
A Brief J Reference
by Cliff Reiter
Version 3: July 25, 2002

This brief reference gives informal descriptions of most of the J primitives. Not every primitive
is included and some phrases, examples and other resources have been added when that seemed
appropriate. Since the presentation is so brief and informal, it is not suitable as an introduction to
the language and it is not a replacement for the main J references: the J Introduction and
Dictionary, the J User manual and the J Primer. Nor is it a replacement for introductions such as
Henry Rich's J for the C programmer, Roger Stokes' Learning J, and Norman Thomson's J: the
Natural Language for Analytic Computing. However, since the material given here is informally
organized by topic, this reference may be useful for brainstorming when considering which J
features might be relevant to a given problem. Some users may also find it helps locate gaps in
knowledge that can then be filled in by turning to the main references.

Table of Contents
1. Basic Arithmetic............................ 1
2. Circular and Numeric Functions ... 2
3. Boolean and Relational Functions. 3
4. Assignment of Names 3
5. Array Information and Building.... 4
6. Array Selection.............................. 4
7. Data Amalgamation....................... 5
8. Explicit Definition......................... 5
9. Program Flow Control in J 6
10. Reading and Writing Files............ 7
11. Scripts... 8
12. Front End Short Cut Keys 8
13. Boxed Arrays................................ 9
14. Noun Atoms 9
15. Conversion: String, Numeric,

Base, Binary 9
16 Sorting and Searching. 10
17. Matrix Arithmetic....................... 10
18. Rank ... 11

19. Constant and Identity Functions. 11
20. Function Composition Calculus,

Roots and Polynomials............... 12
21. More Functions from Functions. 13
22. Gerunds and Controlled

Application of Functions............ 13
23. Recursion.................................... 13
24. Efficiency, Error Trapping, and

Debugging 14
25. Randomization and Simulation .. 14
26. Complex Numbers. 15
27. Number Theory, Combinatorics

and Permutations 15
28. Exact Integers and Rationals 16
29. Calculus, Roots, Polynomials..... 16
30. Addons 16
31. Graphics 17
32. Parts of Speech and Grammar.... 17
33. Glossary...................................... 18

1. Basic Arithmetic
x + y x plus y
 + y y; that is, for real y this is the identity function
x - y x minus y
 - y negate y
x * y x times y

2

 * y signum of y is _1, 0 or 1 depending on the sign of y (for real y)
x % y x divided by y
 % y reciprocal of y
 +: y double y
 -: y halve y
 *: y square y
x %: y xth root of y
 %: y square root of y
x ^ y x to the power y
 ^ y exponential base e
x ^. y base x logarithm of y
 ^. y natural logarithm (base e)
x | y residue of y mod x
 | y absolute value of y
x <. y minimum of x and y; (smaller of, lesser of)
 <. y greatest integer less than or equal to y; called the floor
x >. y maximum of x and y; (larger of, greater of)
 >. y least integer greater than or equal to y; called the ceiling
 <: y predecessor of y; that is, y-1 (decrement of)
 >: y successor of y; that is, y+1 (increment of)

2. Circular and Numeric Functions
Many trigonometric functions and other functions associated with circles are obtained using o.
with various numeric left arguments.
 o. y yπ (pi times)

0 o. y
21 y− (circle functions)

1 o. y sin(y) _1 o. y sin-1(y)
2 o. y cos(y) _2 o. y cos-1(y)
3 o. y tan(y) _3 o. y tan-1(y)
4 o. y

21 y+ _4 o. y 12 −y
5 o. y sinh(y) _5 o. y sinh-1(y)
6 o. y cosh(y) _6 o. y cosh-1(y)
7 o. y tanh(y) _7 o. y tanh-1(y)
8 o. y)1(2y+− _8 o. y)1(2y+−−
9 o. y Re(y) _9 o. y y
10 o. y abs(y) which is |y _10 o. y conjugate(y)
11 o. y Im(y) _11 o. y yi where i is 1−
12 o. y arg(y) _12 o. y

iye

 m H. n y the m;n hypergeometric function; sometimes denoted F(m;n,y)
x m H. n y the m;n hypergeometric function using x terms in the series

