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This evolution is shown in Figure 11.4.2 which is 
not close to settled. Our last image of the 
evolution of the Game of Life shows the glider gun 
considered in Section 7.3. The POV-Ray file is 
created as follows and the image is shown in 
Figure 11.4.3.  
 

   (30 pad |:A2) life_evo_pov 
povpath,'life_c.pov' 
 

Notice the streams of gliders heading upward to 
the right and the periodic structure between two 
columns that generates those streams.  

11.5 Cyclic Cellular Automata 
We saw in Section 7.5 that cyclic cellular automata 
evolved through phases into a periodic state with 
self-organized spirals. Recall that a cell in these 
automata evolves by increasing to the next state 
(cyclically) if it has a neighbor in that next state. 
In this section we investigate a three dimensional 
analog of these automata. Thus, we will use the 
third dimension to represent the three 
dimensional array of states, rather than the time evolution as in the previous section. 
 

If we consider 3 by 3 by 3 neighborhoods in a three dimensional array of states, we see the center cell 
has index 13 and the neighbors that share a face (Von Neuman neighbors) have indices 4, 10, 12, 14, 16, 
and 22. Here we will look at an example with 36 states. Notice the local rule has the same definition as 
was used in Section 7.5 while the global rule needs periodic extension in a third direction and the 
tessellations are 3 by 3 by 3. 
 

   <"2 i.3 3 3 
+-----+--------+--------+ 
|0 1 2| 9 10 11|18 19 20| 
|3 4 5|12 13 14|21 22 23| 
|6 7 8|15 16 17|24 25 26| 
+-----+--------+--------+ 
 

   ns=:36 
 

   cen=:13 
  

   nei=:4 10 12 14 16 22  
 

   perext3=:(perext"_2)@:(perext"_1)@:perext 
 

   lcca=:(ns|cen&{ + (ns|1+cen&{)e. nei&{)@, 
 

   cca3d=: 3 3 3&(lcca;._3)@perext3 
 

We iterate this automaton on an 80 by 80 by 80 random array of states. We save the result after 300 
and 500 iterations and visualize every 4th state using POV-ray. 
 

   a0=:?.(3#80)$ns 
 

   a300=:cca3d^:300 a0 
 

   a500=:cca3d^:200 a300 
 

 
 

 
Figure 11.4.3 Life on a Glider Gun 
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   view_pars_cca3d 
camera{ 
location <40,60,40> 
angle 2.2 
up <0,0,1> 
right <0,1,0> 
sky <0,0,1> 
look_at<0,0,0> 
      } 
#default{finish{ambient 0.35}} 
object{light_source{<200,100,80> color rgb<2,2,2>}} 
background {color rgb<1,1,1>} 
 

   cca3d_pov 
1 : 0 
: 
colors=.Hue1 5r6*(i.%<:)#x 
view_pars_cca3d fwrite y 
's0 s1 s2'=.$m 
dx=.2%>./$m 
xyz=.,/,/_1+dx*(i.s0) ,"0 1/ (i.s1),"0/i.s2 
for_k. i.#x do. 
  M=.,m=k{x 
  ((k{colors)fmtbox (, dx&+)"1 M#xyz)fappends y 
end.   
fsize y 
) 
 

   (4*i.9) a300 cca3d_pov povpath,'vn36_300.pov' 
11320021 
 

   (4*i.9) a500 cca3d_pov povpath,'vn36_500.pov' 
11127799 
 

 
Figure 11.5.1 Cyclic Cellular Automaton 
Droplets 

 
Figure 11.5.2 Cyclic Cellular Automaton 
Self-organized Spirals 
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Figure 11.5.1 shows the result after 300 iterations. Notice the droplet patches of constant state. Figure 
11.5.2 shows the results after 500 iterations and nested three dimensional spirals have self-organized.  

11.6 Rendering Surfaces 
We return to the topic of surface plotting that we first discussed in Section 10.3. Here we use some 
utilities from povkit.ijs that we have not used before; namely, utilities for formatting a triangle and 
breaking a quadrilateral into two triangles. The definitions may be seen in that script which we assume 
has been loaded. We will illustrate their use here. Unlike earlier formatting utilities, these take a matrix 
right argument (the matrix lists the vertices). 
 

   1 0.5 0 fmttri 1 1 1,2 2 2,:3 5 7 
object{triangle{<1,1,1>,<2,2,2>,<3,5,7>}pigment{rgb<1,0.5,0>}} 
 

   0 1 1 fmtquad 1 1 1,2 2 2,3 5 7,:0 0 0 
object{triangle{<1,1,1>,<2,2,2>,<0,0,0>}pigment{rgb<0,1,1>}} 
object{triangle{<2,2,2>,<3,5,7>,<0,0,0>}pigment{rgb<0,1,1>}} 
 

Now we construct our sum of three sines function from Section 5.3, sample it at 129 points in each 
direction and then rearrange the data to obtain the necessary quadrilaterals. 
 

   sin=: 1&o. 
 

   f1=: +&sin"0 
 

   f2=: sin@(+&.*:) 
 

   f3=: (f1 + f2)"0 f.   the three sines function 
 

   $x=: y=: _14+28*(i.%<:)129  sample points 
129 
 

   $xyz=: x ([,],f3)"0/ y   array of x-y-z points 
129 129 3 
 

   quad=: 0 1 3 2&{@(,/)   
 

The function quad rearranges 2 by 2 arrays of points into a list of 4 points which is a quadrilateral 
suitable as an argument to fmtquad. We then apply quad to the 2 by 2 tesselations of the x-y-z data to 
get the polygons we want to plot, we compute the average z-coordinate so that we can false-color the 
height in the same way we false-colored contour plots of this function in Section 5.3, and we use cile 
from that section to break the colors into 1000 distinct hues. The function Hue1, which is defined in 
povkit.ijs, creates hues on a 0-1 scale. 
 

   $polys=: ,/,/2 2 quad ;._3 xyz  the polygons 
16384 4 3 
 

   $avgz=: 2 2(+/%#)@, ;._3 {:"1 xyz  the average heights of the polygons 
128 128 
 

   H1K=: Hue1 5r6*(i.%<:)1000    a thousand hues 
 

   $colors=: ,/H1K{~ 1000 cile avgz  color using hue for height 
16384 3         
 

   fn=: povpath,'3sines.pov'   POV-Ray file name 
 

   view_pars_3sines 
camera{ 
 location <-40,-60,40> 
    angle 40 
    up <0,0,1> 
 right <0,1,0> 


