, 1, 1)

(0, 1, 0)

(1, 0, 1)
(0, 0, 1)

(1, 0, 0)

(0, 1, 1)

(0, 1, 0)

(1, 0, 1)
(0, 0, 1)

Figure 2. Projecting the column vectors of N onto the plane
x+ y + z = 1.

Q1. Does any configuration of points and lines give a matroid?
Q2. Does every subset of vectors give rise to a matroid, i.e., do the subsets of

linearly independent column vectors of a matrix satisfy (I1), (I2) and (I3)?
Q3. Does every matroid arise as the linear dependences of a collection of vectors?

The first question is easy to deal with, depending on what we mean by “config-
uration.”

Proposition 1.3. A finite set of points and lines in the plane is a matroid if and
only if any pair of lines meet in at most one point.

Exercise 1. Prove the proposition. (Hint: For one direction: If two lines meet in
two (or more) points, there must be four points a, b, c and d satisfying: a, b, c are
collinear, a, b, d are collinear, but a, b, c, d are not all on one line. Then apply (I3)
to appropriate independent sets I and J to get a contradiction.)

The answer to the second question is yes - indeed, the name “matroid” is derived
from the word “ matrix,” and a matroid can be thought of as an abstraction of linear
dependence.

Theorem 1.4. Let E be a finite set of vectors in a vector space V , and let I be those
subsets of E that are linearly independent. Then I is the family of independent sets
of a matroid.
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We don’t include a proof of Theorem 1.4 here, but the interested reader should
try to use the fundamental properties of matrix rank to prove the theorem as an
exercise.

The answer to Q3 is no - we can construct matroids that do not arise from column
dependences for any matrix (see Example 2.2). This is extremely important, and
it lies at the heart of the subject. If every matroid came from a matrix, then all of
matroid theory would be subsumed under linear algebra.

We conclude the introduction with another example, reversing the procedure
from Example 1.2.

a

f

b g c

d

e

h

Figure 3. The Matroid M√−3.

Example 1.5. (Brylawski and Kelly [2]) Let M be the matroid pictured in Fig. 3,
where the points efh are collinear. You can check this is a matroid by Prop. 1.3.
We will see the geometry is intricately connected to an algebraic condition. Our
goal in this example is to create a matrix whose column (linear) dependences match
the matroid dependences. We assume the following (all of which can be verified):

• The first non-zero entry in every column of N can be taken to be 1.
• Since r(M) = 3, we may take N to be a 3× 8 matrix.
• Since abc is a basis, we may take the first three columns of N to be an

identity matrix.
• Since d is not on any of the lines determined by a, b and c, we can also take
d to be the column vector [1, 1, 1]T .

Here’s what we have so far:

A =


a b c d ...

1 0 0 1
0 1 0 1 · · ·
0 0 1 1

.
We need to determine the coordinates for the remaining points in M . This will

have the flavor of a puzzle.

• Since e is on the line determined by a and c, we know e is a linear combi-
nation of [1, 0, 0]T and [0, 0, 1]T , so the second coordinate is 0.
• Since e is also on the line through b and d, the first and last coordinates of
e must be equal.



4 GARY GORDON

Putting these together gives e = [1, 0, 1]T . Continuing in this way, we determine
the coordinates for the remaining points. At each stage, we use the coordinates of
the points already assigned to determine restrictions on the coordinates of point in
question.

• f is on the line through a and b, so f = [1, x, 0]T , where x is temporarily
undetermined.
• g is on lines bc and df . The first of these lines forces g = [0, 1, y]T , where y

is undetermined. The line dfg forces the determinant∣∣∣∣∣∣
1 1 0
1 x 1
1 0 y

∣∣∣∣∣∣ = 0,

so xy + 1− y = 0. This forces y = 1
1−x .

• h is the last point, and it’s on three lines we can use to determine its
coordinates: agh, cdh and efh. The line cdh forces the first two coordinates
of h to be equal, so we can assume h = [1, 1, z].