3

3. Boolean and Relational Functions
Result of tests are 0 if false or 1 if true.
x < y test if x is less than y
x <: y test if x is less than or equal to y
x = y test if x is equal to y
x >: y test if x greater than or equal to y (larger than or equal)
x > y test if x is greater than y (larger than)
x ~: y test if x is not equal to y
x -: y test if x is identically same as y (match)
 -. y not y; generalizes to 1-y for numeric y.
x +. y x or y; generalizes to the greatest common divisor (gcd) of x and y
x *. y x and y; generalizes to the least common multiple (lcm) of x and y
x +: y x nor y (not-or)
x *: y x nand y (not-and)
x e. y test if x is an item in y (member of)
 e. y test if the raze is in each open; compare to (; e.&>"_ 0])y
x E. y mark beginnings of list x as a sublist in y (pattern occurrence); see cut in

Section 7 and the regex laboratories for matching more complex patterns than those handled by
E..

The Boolean tests are subject to a default comparison tolerance of t=:2^_44. For example,
x=y is 1 if the magnitude of the difference between x and y is less than t times the larger of the
absolute values of x and y. The comparison tolerance may be modified with the fit conjunction,
"!.", as in x=!.0 y, tests if x and y are the same to the last bit.

4. Assignment of Names
 abc=: 1 2 3 global assignment of 1 2 3 to the name "abc" (is)
 abc=. 1 2 3 local assignment of 1 2 3 to the name "abc"; that is, the

value is only available inside the function where it is used
 'abc' =: 1 2 3 indirect assignment of 1 2 3 to the name "abc"
 'a b c'=: 1 2 3 parallel assignment of 1 to "a", 2 to "b" and 3 to "c".
 'a b'=:1 2;3 parallel unboxed assignment of 1 2 to "a" and 3 to "b"
 (exp)=: 1 2 3 the result of the expression exp is assigned the values
 names '' currently defined names in base locale; loaded by default

configuration
 erase 'a b c' erases the three objects "a", "b", and "c"
 (4!:5)1 turns on data collection and yields names changed since

last execution of (4!:5)1

Several foreign conjunctions of the form 4!:n deal with names. See the locales lab to learn
about using locales to create different locations for global names. Other 4!:n functions give the
type of the name and deal with script names.

4

5. Array Information and Building
 # y number of items in y (tally)
 $ y shape of array y
x $ y shape x reshape of y (cyclically using/reusing items)
 i. y list of indices filling an array of shape y (integer); negative reverses axis
 i: y symmetric arithmetic sequence; try i:5 and i:5j4
x F/ y table of values of F with arguments from x and y (outer product)
x , y append x to y where axis 0 is lengthened (catenate)
x ,. y stitch x beside y (append items) where axis 1 is lengthened;
x ,: y x laminated to y giving an array with 2 items
 , y ravel (string out) elements of y
 ,. y ravel items of y (changes a vector into a 1-column matrix)
 ,: y itemize, make y into a single item by adding a new length one leading axis
 $. y sparse matrix representation of y

See Section 16 for information about location of items within an array.

6. Array Selection
x # y replicate or copy items in y the number of times indicated by x; the imaginary

part of x is used to specify the size of expansion with fill elements
(G #])y selects elements of y according to Boolean test G; thus, (2&< #])y gives the

elements of y greater than 2.
I { y item at position I in y (index or from); arrays I give corresponding arrays of

items; boxed arrays I give all possible combinations of indices along leading axes
(empty box gives all possibilities along that axis); boxed boxed arrays randomly
access positions.

x I} y y amended at positions in I by data x.
x {. y shape x take of y; negative entries cause take from end of axes; entries larger than

axis length cause padding with fill elements.
 {. y the item in 1 {. y for non-empty arrays; in general 0{y (called head)
 {: y the item in _1{.y or _1{y (called tail)
x }. y drop shape x part of y; negative entries cause drop from end of axes.
 }. y 1 }. y (one drop) or behead
 }: y _1 }. y (negative one drop) or curtail

