
Visualizing Generalized 3x+1 Function Dynamics 
Jeffrey P. Dumonta, Clifford A. Reiterb,* 

(preprint) 
a 5B Hedgerow Drive, Hudson, NH 03051, USA 

b Department of Mathematics, Lafayette College, Easton, PA 18042, USA 
 
Abstract 
The function that results in 3x+1 for odd integers x and half of x for even x has led to 
intriguing questions. The 3x+1 conjecture states that iteration of that function on positive 
integers eventually results in the value 1. We investigate many generalizations of that 
function to the complex domain and visualize the resulting dynamics using escape time, 
stopping time, and basin of attraction images. We will see beautiful, rich dynamics 
consistent with the conjecture. We see that some generalizations have relatively simple 
real dynamics, which may make them useful for analysis and we see a complex 
generalization where sequences of stable egg shaped regions appear in coefficient 
stopping time images that suggests remarkable patterns for such stopping time. 
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1. Introduction 
The 3x+1 problem concerns questions about the iteration of a deceptively simple function 
on the positive integers. The 3x+1 function is a delightful function to introduce in a 
recreational mathematics context since there are easy to state, but difficult, unsolved 
conjectures about the behavior of the function. The 3x+1 function has been known by 
many names: the Hailstone function, the Collatz function, the Syracuse function and 
others. While the main conjectures regarding the function are unsolved, many results are 
known. We refer readers interested in the history and theory of the function to the classic 
expository paper [1] and the book [2].  

In this paper, our goal is create and visualize the dynamics of suitable 
generalizations of the 3x+1 function. We will see that there are multitudes of interesting 
ways to generalize the function to a complex domain where we will show the dynamics 
in a several ways. Escape time is the most commonly used technique for illustrating the 
behavior of complex valued maps such as those used to create the classic Mandelbrot and 
Julia sets. Basins of attraction are often used to observe the behavior of convergent 
iterative methods, such as Newton's method. Such images make apparent regions with 
similar long term behavior which gives insight into the dynamics of the function [3-7]. 
We will create images of both escape time and basins of attraction for generalizations of 
the 3x+1 function. However, we will also consider stopping time images since stopping 
time has been of great interest to people studying the 3x+1 function. There are three well-
established senses of stopping time that we will consider, generalize, and visualize. 
 The 3x+1 function, which we will denote as T, is most elegantly defined on a 
positive integer x as follows. 
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We can use that definition of T to compute T(5)=8, 
T(8)=4, T(4)=2, T(2)=1, and T(1)=2. Thus, iteration of T 
on 5 leads to the repeating cycle (1,2).  

We denote the kth iterate of T on x by )(T xk . The 
3x+1 conjecture is that all positive integers eventually 
reach the cycle (1,2) upon iteration. More formally, we 
have the following. 

The 3x+1 Conjecture. For all positive integers x 
there is a nonnegative integer k so that 1)(T =xk . 

As another example, consider iteration of T beginning on 
27. In Table 1 we see that after 70 iterations, 1 is 
obtained, but along the way, 4616)27(T45 = , so we see 
large intermediate values may occur. 
 
2. Two Fundamental Generalizations 
We will generalize the 3x+1 function in a manner that is 
consistent with its behavior on the positive integers but 
so that the generalizations are well defined for complex 
arguments. In this section we introduce two fundamental 
generalizations. In later sections we will see that there 
are multitudes of other interesting generalizations 
beyond these two.  

In the paper of Terras [8] it was noted that the 
3x+1 function T(x) can be rewritten in the form 

2
)(mod3)T( 2

)(mod2 xxx
x +=       (2) 

where )(mod2 x  denotes a function that is 0 on the even integers and 1 on the odd 
integers. This form for T gives rise to the remainder representation for T, which plays an 
important role in the theory of the 3x+1 function. We will discuss this representation in 
the next section.  

If we have any complex valued function which is 0 on the even integers and 1 on 
the odd integers, then that will give a generalization of )(mod2 x . Then, using Equation 
(2) we in turn get a generalization of T(x) to the complex plane. Our choice for the 
modulo 2 function for our fundamental generalizations is the following. 