A =


a b c d e f g h

1 0 0 1 1 1 0 1
0 1 0 1 0 x 1 1
0 0 1 1 1 0 1

1−x z

.
We have 2 more dependences to consider: agh and efh. One of these will
determine the value of z, and the other will force x to satisfy some relation.
First, for agh, we get the determinant∣∣∣∣∣∣

1 0 1
0 1 1
0 1

1−x z

∣∣∣∣∣∣ = 0,

so z = 1
1−x . Finally, for efh, we have the determinant∣∣∣∣∣∣

1 1 1
0 x 1
1 0 1

1−x

∣∣∣∣∣∣ = 0,

which gives x2 − x+ 1 = 0.

To sum up, at each stage of this process, we made the most general choice for
coordinates possible (under mild assumptions). But this forced us to choose a value
for x that satisfies the quadratic equation x2 − x + 1 = 0. Solving this equation
forces

√
−3 into our field. Thus, we may assert the following:

The matroid M is representable by the columns of a matrix over a field F iff F
contains a root of the equation x2 − x+ 1.

2. Non-representable matroids

Given a matroid M and a field F , we are interested in determining whether M
can be represented by the column vectors of a matrix with entries in the field F .
More precisely, we define matroid representability as follows.

Definition 2.1. A matroid M is representable over a field F if there is a matrix
N with entries taken from F so that:



MATROID REPRESENTATION, GEOMETRY AND MATRICES 5

• There is a bijection between the points of M and the columns of N , and
• A subset of points of M is independent if and only if the corresponding

columns of N are linearly independent.

Question Q3 asks whether every matroid arises from a matrix, i.e., is every
matroid representable over some field? The answer is no, and the next example
proves this using a classic theorem from finite geometry.

Example 2.2. The configuration pictured on the left in Figure 4 is called the
Pappus configuration. Its discovery dates to Pappus of Alexandria (c. 320 A.D.).
The configuration is constructed as follows:

• Start with two 3-point lines abc and def .
• Now form the point g as the intersection of the two lines ae and bd, i.e.,
g = ae ∩ bd.
• Continue to form the points h = af ∩ cd and i = bf ∩ ce.
• Then the three points g, h and i must be collinear.

cba

d

e
f

g
h

i

cba

d
e

f

g
h

i

Figure 4. Left: The Pappus configuration. Right: The non-
Pappus matroid. The points g, h and i must be collinear if M
is representable over a field.

Now let M be the matroid depicted on the right of Fig. 4. This matroid is called
the non-Pappus matroid, and g, h and i are not collinear in M . This is the key to
next result.

Theorem 2.3. The non-Pappus matroid is not representable over any field.

Proof sketch. As in Example 1.5, we attempt to find coordinates for the 9 points
of M . This gives the matrix:

A =


a c d f h b e g i

1 0 0 1 0 1 1 1 1
0 1 0 1 1 x 1 x z
0 0 1 1 1 0 y xy y

,
where x and y are indeterminates and z will be determined. Note the order we list
the columns - this ordering will make our argument a little easier computationally.
We first comment on the xy term appearing in the last coordinate of column g.
First, since g is on the line bd, we know g must have first two coordinates in the
ratio 1 : x, so g = [1, x, w]T , and we still need to determine w. Since g is also on the
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line ae, there is some linear combination of columns a and e that produce column
g:

α[1, 0, 0]T + β[1, 1, y]T = [1, x, w]T .

We get α = 1− x and β = x; this gives w = xy.
For column i, a similar argument gives i = [1, z, y]T , and z is determined from

the linear combination involving bf :

α[1, 1, 1]T + β[1, x, 0]T = [1, z, y]T .

Choosing α = y and β = 1− y produces z = x+ y− yx. Note: we are being careful
about always multiplying on the left; this will be important in the next paragraph.

Now the points g, h and i will be linearly dependent precisely when the determi-
nant of the 3× 3 submatrix formed by these three columns is 0.∣∣∣∣∣∣

0 1 1
1 x x+ y − yx
1 xy y

∣∣∣∣∣∣ = 0.

But this determinant is xy − yx. Thus, the points g, h and i are collinear pre-
cisely when xy = yx. But we are working over a field (where multiplication is
commutative), so this contradiction completes the proof.

Exercise 2. (Ingleton [5]) The proof of Theorem 2.3 shows M is representable over
a division ring with two non-commuting indeterminates. Let M ′ be the matroid
obtained from M by adding the line beh to the lines of M . Show M ′ is not repre-
sentable over any field or division ring. (Hint: This additional dependence forces
x = y.)