5

7. Data Amalgamation
The important role that data amalgamation facilities play in organizing computations and
analyses makes the study of them worthwhile. Because they are powerful, patience, persistence
and restudy are recommended.
 F/ y insert verb F between items of y; also called F-reduction; thus +/2 3 4

is 2+3+4
 G\ y apply G to prefixes of y, generalized scan
 F/\ y F scan of y
x G\ y apply G to lists of length x in y (the lists are infixes); negative x gives non-

overlapping sublists.
x avg\ y gives length x moving averages of data in y (here avg=:+/ % #)
 G\. y apply G to suffixes of y (order of execution makes this fast!)
x G\. y apply G to lists where sublists of length x in y are excluded (the sublists are

outfixes)
x G;._3 y cut: apply G to shape x tessellations of y. In general, the rows of x give the shape

and offset used for the tessellation. Include shards by specifying 3 instead of _3.
 G;.3 y cut: generalized suffix; try <;.3 i. 4 4
 G;._2 y cut: apply G to sublists marked by ending with the last item in y. So

}:<@}:;._2 y,CRLF gives the boxed lines of CRLF delimited text y. G;.2
y includes marked positions in sublists. G;._1 y and G;.1 y use first item to
mark beginnings of sublists. G;.0 y and dyads and gerunds G are also defined.

 x F/. y function F is applied to parts of x selected by distinct items (keys) in y.
 #/.~ y frequency of occurrence of items (given by nub) in y
 F/. y apply F to oblique lists from y. Try </.i.4 6

8. Explicit Definition
Explicit definitions can be made with m : n where m is a number that specifies whether the
result is a noun, verb, adverb or conjunction. When n is 0, successive lines of input give the
defining steps until an isolated, closing right parenthesis is reached. Noun arguments to adverbs
and conjunctions may be specified by m. on the left and n. on the right. Verb arguments are u.
and v. and the derived functions use x. and y. to denote their arguments.

4 : 0 input mode for a dyadic verb (function)
3 : 0 input mode for general verb; monadic definition followed by an isolated colon,

followed by the dyadic definition.
2 : 0 input mode for conjunction
1 : 0 input mode for an adverb
0 : 0 input mode for a noun

The right argument n as in m : n may alternatively be a string, a CRLF delimited string, a
matrix, or a boxed list of strings that give the "program".

13 : n convert to tacit form of a verb if possible

6

9. Program Flow Control in J
Control structures offer facilities for organizing the order of execution of J expressions. See the
"control structures" reference from the Vocabulary (see the on line help) for details. Also
consider the following illustrations and comments. First consider the if control structure. Note
that elseif. is also available.

signum=: 3 : 0"0 NB. note the use of rank 0

if. y. < 0 do. _1 else.

 if. y.=0 do. 0 else. 1 end.

 end.

)

 signum _5 7 8 0

_1 1 1 0

 * _5 7 8 0

_1 1 1 0

Consider the while control structure. The control word whilst. is the same as while. except
the steps of the loop are executed once before the control condition must hold.

sumint=: 3 : 0"0

k=.0

s=.0

while. k<:y. do.

 s=.s+k

 k=.k+1

end.

s

)

 sumint 10

55

 +/@i.@>: 10

55

Consider the for control structure.

sumintb=: 3 : 0"0

s=.0

for_k. 1+i.y.

 do. s=.s+k

end.

s

)

 sumintb 10

55

7

The control word break. is used to step out of a while. or whilst. or for_name. loop,
and continue. returns to the top of the loop. The control word return. can be used to halt
function execution.

The select. control word allows the execution of an expressions (or expressions) when a
prototype object matches those in a given case or cases.

atype=: 3 : 0

select. 3<.#$y.

case. 0 do. 'scalar'

case. 1 do. 'vector'

case. 2 do. 'matrix'

case. 3 do. 'array of dimension greater than 2'

end.

)

 atype 'abc'

vector

 atype i.3 3

matrix

 atype <i.3 3

scalar

 atype i.3 3 3 3 3

array of dimension greater than 2

The following line runs expression2 if running expression1 causes an error.
try. expression1 catch. expression2 end.

There are also control words for labeling lines and going to those lines: label_name. and
goto_name..

In all cases, the result of the last expression executed (that was not a test) is returned as the
function result.

10. Reading and Writing Files
These are all based on the foreign conjunctions of the form 1!:n. These provide for file
reading/writing including indexed reads and writes and creating directories, reading and setting
attributes and permissions. Convenient utilities are defined in files.ijs. Chopping file data in
appropriate places can be accomplished with _2 cut; see Sections 7 and 23. Simple substitution
(e.g., "_" for "-") may be accomplished with charsub from strings.ijs. See regex.ijs for more
complex processing. Memory mapped files should be considered for huge data sets.