⎟
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⎛ π=
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2
xx         (3) 

This function has smooth oscillations between 0 and 1 on the real line, it is well defined 
for complex arguments, and it has complex derivatives of all orders.  

   k  )27(Tk   )27(kλ  
 0   27  1 
 1   41  1.5 
 2   62  2.25 
 3   31  1.125 
 4   47  1.6875 
 M 
43 2051  70.2213 
44 3077  105.332 
45 4616  157.998 
46 2308  78.999 
47 1154  39.4995 
 M 
57   92  3.12447 
58   46  1.56224 
59   23  0.78111 
60   35  1.17168 
61   53  1.75752 
 M 
68    4  0.12357 
69    2  0.06178 
70    1  0.03089 
71    2  0.04634 
72    1  0.02317 
 
Table 1. Some values of  

)27(Tk  and )27(kλ . 
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Secondly, Chamberland [2,9] interpolates the two cases in the Equation (1) 
definition of T(x) using sine and cosine squared. Using our notation for )(mod2 x , we can 
write the function he gives as follows. 

( ) )(mod
2

13)(mod1
2

)C( 22 xxxxx ++−=     (4) 

Notice it matches the definition in Equation (1) for even and odd integers and it is smooth 
in the complex plane. Also, using Equation (3), this simplifies to 

( ))cos()21(41
4
1)( xxxxC π+−+= . 

Thus T(x) and C(x), as defined in Equations (2)-(4) are two generalizations of the 
3x+1 function to the complex plane. When viewing the 3x+1 function on integers, we can 
use either C(x) or T(x) since they are identical on the integers. In fact, their MacLaurin 
series agree to degree 3 and all even degree coefficients are the same. However, they are 
different functions and while there are similarities, we will see their dynamics are 
different. 

While we concentrate on T(x) and C(x) when we introduce the visualization 
methods, we will consider other generalizations later. We will see that the dynamics of 
T(x) is somewhat simpler than those for C(x). In Section 7 we will consider several 
interesting alternative definitions for )(mod2 x  and in Section 8 we consider another 
smooth generalization, the winding function W(x). Although it is complex along the real 
axis, images of its coefficient stopping time are especially intriguing. In Section 9 we will 
consider families of variants of T and C with the constants replaced by parameters.  
 
3. Three Senses of Stopping Time 
There are three types of "stopping time" that have been of interest to those studying the 
3x+1 function [1,2,8]. Following the terminology in [1,8], these are called the total 
stopping time, the stopping time, and the coefficient stopping time. All three are 
interesting and important and we will visualize the behavior of each.  

If the 3x+1 conjecture is true, then eventually each positive integer n reaches 1 
upon iteration of T. It is natural to ask "how long does it take to reach 1?". The answer is 
called the "total stopping time". More formally, the total stopping time for a positive 
integer n is defined to be the smallest nonnegative integer k such that 1)(T =nk  and it is 
defined to be infinity if there is no such k. Thus, the 3x+1 conjecture can be rephrased as 
the total stopping time conjecture: "for all positive integers, the total stopping time is 
finite".  
 We can generalize the total stopping time to complex x. However, we lose the 
connection with the 3x+1 conjecture and computational difficulties arise. We lose the 
connection with the 3x+1 conjecture because some non-positive integers are known never 
to reach 1. That can be seen since 0 is a fixed point. There are attractive negative cycles 
and we will see non-integer cycles too. We will consider such cycles in Section 6. If we 
"define" the total stopping time for T on complex x to be the smallest nonnegative integer 
k such that 1)(T =xk  and infinity if there is no such k, we run into computational 
problems since when we do computations with finite precision complex numbers, exact 
tests of "equals 1" are not practical and are overly sensitive to roundoff. Therefore, we 
use "near 1", up to fuzz of about 10-14, as our test. While the choice of fuzz is simply the 
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default used by our programming language, since 1 is part of an attractive cycle, we 
expect the qualitative behavior to be independent of the choice of fuzz. Likewise, we 
"define" the total stopping time for C on x to be the smallest nonnegative integer k such 
that )(C xk  is near 1 and infinity if there is no such k. 
 Next we define plain stopping time (without an adjective like total). The stopping 
time for a positive integer n is defined to be the smallest nonnegative integer k such that 

nnk <)(T  and the stopping time is defined to be infinity if there is no such k. Of course, 
if the stopping time is finite for the integers 2≥n , then the 3x+1 conjecture would be 
true, since repeatedly reducing the size of the eventual iterates would lead to a decreasing 
subsequence and hence would eventually lead to 1. Conversely, if the 3x+1 conjecture is 
true, each integer 2≥n  eventually reaches 1, which is smaller than n, and hence has 
finite stopping time. Therefore, the 3x+1 conjecture is equivalent to the finite stopping 
time conjecture: "all integers 2≥n have finite stopping time". Remarkably, while little is 
known about the total stopping time, quite a lot is known about the stopping time [1,2,8].  