3. Characteristic sets

Whether the matroid M is representable over a field F often depends on F , or
the field characteristic χ(F ). We begin this section with two important examples,
the Fano and non-Fano matroids.

cb

a

d
e f

g

Figure 5. The Fano plane.

Example 3.1. Let F7 be the matroid pictured in Fig. 5. This matroid is the Fano
plane, and Proposition 1.3 tells us this is indeed a matroid - no two lines meet in
more than one point. In fact, every pair of lines meet in exactly one point, where
the line efg is represented in the figure by a circle. The Fano plane has lots of
very nice properties. For instance, every point is on exactly three 3-point lines and
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every line has exactly three points. This point-line symmetry is a characteristic of
projective planes; in fact, the Fano plane is the projective geometry PG(2, 2). We
represent M with the following matrix.


a b c d e f g

1 0 0 1 1 1 0
0 1 0 1 1 0 1
0 0 1 1 0 1 1


Now the entries in this matrix are forced in the same way the entries in previous

examples were forced. Thus, the points e, f and g will be dependent if and only if
the 3× 3 determinant formed by these columns is 0. But

1 1 0
1 0 1
0 1 1

= −2.

Thus, efg are collinear precisely when 2 = 0, i.e., χ(F ) = 2.

Note that we can remove the line efg to form a new matroid F ′7, the non-Fano
matroid pictured in Fig. 6. This matroid is representable over fields where 2 6= 0,
i.e., fields with χ(F ) 6= 2.

cb

a

d
e f

g

Figure 6. The non-Fano plane.

We summarize with a theorem.

Theorem 3.2. Let F7 be the Fano plane and F ′7 be the non-Fano planes. Then F7

is representable over a field if and only if χ(F ) = 2, and F ′7 is representable over
F if and only if χ(F ) 6= 2.

This example motivates the next definition.

Definition 3.3. The characteristic set χ(M) of a matroid M is the subset of field
characteristics over which M is representable.

Note χ(M) ⊆ P := {0, 2, 3, 5, 7, 11, . . . } for any matroid M . Theorem 3.2 implies
χ(F7) = {2} and χ(F ′7) = P−{2}. Theorem 2.3 gives χ(M) = ∅ for the non-Pappus
matroid M .

Exercise 3. (1) Show the uniform matroid of rank r on n points Ur,n is rep-
resentable over all characteristics, i.e., χ(Ur,n) = P .
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(2) Let M be the matroid of Example 1.5. Show χ(M) = P.

An important question concerning characteristic sets was answered in the 1970’s
and early 1980’s.

Q4. Which subsets of P can occur as the characteristic set of a matroid?

Representations over characteristic 0 play an important role in answering this
question.

Theorem 3.4. Let χ(M) be the characteristic set of the matroid M .

(1) If 0 ∈ χ(M), then M is representable over all sufficiently large character-
istics, i.e., χ(M) is cofinite.

(2) If χ(M) is infinite, then 0 ∈ χ(M).

Part (a) of Theorem 3.4 was proven in 1957 by Rado [8] using the Nullstellensatz.
Part (b) was first established by Vamos [13] in 1970. It follows (almost) immediately
from the compactness theorem in mathematical logic.

Putting parts (a) and (b) together gives the following corollary:

Corollary 3.5. The characteristic set of a matroid M is either finite or cofinite.

It turns out every finite subset of characteristics (necessarily excluding 0) can
occur as the characteristic set of some matroid (Kahn [6]), and the same is true for
cofinite subsets (Reid [9]). Kahn constructs examples using classical tools in pro-
jective geometry, especially cross-ratios. Reid uses geometric techniques to create
algebraic conditions on the elements of the field, the von Staudt calculus.

4. Matroids representable over a given field

Rather than concentrating on the characteristic of the field a matroid M is rep-
resented over, it is often of interest to focus on the specific field. For instance,
matroids representable over the 2-element field GF (2) are especially easy to coor-
dinatize; since every entry is 0 or 1, these matroids are uniquely representable. It
turns out the same thing is true for GF (3), the three element field. A matroid rep-
resentable over GF (2) is called binary; GF (3)-representable matroids are ternary.
A matroid representable over all fields is regular or unimodular. (A matrix is uni-
modular if every subdeterminant is 0, 1 or −1. Unimodular matroids can always be
represented by such matrices.)