 1!:0 y directory information matching path and pattern in y (see fdir)
 1!:1 y read file y specified by a boxed name (see fread)
x 1!:2 y write file y with character (binary) data x (see fwrite and

fwrites)

8

x 1!:3 y append file y with character (binary) data x (see fappend and
fappends)

Files may also be referenced by number; keyboard and screen input/output are supported, and
other facilities give other useful file access including indexed i/o, permissions, erasure, locking,
attributes.

11. Scripts
Scripts consist of text that gives a listing of definitions or J expressions to be executed. The text
of scripts is often stored in files and these scripts are the natural place to store collections of J
definitions.

 cntl-n keystroke to open a new script window
 0!:0 <'filename.ijs' run the script "filename.ijs"; note boxing of

filename
 load 'filename.ijs' similar to 0!:0 except local definitions made inside the

load function do not exist upon completion.
 loadd 'filename.ijs' similar to load except the results of running the script are

displayed.
 open 'filename.ijs' opens the script in an edit window.
 0!:0 y run the J noun y as a script
 0!:1 y run the J noun y displaying the result
 0!:10 y run the J noun y and continue on errors

12. Front End Short-Cut Keys
Many J short-cut keys are defined and users may define their own. A few are mentioned below.

enter grabs current line for editing on the execution input line
F1 help
ctrl-F1 context sensitive help
ctrl-shift-up-arrow scroll up in execution log history
ctrl-d window with execution history
ctrl-tab shift active window
ctrl-E load selection
ctrl-shift-E load selection showing display
ctrl-shift-1 set mark 1 on current line (likewise 2-9)
alt-1 go to mark 1 in current window (likewise 2-9)

The following expression would put "My F2" into the tools menu and execute f2expression
when F2 is pressed.

wd 'smsetcmd 2 1 "&My F2',TAB,'F2" "f2expression";'

9

13. Boxed Arrays
 < y box y
 > y open (unbox) y one level
x ; y link x and y; box x and append to y; if y is unboxed, then box y first
 ; y raze y; remove one level of boxing appending along an existing axis.
 F&.> y apply F inside of each boxed element of y.
 F&> y apply F to the inside of each boxed element of y and adjoin the results.
 a: boxed empty (noun called ace)
 ;: y boxed list of J words in string y; (word formation)
 L. y the depth or deepest level of boxing in y
 F L: n y apply F at level n and maintain boxing. May be used dyadically and left

and right level specified. If boxing is thought of as creating a tree
structure, then L: 0 may be called leaf

 F S: n y apply F at level n and list the result. (spread)
 {:: y map has the same boxing as y and gives the paths to each leaf
x {:: y fetch the data from y specified by the path x

14. Noun Atoms
 r gives rationals; 5r4 is 45
 b gives base representations; 2b101 is 5
 e gives base 10 exponential (scientific notation); 1.2e14 is 14102.1 ×
 p gives base π exponential notation; 3p6 is 63π
 x gives base e (natural) exponential notation; 3x2 is 23e
 x also gives extended precision; 2^100x is the exact integer 1002
 j gives complex numbers; 3j4 is 3 + 4i
 ad gives angle in degrees; 1ad45 is approximately 0.707j0.707
 ar gives angle in radians; 1ar1 is ^0j1
 a. alphabet: gives the list of all 256 characters including the usual ASCII

characters
 a: boxed empty
 _1 negative one; negatives denoted with underline prefix
 _ infinity; an underbar in isolation denotes infinity
 __ negative infinity
 _. indeterminant

15. Conversion: String, Numeric, Base, Binary
 ": y format array y as a character array
ajb ": y format data in y with field width a and b decimal digits;

try 15j10 ": o.i.3 4
 ":!. c y format data showing c decimal figures
 ". y execute or do the string y

10

x ". y convert the data in y to numeric using x for illegal numbers. J
syntax is relaxed so appearances of - in y is treated like _.

 ".@}:;._2 y execute the expressions in CRLF delimited substrings appearing in
y (assuming it ends with CRLF) and adjoin the results

 'm'~ the value of the name m is evoked
 #: y binary representation of y (antibase-two)
x #: y representation of y base the digit values given in x (antibase)
 #. y value of the binary rank-1 cells of y (base-two)
x #. y value of the base x rank-1 cells of y (base)
 3 !: n various binary conversions; for example, 1 (3 !:4) y converts

J floats to binary short floats while _1 (3!:4) y converts
binary short floats to J floats. See the foreign conjunction help.