It is natural to define the stopping time for T on complex x to be the smallest 
nonnegative integer k such that xxk <)(T  and define the stopping time to be infinity if 
there is no such k. A similar definition can be made for the stopping time for C on 
complex x. Testing the inequality for stopping time is not as computationally troublesome 
as testing "equals 1".  Thus, stopping time has advantages over the total stopping time for 
computational, as well as theoretic reasons. 
 The third sense of stopping time is the coefficient stopping time. Before we define 
it, we state the remainder representation theorem. Let n be a positive integer and define 
the parity function, )(nzk , the coefficient function )(nkλ , and the remainder function 

)(nkρ  as follows. 
))((Tmod)( 2 nnz k

k = ,       (5) 
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Theorem (Terras). Let n be a positive integer and )(nzk , )(nkλ , and )(nkρ  be defined as 
above, then  

)()()(T nnnn kk
k ρ+λ= .              (8) 

 
The theorem can be shown by induction along with using the fundamental formula for T 
given in Equation (2). Since 0)( >ρ nk , it is clear that if nnk <)(T  then it must be true 
that 1)( <λ nk  (but there is no obvious reason why the converse would hold).  

The coefficient stopping time for n is defined to be the smallest nonnegative 
integer k such that 1)( <λ nk  and the coefficient stopping time is infinity if there is no 
such k. The above remark implies that the coefficient stopping time is less than or equal 
to the stopping time. Remarkably, it is conjectured that they are equal. That is, the 
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coefficient stopping time conjecture states that "for all integers 2≥n , the stopping time 
is the same as the coefficient stopping time". The coefficient stopping time can be 
extended to complex arguments; however, we defer that until Section 5. 

Consider the three stopping times for 27=n . Referring to Table 1, we see that 
1)27(T70 =  and since this is the first time 1 occurs, the total stopping time of 27 is 70. 

Also notice 23)27(T59 =  and this is the first time an iterate drops below 27, hence the 
stopping time of 27 is 59. Lastly, notice 78111.0)27(59 =λ  and this is the first time that 

)27(kλ  is below 1, hence the coefficient stopping time of 27 is 59 which is the same as 
the stopping time.  
 
4. Visualizing Escape and Stopping Time for T(x) and C(x) 
In Section 2 we saw that T(x) and C(x) were smooth generalizations of the 3x+1 function 
to the complex plane. Since these functions involve )(mod2 x , which involves the sine, 
these functions grow exponentially in the imaginary direction. In fact, T is doubly 
exponential. Thus, we expect iteration of T and C to yield overflow away from the real 
axis. However, the 3x+1 conjecture being true would imply that all positive integers are 
attracted to the cycle (1,2), and hence we expect iterates to remain finite near positive 
integers. Thus, in images of escape time and stopping time, we see how those conflicting 
properties resolve themselves. Escape time images use colors to show how quickly the 
computations get huge. In contrast, stopping time and total stopping time images show 
how long it takes for the behavior to be good (reduced in magnitude or near 1, 
respectively).  

Figure 1 shows escape time, stopping time and total stopping time for T(x). Each 
image in those figures corresponds to the portion of the complex plane with 

6)Re(6 ≤≤− x  and 2)Im(2 ≤≤− x . The hue of each pixel corresponds to different 
escape or stopping times for the corresponding complex number. Time equaling 1 
corresponds to red, 2 to orange, 3 to yellow, and so on until 11 is used for magenta. That 
color sequence is then recycled with slightly reduced intensities until time 254, which is 
the maximal time we computed. In the escape time images, black corresponds to points 
that do not escape where escape is defined by magnitude exceeding 1010 . In the stopping 
time images, white corresponds to points that exceeded machine precision while black 
corresponds to points that remained bounded, but which never satisfied the stopping 
condition. 
  Notice that the escape time image, shown at the top of Figure 1, shows black on 
the real axis where the integers appear. The red and orange away from the real axis 
correspond to rapidly growing computations. However, notice the rich fractal structure of 
the black regions. 

On the other hand, the stopping time image for T(x), shown in the center of Figure 
1, is white away from the real axis, due to blow up. It is red near the even integers, since 
the stopping time is 1 there (except at an isolated pixel at 0). In between, we see white 
near the axis intertwined with bounded behavior (some other hue) with rich structure near 
the odd integers. 

As expected, the total stopping time image, shown at the bottom of Figure 1, is 
white where the escape time was not black. The only large regions that are not black or 
white appear along the positive real axis. It is not surprising that along the negative real 
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axis there is black since there are attractive negative fixed points and cycles. Note that 
stopping time is far more "stable" than the total stopping time. Observe the red stopping 
time regions overlap considerable white and black in the total stopping time images. This 
corresponds to points that get smaller on a first iteration, but blow up or stay bounded 
(but do not get near 1) under function iteration. 