Exercise 4. (1) Show the uniform matroid U2,n is representable over a field
F if and only if |F | > n − 2. Thus, U2,3 is regular, U2,4 is representable
over all fields except GF (2), and so on.

(2) Show the matroid M from Example 1.5 is representable over a field F if
and only if z2 = −3 has a solution in the field F . For prime fields, this is
true precisely when p = 3 or p ≡ 1 (mod 3).

A matroid N is a minor of a matroid M if you can obtain an isomorphic copy
of N by deleting and contracting points of M . There are many characterizations
of binary matroids - a rather impressive list of such characterizations appears in
Oxley’s text [7] in the chapter on binary matroids. The most important such
characterization is the following, due to Tutte [12]:

Theorem 4.1. A matroid is binary if and only if it has no minor isomorphic to
the 4-point line U2,4.
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Exercise 5. We have shown the following matroids are not binary: the matroid M
in Example 1.5, the non-Fano plane and the non-Pappus configuration. For each
of these matroids, find a U2,4 minor.

For ternary matroids, the list of excluded minors is also known. The following
theorem was first proven by Reid in the early 1970’s, but the first published proofs
were [1] and [11].

Theorem 4.2. A matroid is ternary if and only if it has no minor isomorphic to
one of the following 4 matroids: F7, F

∗
7 , U2,5, U3,5.

Exercise 6. Show the non-Pappus matroid is not ternary by finding one of the
excluded minors listed in Theorem 4.2.

Several important questions are related to representations over specific fields.

Q5. If M is binary, then what other fields (with characteristic 6= 2) might M
be representable over?

Q6. If M is ternary, then what other fields might M be representable over?
Q7. (Rota’s conjecture - 1971) Can the class of matroids representable over a

given finite field F be characterized by a finite list of minimal excluded or
forbidden minors?

Q8. (Infinite antichains) Related to Rota’s conjecture, but logically distinct: If
{M1,M2, . . . } is an infinite collection of matroids all representable over a
finite field F , then must some Mi be a minor of some other Mj?

Q5 was answered by Tutte [12].

Theorem 4.3. Suppose M is binary. Then either M is representable over all
fields (i.e., M is regular), or χ(M) = {2}, i.e., M is representable only over fields
of characteristic 2.

Since regular matroids can be represented by totally unimodular matrices, i.e.,
matrices all of whose subdeterminants are 0, 1 or −1, Tutte’s theorem can be
thought of as a characterization of regular matroids.

Whittle [14, 15] resolved Q6 in 1995. We state the characteristic set implications
of his results.

Theorem 4.4. Suppose M is ternary. Then exactly one of the following holds:

(1) χ(M) = P .
(2) χ(M) = P − {2}.
(3) χ(M) = {3}.

In fact, Whittle proved much more. For q = 2, 3, 4, 5, 7 and 8, he characterized
the class of matroids representable over GF (3) and GF (q). For q = 2, this is the
class of regular matroids; this follows from Theorem 4.3. Whittle introduced the
classes of 6

√
1-matroids, dyadic matroids, and near-regular matroids, all of which

involve representing M by matrices whose determinants are restricted to a small
number of values. Then these classes can be combined in various ways to produce
the desired representation classes.

Rota’s conjecture Q7 remains open. The entire collection of excluded minors for
representation over GF (q) is only known for q = 2, 3 and 4 (the minors for GF (4)
were obtained by Geelen, Gerards and Kapor in [3]). In fact, if Ex(q) is the set of
(minimal) excluded minors for representation over GF (q), then it is not currently
known if Ex(q) is finite for any q ≥ 5.
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Question Q8 is intriguing because it is closely related to the very successful graph
minors project of Robertson and Seymour [10]. Among many other important
results, they prove Wagner’s long standing conjecture that, among any infinite
collection of graphs, one of the graphs must be a minor of another. Thus, Q8 is
true for graphic matroids - there is no infinite antichain in the partially ordered set
of all graphs (partially ordered by minor relation). Important and deep extensions
of this work to binary matroids appear in [4].

Acknowledgement We thank Liz McMahon for her helpful comments on a
draft of this manuscript.
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