16. Sorting and Searching
 /: y grade up; indices of items of y ordered so that the corresponding elements

of y would be in nondecreasing order
x /: y sort x according to indices in /:y
 /:~ y sorts items of y into nondecreasing order
 /:/: y rank order of items in y
 \: y grade down; indices of items of y ordered so that the corresponding

elements of y are in nonincreasing order
x i. y indices of items of y in the reference list x
x e. y test if x is an item in y (member of)
 e. y test if the raze is in each open; compare (; e.&>"_ 0])y
x E. y mark beginnings of list x as a sublist in y (pattern occurrence);
 ~. y nub of y; that is, items of y with duplicates removed
({.,#)/.~y may use key to get nub and frequencies appearing in y
 ~: y nubsieve: boolean vector v so v#y is ~.y
 = y self-classify y according to ~. y
(G #])y selects elements of y according to boolean test G;

thus, (2&< #])y gives the elements of y greater than 2.
x -. y the items of x less those in y

See cut in Section 7 and the regex laboratories for matching more complex patterns than those
handled by E..

17. Matrix Arithmetic
x +/ . * y matrix product of x and y (dot product for vectors)
x +/ . = y for vectors, gives the number of places where arguments match
x F/ . G y inner product; F-insert applied to pairwise G's applied row by

column; the last axis of x and first axis of y need to be compatible
(same or 1) and that axis collapses in the product.

x H . G y inner product; H applied to cells of G applied rank _1 _

11

 -/ . * y determinant of y
 F . G y generalized determinant; +/ . * gives the permanent.
x %. y solution z to the linear matrix system y z = x; least squares solution is

given when appropriate. Matrix divide.
 %. y matrix inverse or pseudo-inverse of matrix y
 |: y transpose of y
x |: y generalized transpose of y. The axes listed in x are successively moved to

the end.
 |. y reverse items in y
x |. y rotate items in y by x positions downward along the last axis
 =@i. y gives a y by y identity matrix; multiply by diagonal to get a diagonal

matrix
128!:0 y QR decomposition of y

The J AddOns lapack.ijs and fftw.ijs give extensive linear algebra and fast Fourier transform
utilities, respectively.

18. Rank
Rank can be specified by one, two or three elements. If the rank r contains three elements, the
first is the monadic rank, the second the left dyadic rank and last the right dyadic rank. If it
contains two elements, the first gives the left dyadic rank and the second gives the monadic and
right dyadic rank. All the ranks are the same when a single element is given.

 F"r y apply F on rank r cells of the data y
x F"r y apply F on rank rr cells from x and rank lr cells from y where the right rank

rr and left rank lr are specified by r as noted above.
x F"0 _ y table builder when F is scalar
 N"r the constant function of rank r and result N
 F b. 0 gives the monadic, left and right ranks of the verb F

19. Constant and Identity Functions
] y the result is y, the identity function on y (same)
x] y the result is y, the function is called right
 [y the result is y, the identity function on y (same)
x [y the result is x, the function is called left
 0: y the result is the scalar 0
 1: y the result is 1; likewise, there are constant functions denoted 2: to 9: and _1: to

_9:

 _: y the result is the infinite scalar _
N"r is the constant function with value N on rank r cells

12

20. Function Composition
Atop
 F@G y x F@G y

 F F

 | |

 G G

 | / \

 y x y

Compose
 F&G y x F&G y

 F F

 | / \

 G G G

 | | |

 y x y

Under
 F&.G y x F&.G y

 G
-1

 G
-1

 | |

 F F

 | / \

 G G G

 | | |

 y x y

Hook
 (G H) y x (G H) y

 G G

 / \ / \

 y H x H

 | |

 y y

Fork
 (F G H) y x (F G H) y

 G G

 / \ / \

 F H F H

 | | / \ / \

 y y x y x y

The rank of F@G and F&G is the rank of G. At is denoted @: and is the same as @ except the rank
is infinite. Appose is denoted &: which is the same as & except the rank is infinite. Under is &.:
is the same as &. except for rank infinity; that is, u &.: v is equivalent to u&.(v"_). The