Figure 2 shows escape time, stopping time and total stopping time for C(x). The 
comments are quite similar to those for Figure 1, but the shape of the fractal regions are 
different and the regions where the stopping time has a finite value seem to be rounder 
and smaller than similar regions for T(x). 

Figure 3 shows zooms centered on 27 for the stopping time of T(x). The images in 
that figure have width m−×103 , with 2,1,0=m  for the images on the left side and with 

6,5,4=m  for the images on the right side. Since the stopping time of 27 is 59, we expect 
that a zoom centered on 27 would eventually show nothing but the color associated with 
59, a shade of magenta. The first image shows two huge red regions associated with 26 
and 28. It is clear that there is a pattern with suggestions of symmetry, near the center. As 
we zoom in by a factor of 10, we get image 2 on the left, which suggests interesting 
symmetry around 27. A further zoom by a factor of 10, the bottom left image, shows 
symmetry doubling and the magenta region we expect around 27 prominently appears. 
However, it is clearly not centered around 27, which is at the middle of each image. The 
upper right image is a further zoom by a factor of 100 where we see that 27 is quite near 
the left edge of the magenta region. Two more zooms, shown on the right, show that 
eventually 27 does fall into the interior of the magenta region. An obvious question is 
where is the magenta region centered? Estimates from the images suggest that the center 
of the magenta region containing 27 is centered at approximately 27.003375 and the left 
edge of that region is on the real axis near 26.9999995. Thus, 27 is at the edge up to 4 
orders of magnitude. 

Images extended to 30)Re(30 ≤≤− x , but at lower resolution, appear at [10] for 
a few of our figures, including those in Figure 1.  
 
5. Coefficient Stopping Time 
Recall that for a positive integer n, the coefficient stopping time was the smallest positive 

integer such that 1
2
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−+++

k

nznznz

k

k

n . When generalized to complex arguments, 

we need to make the numbers real in order to do the comparison. Using the complex 
magnitude of )(nkλ  seems to be a good choice. However, we could alternately take the 
magnitude of each )(nz j  or we can even take the magnitude of n. However, the last two 
choices would seem to make better sense with corresponding variants of T(x) which we 
will describe below. Thus, we define the coefficient stopping times for T(x), T*(x) and 
T**(x) as follows. These stopping times are the smallest positive integer k such that the 
following hold, and are infinite if there is no such k. 
 

(T) 1
2

3 )(...)()( 110

<
−+++

k

xzxzxz k

  upon iteration of 
2

)(mod3)T( 2
)(mod2 xxx

x +=  upon x; 

 



   7

(T*) 1
2

3 )(...)()( *
1

*
1

*
0

<
−+++

k

xzxzxz k

  upon iteration of 
2

)(mod3)(T 2
)(mod

*
2 xxx

x +=  upon x and 

where ))((Tmod)( *
2

* xxz k
k

= ; 
 

(T**) 1
2

3 )(...)()( **
1

**
1

**
0

<
−+++

k

xzxzxz k

  upon iteration of 
2

)(mod3)(T 2
)(mod

**
2 xxx

x +=  upon x 

and where ))(T(mod)( **
2

** xxz k
k

= ; 
 Note that we might consider coefficient stopping time for other generalizations of 
the 3x+1 function such as C(x); however, that seems unnatural since there are no apparent 
analogues of the representation theorem for C(x). However, there are starred and double 
starred analogues of the remainder representation theorem corresponding to T* and T**. 
Of course, T* and T** are not differentiable.  

Figure 4 shows the coefficient stopping time for T, T*, and T**  where 
6)Re(6 ≤≤− x  and 2)Im(2 ≤≤− x . The colors are as in the previous figures. Observe 

that around the even integers there are round red regions (where the coefficient stopping 
times are 1). In between, there are fractal behaviors that appear remarkably different in 
these three cases. The images for T* and T** have regions which appear chaotic. 
 
