
Chapter 11 238

This evolution is shown in Figure 11.4.2 which is
not close to settled. Our last image of the
evolution of the Game of Life shows the glider gun
considered in Section 7.3. The POV-Ray file is
created as follows and the image is shown in
Figure 11.4.3.

 (30 pad |:A2) life_evo_pov
povpath,'life_c.pov'

Notice the streams of gliders heading upward to
the right and the periodic structure between two
columns that generates those streams.

11.5 Cyclic Cellular Automata
We saw in Section 7.5 that cyclic cellular automata
evolved through phases into a periodic state with
self-organized spirals. Recall that a cell in these
automata evolves by increasing to the next state
(cyclically) if it has a neighbor in that next state.
In this section we investigate a three dimensional
analog of these automata. Thus, we will use the
third dimension to represent the three
dimensional array of states, rather than the time evolution as in the previous section.

If we consider 3 by 3 by 3 neighborhoods in a three dimensional array of states, we see the center cell
has index 13 and the neighbors that share a face (Von Neuman neighbors) have indices 4, 10, 12, 14, 16,
and 22. Here we will look at an example with 36 states. Notice the local rule has the same definition as
was used in Section 7.5 while the global rule needs periodic extension in a third direction and the
tessellations are 3 by 3 by 3.

 <"2 i.3 3 3
+-----+--------+--------+
0 1 2	9 10 11	18 19 20
3 4 5	12 13 14	21 22 23
6 7 8	15 16 17	24 25 26
+-----+--------+--------+

 ns=:36

 cen=:13

 nei=:4 10 12 14 16 22

 perext3=:(perext"_2)@:(perext"_1)@:perext

 lcca=:(ns|cen&{ + (ns|1+cen&{)e. nei&{)@,

 cca3d=: 3 3 3&(lcca;._3)@perext3

We iterate this automaton on an 80 by 80 by 80 random array of states. We save the result after 300
and 500 iterations and visualize every 4th state using POV-ray.

 a0=:?.(3#80)$ns

 a300=:cca3d^:300 a0

 a500=:cca3d^:200 a300

Figure 11.4.3 Life on a Glider Gun

Ray Tracing 239

 view_pars_cca3d
camera{
location <40,60,40>
angle 2.2
up <0,0,1>
right <0,1,0>
sky <0,0,1>
look_at<0,0,0>
 }
#default{finish{ambient 0.35}}
object{light_source{<200,100,80> color rgb<2,2,2>}}
background {color rgb<1,1,1>}

 cca3d_pov
1 : 0
:
colors=.Hue1 5r6*(i.%<:)#x
view_pars_cca3d fwrite y
's0 s1 s2'=.$m
dx=.2%>./$m
xyz=.,/,/_1+dx*(i.s0) ,"0 1/ (i.s1),"0/i.s2
for_k. i.#x do.
 M=.,m=k{x
 ((k{colors)fmtbox (, dx&+)"1 M#xyz)fappends y
end.
fsize y
)

 (4*i.9) a300 cca3d_pov povpath,'vn36_300.pov'
11320021

 (4*i.9) a500 cca3d_pov povpath,'vn36_500.pov'
11127799

Figure 11.5.1 Cyclic Cellular Automaton
Droplets

Figure 11.5.2 Cyclic Cellular Automaton
Self-organized Spirals

Chapter 11 240

Figure 11.5.1 shows the result after 300 iterations. Notice the droplet patches of constant state. Figure
11.5.2 shows the results after 500 iterations and nested three dimensional spirals have self-organized.

11.6 Rendering Surfaces
We return to the topic of surface plotting that we first discussed in Section 10.3. Here we use some
utilities from povkit.ijs that we have not used before; namely, utilities for formatting a triangle and
breaking a quadrilateral into two triangles. The definitions may be seen in that script which we assume
has been loaded. We will illustrate their use here. Unlike earlier formatting utilities, these take a matrix
right argument (the matrix lists the vertices).

 1 0.5 0 fmttri 1 1 1,2 2 2,:3 5 7
object{triangle{<1,1,1>,<2,2,2>,<3,5,7>}pigment{rgb<1,0.5,0>}}

 0 1 1 fmtquad 1 1 1,2 2 2,3 5 7,:0 0 0
object{triangle{<1,1,1>,<2,2,2>,<0,0,0>}pigment{rgb<0,1,1>}}
object{triangle{<2,2,2>,<3,5,7>,<0,0,0>}pigment{rgb<0,1,1>}}

Now we construct our sum of three sines function from Section 5.3, sample it at 129 points in each
direction and then rearrange the data to obtain the necessary quadrilaterals.

 sin=: 1&o.

 f1=: +&sin"0

 f2=: sin@(+&.*:)

 f3=: (f1 + f2)"0 f. the three sines function

 $x=: y=: _14+28*(i.%<:)129 sample points
129

 $xyz=: x ([,],f3)"0/ y array of x-y-z points
129 129 3

 quad=: 0 1 3 2&{@(,/)

The function quad rearranges 2 by 2 arrays of points into a list of 4 points which is a quadrilateral
suitable as an argument to fmtquad. We then apply quad to the 2 by 2 tesselations of the x-y-z data to
get the polygons we want to plot, we compute the average z-coordinate so that we can false-color the
height in the same way we false-colored contour plots of this function in Section 5.3, and we use cile
from that section to break the colors into 1000 distinct hues. The function Hue1, which is defined in
povkit.ijs, creates hues on a 0-1 scale.

 $polys=: ,/,/2 2 quad ;._3 xyz the polygons
16384 4 3

 $avgz=: 2 2(+/%#)@, ;._3 {:"1 xyz the average heights of the polygons
128 128

 H1K=: Hue1 5r6*(i.%<:)1000 a thousand hues

 $colors=: ,/H1K{~ 1000 cile avgz color using hue for height
16384 3

 fn=: povpath,'3sines.pov' POV-Ray file name

 view_pars_3sines
camera{
 location <-40,-60,40>
 angle 40
 up <0,0,1>
 right <0,1,0>