13

ranks of the hook and fork are infinite. Longer trains of verbs are interpreted by taking forks on
the right. Thus F G H J is the hook F (G H J) where G H J is a fork.
Cap
 [: F G has the effect of passing no left argument to F as part of the fork—the left branch
of the fork is capped—thus F is applied monadically

21. More Functions From Functions
 N&G monad derived from dyad G with N as the fixed left argument
 G&N monad derived from dyad G with N as the fixed right argument;

both known as bond or curry
 F~ y reflects y to both arguments; i.e. it is the same as y F y; (reflex)
x F~ y pass interchanges arguments; i.e., it is the same as y F x; (commute)
 F : G function with monad F and dyad G (monad/dyad)
 F :. G function F with obverse (restricted inverse) G
 G f. function G with names appearing in its definition recursively replaced by

their meaning. This fixes (makes permanent) the function meaning
F b. _1 the obverse (inverse) of F
F b. 1 the identity function for F

22. Gerunds and Controlled Application of Functions
 ^: iterate (function power)
F^:n y iterate F a total of n times on y; see the Dictionary for gerund n
F^:_ y iterate F until convergence (limit)
F^:(i.n)y the result of F iterated 0 to n-1 times on y
F^:G^:_ y iterate F on y until G gives false
 F`G tie verbs F and G together forming a gerund
 H/. y evaluate each verb in gerund H taken cyclically on data y (evoke gerund)
 H`:0 y alternative form of evoke gerund resulting in all combinations of functions

from H on y
 H@.F agenda: use F to select verb from gerund H to apply
 F::G adverse: apply F, if an error occurs, apply G instead

Many adverbs and conjunctions have gerund meanings that give generalizations; for example,
gerund insert cyclically inserts verbs from the gerund. Thus +`%/1 2 3 4 is 1+2%3+4.

23. Recursion
One can use self reference of verbs that are named. For example, the factorial can be computed
recursively as follows.

 fac=: 1:`(]*fac@<:)@.*

 fac 3

6

14

 fac"0 i. 6

1 1 2 6 24 120

One can also create a recursive function without naming the function by using $: for self-
reference. The factorial function can be defined recursively without name as follows.

 (1:`(]*$:@<:)@.*) 3

6

 (1:`(]*$:@<:)@.*)"0 i.6

1 1 2 6 24 120

24. Efficiency, Error Trapping, and Debugging
 6!:2 y the time (seconds) required to execute the string y. Optional left

argument specifies the number of repetitions used to obtain
average run time

 7!:2 y the space (bytes) required to execute the string y
 u :: v gives the result of applying the verb u unless that results in an

error in which case v is applied (adverse)
 try. e1 catch. e2 end. is similar except expressions in explicit

definition mode are executed instead of verbs being applied

The foreign conjunctions 13!:n provide debugging facilities. These facilities require a
professional license. With the license, running the debug lab is recommended.

25. Randomization and Simulation
 ? y is a random index from i.y; called roll; for example,

+/\(?100#2){_1 1 is a 100 step random _1 1 walk
 ?. y is a default random index from i.y using 16807 as the random

seed
x ? y is x random indices dealt from i.y without duplication
 9!:0 '' query the random seed
 (9!:1) y set the random seed to y
 randomize '' randomize the random seed; randomize is defined in numeric.ijs

See also system\packages\stat\statdist.ijs for utilities for randomly selecting from various
distributions.

15

26. Complex Numbers
Complex numbers are denoted with a j separating the real and imaginary parts. Thus, the
complex number commonly written 3.1 + 4i is denoted 3.1j4.

 + y complex conjugate of y
 | y magnitude of y
 * y generalized signum; complex number in y direction
 j. y the complex number 0jy; that is, 0 + i y (imaginary)
x j. y the complex number xjy; that is, x + i y (complex)
 +. y the pair containing Re(y) and Im(y), (real/imaginary)
 *. y the polar pair),(θr where y θ= ire , (length/angle)
 r. y is iye (angle to complex)
x r. y is iyxe (polar to complex)

See also the circular functions.