6. Basins of Attraction 
We will next visualize the basins of attraction for T(x) and C(x). That is, we want to color 
points that are attracted to the same cycles with the same color. This also raises 
computational issues. We do not want to assume we know the cycles that exist ahead of 
time, so carefully chosen representatives need to be gathered dynamically. However, 
cycles can, and do, shadow one another making it difficult to distinguish slow 
convergence to one cycle from convergence to a nearby cycle. Nonetheless, these 
experiments yield a wealth of information about the cycles that appear and what points go 
where. Thus, in spite of the computational difficulties, these are valuable experiments.  
 Figure 5 shows the basins of attraction for T(x) and C(x) along with a zoom near 1 
for each. The top image shows the basins for T(x) for 6)Re(6 ≤≤− x , 2)Im(2 ≤≤− x  
and the middle left image is a zoom centered on 1 with width 0.3. The bottom image 
shows the basins for C(x) for 6)Re(6 ≤≤− x , 2)Im(2 ≤≤− x  and the middle right 
image is a zoom centered on 1 with width 0.3. Each hue that appears corresponds to a 
basin and within each basin, the shade indicates the number of steps, modulo 3, required 
to obtain the cycle within tolerance 1210− . Increasing iteration count corresponds to 
moving from light to medium to darkest bands within that shade.  

In Table 2 we see the basins and the colors used for each basin for T(x) found by 
our computations. In each case we determined an expansion factor by taking the 
derivative of )(T xp  at x where p denotes the period of the cycle and x is any element of 
the cycle. Thus, four of the basins are attracting while two are repelling. The basins for 
the fixed point near -1.15387, 0, and the 2-cycle (1,2) dominate. These correspond to 
blue, red and green, respectively. A small brown basin appears near -5.0109 and a single 
magenta pixel which appears at -5 is on the right edge of that brown basin. Of course, the 
green basins dominate around the positive integers, given the 3x+1 conjecture. The zoom 
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near 1 shows the green basin dominates near 1 although red and blue features are 
scattered nearby. 

In Table 3 we see the basins and the colors used for each basin for C(x) found by 
our computations. We see that there are five attractive cycles. In particular, there are 
attractive fixed points near -1.27773, 0 and 1 with basins having color blue, red and 
green. Again the 2-cycle (1,2) is attractive and shown in green. However, now there is a 
second attractive 2-cycle with approximate values (1.19253, 2.13866) shown in yellow. 
Notice that the dynamics along the positive real line intertwine these basins, but we only 
see green basins near the positive integers.  

Note the dynamics of  T(x) appear simpler along the positive real axis than those 
for C(x) since there is only one attractive postive cycle; namely, (1,2). Moreover, we saw 
in comparing Figure 1 and 2 that T(x) has larger regions that remain bounded and larger 
regions with small stopping time. Thus, it would seem that it would be worthwhile to 
investigate the real dynamics of T(x). 
  
7. Alternate Generalizations of the Modulo 2 Function 
We next consider other choices for the function )(mod2 x  that was essential to creating 
the fundamental generalizations C(x) and T(x) of the 3x+1 function given in Equations 
(2) and (4). Recall that the generalization of )(mod2 x  was required to be defined for all 
complex numbers and have value 0 on the even integers and value 1 on the odd integers. 

color  expansion factor cycle 
red  0.5   (0)  
blue  0.385708   (-1.27773)  
cyan    1.5   (-1) 
green  0.75   (1, 2) 
yellow   -0.230754   (1.19253, 2.13866) 
brown   0.0363716   (-10.0349, -5.046, -7.04531) 
magenta  1.12504   (-10, -5, -7) 
light green 0.0035933   (-136.002, -68.0033, -34.0035, -17.0027,  

-25.0038, -37.0048, -55.0051, -82.0042,  
-41.0056, -61.0052, -91.0038) 

none   1.08086   (-136, -68, -34, -17, -25, -37, -55, -82, -41,  
-61, -91) 

 
Table 3. Some Cycles for C(x). 

color  expansion factor cycle 
red  0.5   (0) 
blue  0.469947  (-1.15387) 
cyan  1.5    (-1) 
green  0.75   (1, 2)  
brown  0.703092   (-10.0157, -5.01091, -7.01408)    
magenta 1.12501  (-10, -5, -7) 
 
Table 2. Some Cycles for T(x).
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We have seen that ⎟
⎠
⎞

⎜
⎝
⎛ π=

2
sin)(mod 2

2
xx  was a fine choice but we will consider 

alternatives. In particular, Figure 6 will show images of the coefficient stopping time 
when )(mod2 x  in Equation (2), which defined T(x), is replaced by the following three 
functions respectively. In each case, we define a function with the desired values on the 
real line and then apply that function independently to the real and imaginary parts of x to 
obtain our complex version of )(mod2 x . The three functions are: 
• the decimal remainder after division by 2  
• a piecewise linear function, oscillating between 0 and 1 on the even and odd integers,  

• the function ⎟
⎠
⎞

⎜
⎝
⎛ π

2
sin2 x . 

Notice that the first function is discontinuous. The corresponding image is shown 
at the top of Figure 6 and straight boundaries appear. Indeed, the image appears to be 
chopped into blocks. The second function is continuous, but has corners. It is a sawtooth 
function that is not differentiable at the integer lattice points. The coefficient stopping 
time is well behaved on disks around the even integer lattice points, but the behavior is 
complicated in between. While there are still some straight edges along boundaries, the 
image seems more coherent than the first. The third function is not the same as T(x) since 
it is applied on the real and imaginary parts independently, not using the complex 
argument to sine. 
 Notice we could equally well generalize C(x) since it is also dependent upon the 
sense of )(mod2 x , although we would not use coefficient stopping time in that case. 
Consider further some of the myriad of generalizations of the 3x+1 function we could 
define. We could use weighted averages of the different )(mod2 x  functions, we could 
use different versions in each of the two places where )(mod2 x  is used in Equations (2) 
and (4). We could take averages of the resulting C(x) and T(x) generalizations. Moreover, 
adjustments by any function that is zero at the integers could be used. Thus, we could add 
any finite sine series to another choice for )(mod2 x . In particular, we could use 

∑
=

π+⎟
⎠
⎞

⎜
⎝
⎛ π=

K

k
k xkcxx

1

2
2 )sin(

2
sin)(mod . Indeed, in the next section we consider a natural, 

smooth generalization of that form. 
 
8. The Winding Function: A Smooth but Complex Generalization 

The function ( ) )sin(
22

sin1
2
1)(mod 2

2 xixex xi π−⎟
⎠
⎞

⎜
⎝
⎛ π=−= π  is another smooth complex 

)(mod2 x  function. It is different from our fundamental choice by a complex sine term. 
With that choice of )(mod2 x , we define the winding 3x+1 function to be 

2
)(mod3)W( 2

)(mod2 xxx
x += . Since it gives complex values along the real axis, its 

behavior is quite different from our other examples.  
Figure 7 shows the escape time, stopping time, and basins of attraction for W(x). 

The images are asymmetric because of the complex values. The integers appear in black 
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regions of the escape time pictures. Some of them appear in quite small regions; for 
example, consider the center of the left edge where -6 appears.  

The center image in Figure 7 shows the stopping time. The even integers appear 
inside the red dips, but the odd integers seem quite intertwined. A similar statement is 
true for the coefficient stopping time as we will see in the next image.  

The bottom image in Figure 7 shows the basins of attraction. Only two basins of 
attraction are apparent. These are a green basin, corresponding to the complex fixed point 
1.52577j0.721276, and the blue basin, corresponding to a complex fixed point 
3.10207j0.713843. Table 4 summarizes some facts about the cycle structure. None of the 
other cycles capture more than a handful of pixels. The fixed point at 0 has an expansion 
factor near 0.931048. This is large enough that points converging to the origin have not 
done so within the required 254 iterations. Thus, some, if not all, of the black pixels 
correspond to points converging slowly to 0. 
 Figure 8 shows the coefficient stopping time for W(x) zooming in near 7. The 
coefficient stopping time for 7 is 7 and that coefficient stopping time is shown in cyan. 
The width of the images are k−×103  for k=0,1,2...,8. The images are arranged in reading 
order. Thus, in the upper left image, we see the red bulges that include 6 and 8. A zoom 
in toward 7 shows an edge near orange egg shaped regions, a further zoom shows an edge 
at a new angle near yellow egg shaped regions, then, in further zooms, we see light green, 
light green, green, green-cyan, green-cyan and finally cyan egg shaped regions. One can 
follow the coefficient stopping times from 1 (red) along a path through the zooms seeing 
it rise 12 and go back down to 7 in the final cyan egg. Since it takes eight orders of 
magnitude to find the cyan region where the coefficient stopping time is constant, it is not 
surprising that these computations are delicate.  

However, there seems to be a path to the coefficient stopping time around 7 that 
could be described by the following. Travel from the red region onto the rainbow near 7. 
Turn right between the 1st and 2nd orange eggs. Then take a right between the 4th and 
5th yellow egg, then another right between the 5th and 6th light green eggs, but aimed 
toward the 6th egg. Turn left after the 5th green egg and then right after the 4th green-
cyan egg, aiming toward the 5th green-cyan egg. Then turn left onto the 4th cyan egg. 
This is the region surrounding 7. While that description is somewhat fanciful, it conveys 
the rich structure. Zooms near other points often have very similar behavior. However, 
we have observed that sometimes the final region is a band rather than an egg. 
 