27. Number Theory, Combinatorics and Permutations
 p: y the y-th prime number
 p:^:_1 y the number of primes less than y
 q: y the prime factors of y
x q: y the prime factors of y with limited factor base
x +. y the greatest common divisor (gcd)
x *. y the least common multiple (lcm)
 gcd y the function gcd defined in system\packages\math\gcd.ijs results in the

gcd of the elements of y along with the coefficients whose dot product
with y gives the gcd. Also useful for finding inverses modulo m.

x | y the residue of y modulo x (remainder after division)
 ! y factorial of y for integer y and)1(+Γ y in general
x ! y number of combinations of x things from y things (generalized)
 A. y gives the atomic representation (position) of the permutation y
x A. y applies the permutation with atomic representation x of order #y to y

(atomic permute, anagram)
(i.!n) A. i.n gives all permutations of order n
 C. y gives the cycle representation of the numeric permutation y as a boxed

list; visa versa when y is boxed
x C. y permutes y according to the permutation x (either numeric or boxed cyclic

representations for the permutation may be used)
 { y Cartestian product: all selections of one item from each box in y.

16

28. Exact Integer and Rational Computations
 2x is the exact integer 2 (extended precision)
 2x^100 is the exact integer 1002
 2r3 is the exact rational number 32 (extended precision)
 x: y convert y to extended precision rational
 x:^:_1 y convert y to fixed precision numeric
2 x: y gives the numerator/denominator of extended precision rationals
m&|@(2x&^) y computes my mod2 efficiently (without computing y2)

29. Calculus, Roots and Polynomials
 F D. n y the n-th derivative of F at y
 F d. n y the n-th derivative rank zero: compare to (F D. 1)"0 y
x F D: n y the slope of the secant of F at y and x+y
 F t. n the n-th Taylor series coefficient of F about 0
 F t: n the n-th Taylor series coefficient of F about 0 weighted by !n
 F T. n y the n-th degree Taylor polynomial for F about 0 evaluated at y
 p. y polynomial/root; toggles between coefficient representation and

the leading-coefficient-with-root boxed representation of polynomials
x p. y polynomial specified by x evaluated at points y
 p.. y Derivative of the polynomial specified by y
x p.. y Integral of the polynomial specified by y with constant term x

30. Addons
There are several addons available for J; see http://www.jsoftware.com/download/download.htm
Also, under windows it is easy to use system dll calls; see the J file
system\packages\winapi\win32api.dat

• fftw fast fourier transform package
• JAR (or J-ARchive), is a complete database system for J words, data, test cases

and general scripts
• image2 gives facilities for reading and writing 24 bit images in a variety of

formats (J4)
• image3 like image2, with significant improvements including some

animation and 8-bit support (J5)
• lapack standard linear algebra package; nicest documentation I've seen is at

http://www.cs.colorado.edu/~lapack/
• SFL The SFL (Standard Function Library) from iMatix is a portable function

library for C/C++ programs (lots of general stuff).

An alternate random number generator by Ralph Selfridge has also appeared on the Jforum but
not made it onto the Jsoftware site.

17

31. Graphics
J offers a great number of facilities for doing Windows graphics. Running the Graphics, Open
GL and Plot labs is recommended. The plot.ijs script provides a powerful high level set of useful
utilities. Most users will do well to study the plot lab first. The scripts gl2.ijs and gl3.ijs provide
the graphics functions for windows driver and opengl graphics functions. While the main
features remain, there are significant differences between system graphics for J 4.06 and 5.

Graphics scripts for fvj2 (available from Cliff's J pages) include:
fvj2\dwin+.ijs which gives a simple object based window environment
fvj2\raster5.ijs which contains utilities for working with raster images
fvj2\chaotica+.ijs which contains utilities for working with chaotic attractors

including functions for resolving data in various ways that are
useful in a broader contexts.

fvj2\povkit+.ijs which gives facilities for formatting 3-D scenes for ray tracing by
Pov-RAY

fvj2\owin+.ijs which gives a simple Open GL based 3-D modeling environment.