color  expansion factor cycle 
red  0.931048  (0) 
magenta 2.34549  (-1) 
green  0.570395  (1.52577j0.721276) 
blue  0.813955  (3.10207j0.713843) 
yellow  9.45387  (1,2) 
cyan  1675.05  (-10, -5, -7) 
 
Table 4. Some Cycles for T(x) with a Smooth Complex Modulo 2 Function.
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9. Nearby Families of Functions 
We next briefly investigate the behavior of the ax+1 function. That is, we consider the 

behavior of the family of functions 
2

)(mod)(T 2
)(mod2 xxax

x

a
+=  for 

⎟
⎠
⎞

⎜
⎝
⎛ π=

2
sin)(mod 2

2
xx . Figure 9 shows the escape time for 6)Re(6 ≤≤− x  and 

2)Im(2 ≤≤− x  when a=1, 2, 2.5, 3, 4. As we should expect, the real axis is in a wide 
black region, corresponding to bounded behavior, for small values of a. the fractal 
structure becomes pronounced more quickly on the positive side of each image. By the 
time a=5, the orange region has gotten quite close to the axis. The basin of attraction near 
0 seems to be quite persistent. Notice the striking amount of high iteration count colors 
near the positive real axis for a=3.5. 
 Animations showing the evolution of images of )(T xa , and similar changes to 
C(x), are available at [10]. While the behavior of )(T xa  may be somewhat simpler for 

3≠a , all of the images seem to illustrate nontrivial complex dynamics. 

 As our second family, we consider the functions 
2

)(mod3)(W 2
)(mod2 xxx

x

b
+=  

where )sin(
2

sin)(mod 2
2 xibxx π+⎟

⎠
⎞

⎜
⎝
⎛ π= . Notice that )T()(W0 xx =  while 

)W()(W 5.0 xx =− . Figure 10 shows the escape time for )(W xb  when b=0, -0.2, -0.48, 
-0.5, -0.51, -0.9. Notice that the first image is the same as the one for T(x), the second is 
similar, but distortion is clear, the next three are all quite close to W(x), and the last 
shows finite escape times dominating. This sequence shows there is a dramatic change in 
behavior for )(W xb  when )W()(W 5.0 xx =− . This offers further evidence that the 
winding 3x+1 function is worth further investigation. 
 
10. On Implementation 
The experiments described in this paper were done using programs written in J by the 
authors. We used Jsoftware 4.05d which is free. The web site for Jsoftware is [11]. 
Readers interested in duplicating some of these images can obtain J scripts from [10]. We 
offer below a few brief illustrations of our computations; we offer this so that we can 
briefly illustrate the experimental environment we used; also readers will have data 
allowing them to replicate and verify our computations; and we will point out a 
computational limitation of our experiments. We will not comment on the 
implementation details of the J expressions, but rather focus upon the results and usage. 
 First we implement our sense of modulo 2 from Equation (3). Applying it we see 
the correct results on 1, 2 and 3, a very tiny bit of round off error on 4, and the 
generalization to the noninteger 3.1. 
  
   mod2a=: *:@(1&o.)@(1r2p1&*) 
 
   mod2a 1 2 3 4 3.1 
1 0 1 5.99864e_32 0.975528 
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Next, we implement the winding 3x+1 function, W(x), that we used in Section 8. Note it 
is complex valued at 3.1. 
 
   mod2w=: -:@(1:-_12&o.@o.) 
    
   mod2w 1 2 3 4 3.1 
1 0 1 0 0.975528j0.154508 
    
We implement Equation (2) as an adverb that takes a sense of modulo 2 as a function 
argument and gives the resulting function T(x). Here we see a few iterates of the 3x+1 
function on 7 and then on 7.02. 
 
   T1=: 1 : '-:@((]+[* 3: ^ ]) u.) f.' 
 
   mod2a T1^:(i.9) 7 
7 11 17 26 13 20 10 5 8 
 
   mod2a T1^:(i.7) 7.02 
7.02 11.0181 17.0121 26.0078 13.0062 20.0072 10.0051 
 
    
We denote our stopping time adverb by SIG. We see that the stopping time of 7, 7.1, and 
27 are 7, 4, and 27 respectively. When we use the smooth complex version of modulo 2, 
we get a different stopping time for 7.1, which is typical for non-integral values. 
However, we also see that we were unable to correctly compute the stopping time at 27. 
This is not too surprising given the stopping time is 59 and 8 orders of magnitude were 
required, see Section 8, to focus around a stable coefficient stopping time region when it 
was 7. Nonetheless, this inability to compute the coefficient stopping time near 27 
illustrates a computational limitation of using finite precision complex numbers. 
 
   SIG=:1 : 0      NB. fct arg is "T" 
sigs=.0 1&+@}: , u.@{: 
sigl=.sigs^:((1&{ < 255"_)*. {. <:&| {:)^:_ 
(((~:>:)@{:*1&{)@sigl@(],0:,]) f. :: 0:)"0 
) 
    
   mod2a T1 SIG 7 7.1 27 
7 4 59 
 
   mod2w T1 SIG 7 7.1 27 
7 5 0 
     
Next we create a function that gives small arrays of inputs. Then we can apply our 
stopping time functions to that array. Notice results of 255 correspond to maximum 
iteration reached, results of 0 mean the computations became huge, and other results are 
the appropriate stopping times. Note the asymmetry of the stopping time for the mod2w 
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function. It is easy to take larger versions of the resulting arrays and turn them into 
images. 
 
   zl_clur=: 4 : 0 
w=.-~/9 o.y. 
h=.-~/11 o.y. 
(h*(i:%j.)<.0.5+x.*h%w) +/ ({.y.)+w*(i.%<:)1+x. 
) 
    
   ]z=: 4 zl_clur 0 2j1 
   0j1    0.5j1    1j1    1.5j1    2j1 
 0j0.5  0.5j0.5  1j0.5  1.5j0.5  2j0.5 
     0      0.5      1      1.5      2 
0j_0.5 0.5j_0.5 1j_0.5 1.5j_0.5 2j_0.5 
  0j_1   0.5j_1   1j_1   1.5j_1   2j_1 
    
   mod2a T1 SIG z 
255   0   0 0 3 
  1 255   0 0 1 
255 255 255 2 1 
  1 255   0 0 1 
255   0   0 0 3 
    
   mod2w T1 SIG z 
  1   1 255   1 1 
  1 255 255 255 1 
255   0 255 255 1 
255 255   0   4 1 
  9   0   0  16 5 
    
Lastly, we show how we created the ax+1 functions that we explored in Section 9. We 
show the values of the 3x+1 function, the 5x+1 function and the 2.1x+1 function on 7 and 
8. 
 
   TX=: 1 : '-:@((]+[* (m."_) ^ ]) mod2a) f.' 
    
   3 TX 7 8 
11 4 
    
   5 TX 7 8 
18 4 
    
   2.1 TX 7 8 
7.85 4 
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Conclusion 
We have seen that we can generalize the 3x+1 function to the complex plane in a wide 
variety of ways. We can then visualize the dynamics of those functions using escape 
time, basins of attraction, and stopping time images. We noticed that T(x) has simpler 
dynamics than C(x) along the real axis. We saw the winding 3x+1 function displayed 
remarkable sequences of stable egg shaped regions in zooms toward integers in the 
corresponding stopping time images. The intrigue of the 3x+1 problem can be seen in 
these wonderful images, and they suggest T(x) and W(x) are worth further study.  
 
Acknowledgment. We appreciate the suggestion of Gary Gordon that we compare the 
images of the 3x+1 function with those of the ax+1 function. 
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Figure 1. The escape, stopping time and total stopping time for T(x) where 

6)Re(6 ≤≤− x  and 2)Im(2 ≤≤− x . 
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Figure 2. The escape, stopping time and total stopping time for C(x) where 

6)Re(6 ≤≤− x  and 2)Im(2 ≤≤− x . 
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Figure 3. Zooms of the T(x) stopping time centered on 27 with width 

6,5,4,2,1,0,103 =× − mm . 
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Figure 4. The coefficient stopping times for T(x), T*(x), and T**(x). 
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Figure 5. Basins of Attraction. Top: T(x) for 6)Re(6 ≤≤− x , middle-left: T(x) zoom 
near 1, middle-right: C(x) zoom near 1, and bottom: C(x) for 6)Re(6 ≤≤− x . 
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Figure 6. Coefficient stopping time for T(x) with )(mod2 x  modified so real and 
imaginary parts are given by: remainder upon division by 2, a sawtooth function, and sine 
squared. 
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Figure 7. Escape time, stopping time, and basins of attraction for W(x), the winding 3x+1 
function. 



   25

        

 
 



   26

        

 
 



   27

        

 
 
Figure 8. Coefficient stopping time for W(x) near 7. 
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Figure 9. Escape time for the ax+1 function, a=1, 2, 2.5, 3, 4, 5. 
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Figure 10. Escape time for )(W xb  for b=0, -0.2, -0.48, -0.5, -0.51, -0.9. 