32. Parts of Speech and Grammar
The words of a string representing a J expression may be obtained using word formation (;:).
Most words are denoted with an ASCII symbol found on standard keyboards, or such a symbol
followed by a period or colon. For example, we may think of "%" as denoting a J word meaning
"reciprocal", and "%." as an inflection of that word meaning "matrix inverse". Basic data objects
in the language are nouns. These include scalars, such as 3.14, as well as lists (vectors) such as
2 3 5 7, matrices which are a rectangular arrangement of elements and higher dimensional
arrays of elements. In general, arrays contain elements that are organized along axes. These
arrays may be character, numeric or boxed. Any array may be boxed and, thereby, be declared to
be a scalar. Nested boxing allows for rich data structures. The number of axes of an array gives
its dimension. Thus, a scalar is 0-dimensional, a vector is 1-dimentional, a matrix is 2-
dimensional and so on. The shape of an array is a list of the lengths of its axes. Often, the shape
can be imagined as being split into two portions, giving an array of arrays. The leading portion of
the split gives the frame (the shape of the outer array) and the other portion corresponds to the
shape of the "element" arrays, giving what are called cells. The items are the cells that occur by
thinking of an n-dimensional array as a list of (n-1)-dimensional arrays. That is, items are rank
_1 cells.

Functions are known as verbs. For example, + denotes plus, %: denotes root, and
(+/ % #) denotes average. Adverbs take one argument (often a verb) and typically result in a
verb. For example, insert, denoted by / is an adverb. It takes a verb argument such as + and
results in a derived verb +/ that sums items. Notice that adverbs take their adverbial argument
on the left. The derived verb may itself take one argument (where it is a monad) or two
arguments (where it is a dyad). It is sometimes helpful to be able to view a function as an object
that can be formally manipulated. This facility is inherent in the J gerund. Gerunds are verbs
playing the role of a noun.

Conjunctions take two arguments and typically result in a verb. For example, dot is a
conjunction. (Dot is an isolated period; be careful to distinguish this from a dot immediately after

18

a nonblank symbol that is an inflection.) For example, with left argument sum and right
argument times, we get the matrix product +/ . * as the derived verb.

The application of verbs to arguments to obtain the result of an expression is often said to follow
a right to left order. Thus 3*5+2 is 21 since the 5+2 is evaluated first. However, it is possible
to think of the expression as being read left to right: 3 times the result of 5 plus 2. Hence, it is
probably safer to describe the order of execution by saying that verbs have long right scope and
short left scope. Of course, one can use parentheses to order computations however desired:
(3*5)+2 is 17.

In contrast to verbs, adverbs and conjunctions bond to their arguments before verbs do. Also in
contrast, they have long left scope and short right scope. Thus, we do not need the parentheses in
(+/) . * to denote the matrix product since the left argument of the dot is the entire (verbal)
expression on its left, namely, +/ which gives the sum. Thus
+/ . * denoted the matrix product.

33. Glossary
Adverb A part of speech that takes an argument on the left and typically results in a verb.

For example, insert / is an adverb such that with argument plus as in +/ the result
is the derived verb "sum".

Atom A 0-dimensional element of an array; it may be numeric, character or boxed.
Axis An organizational direction of an array. The shape of an array gives the lengths

the axes of the array.
Cell A subarray of an array that consists of all the entries from the array with some

fixed leading set of indices.
Conjunction A part of speech that takes two arguments and typically results in a verb. For

example, *:^:3 is a function that iterates squaring three times. Function power
^: is a conjunction.

Dimension The dimension of an array is the number of axes given by the array's shape.
Dyad A verb with two arguments.
Explicit Describes a definition which uses named arguments; for example, a verb defined

using x. and y. .
Fork A list of three verbs isolated in a train so that composition of the functions, as

described in Section 11 occurs.
Gerund A verb playing the role of a noun.
Hook A list of two verbs isolated so that composition of the functions, as described in

Section 11 occurs.
Inflection The use of a period or colon suffix to change the meaning of a J word.
Item A cell of rank _1. Thus, an array may be thought of as a list of its items.
Monad A verb with one argument.
Noun A data object that is numeric, literal (binary) or boxed.
Rank The dimension of cells upon which a verb operates; additional leading axes are

handled uniformly.
Tacit Function definition without explicit (named) reference to the arguments
Verb A function; when it uses two arguments, it is a dyad; and when it uses one

argument, it is a monad.

19

Acknowledgements. These notes grew out of Appendix B that appeared in the author's first
edition of Fractals, Visualization and J. The remarks of Keith Smillie on drafts of these notes
were greatly appreciated.

Clifford A. Reiter
Department of Mathematics
Lafayette College
Easton, PA 18042
reiterc@lafayette.edu
http://www.lafayette.edu/~reiterc

