
1

Fractals and Visualization
for the J User Conference 2000

Clifford A. Reiter
Department of Mathematics

Lafayette College, Easton PA 18042 USA
reiterc@lafayette.edu, http://www.lafayette.edu/~reiterc

Many recent computer experiments have explored fractals. While fractals can be enjoyed for
their visual intrigue, we can also discuss their uses. We will see they can be used to model
complex behavior and visually identify correlations. Moreover, the richness of techniques
available for creating fractals makes them an excellent source for illustrations of techniques for
visualizing data and processes. We will also discuss some image processing techniques unrelated
to fractals. In particular, we will discuss the following topics.

• an ideal fractal
• some random fractal walks
• plasma clouds
• the chaos game and genes
• chaotic attractors
• playful image processing
• local image processing
• deblurring using fast fourier transforms

Variants of many of these examples appear in Fractals, Visualization and J, 2nd edition (FVJ2);
those variants sometimes offer further details and generalizations. Also, an article submitted to
APL Quote Quad gives further details on the deblurring example. The presentation here is the
nub of the conference presentation. However, it is meant to stand on its own, and it offers some
new illustrations and points of view.

An Ideal Fractal
We begin with a construction of a Sierpinski triangle using juxaposition of arrays.

]m=:10*i.3 3 a matrix
 0 10 20
30 40 50
60 70 80

 (,,.~) m the matrix juxaposed above and to the right;
 0 10 20 0 0 0 zero padding appears in the upper right
30 40 50 0 0 0
60 70 80 0 0 0
 0 10 20 0 10 20
30 40 50 30 40 50
60 70 80 60 70 80

2

 (,,.~)^:4 ,1 juxaposition iterated four times on a
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 singleton gives a Sierpinski fractal pattern
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

We can view these fractals as follows. Figure 1 shows four iterations of the construction process
and Figure 2 shows nine iterations of the process. Notice the symmetry in the form of self-
similarity.

 load 'graph'

 viewmat (,,.~)^:4 ,1

 viewmat (,,.~)^:9 ,1

Figure 1. Four iterations toward a Sierpinski
Fractal

Figure 2. Nine iterations toward a Sierpinski
Fractal

3

Random Fractal Walks
In this section we consider some techniques for creating random walks with various Hurst
exponents. Hurst was intrigued by the study of such time series while studying the flow of the
Nile river. The persistence of flood and drought years caused his intrigue. In general, processes
with Hurst exponent between 0.5 and 1 correspond to persistent processes and exponents
between 0 and 0.5 correspond to antipersistent processes. We first create a few utilities: two
create random numbers with uniform and standard normal distributions. The others interpolate
given lists and add random normal numbers to a given array.

 load 'trig'

 randunif=: (? % <:)@:($&2147483647) :({.@[+({:-{.)@[* $:@])

 randunif 5 5 random 5 by 5 array of numbers
 0.131538 0.755605 0.45865 0.532767 0.218959
0.0470446 0.678865 0.679296 0.934693 0.383502
 0.519416 0.830965 0.0345721 0.0534616 0.5297
 0.671149 0.00769819 0.383416 0.0668422 0.417486
 0.686773 0.588977 0.930436 0.846167 0.526929

 randsn=: cos@+:@o.@randunif * %:@-@+:@^.@randunif

 randsn 10 random list of 10 standard normal numbers
_1.46889 0.0371147 1.32234 _0.558556 0.00806478 0.732527
_0.279593 0.0520541 _0.454074 1.33969

 interp=: (}. + }:)@:(2: # -:)

 interp 1 3 10 interpolate a list
1 2 3 6.5 10

In order to obtain walks with nice properties, we follow the same construction as in FVJ2 and
use the following for the original standard deviation perturbation on an array. Then the standard
deviation for a general array is the product of that with the reciprocal of the size of the array
raised to the Hurst exponent power. The verb randadd applies that random addition to an input
array.

 osz=:%:@-.@(2&^)@+:@<:@[

 0.9 osz 1 original size standard deviation for
0.359791 random additions with this Hurst exponent

 0.1 osz 1
0.84429

4

 sz=:osz * %@+:@<:@#@] ^ [

 randadd=:] + sz*randsn@$@]

The random walks are created by iterating
interpolation and random additions upon an
initial vector with two elements. Figure 3
shows the result when a Hurst exponent of
0.1 is used and Figure 4 shows the result
when a Hurst exponent of 0.7 is used. Figure
5 shows Sunspot data. What do you think the
Hurst exponent of the sunspot data is?

 hwalk=: 4 : 'x. ([randadd interp@])^:y. (x. osz 1)*randsn 2 '

 load 'plot'

 plot 0.1 hwalk 8 create Figure 3

 plot 0.9 hwalk 8

 plot 0.7 hwalk 8 create Figure 4

 load 'fvj2\ts_data'

 plot 250{.sunspots create Figure 5

Figure 3. A Random Walk with Hurst
Exponent 0.1.

Figure 4. A Random Walk with Hurst
Exponent 0.7.

Figure 5. Some Sunspot Dat.

5

Plasma Clouds
It is interesting that only very small changes to the 1-dimensional random walk functions need to
be made in order to create a 2-dimensional random walk (also called a plasma cloud). In
particular, we need to interpolate along both axes and begin with an initial matrix rather than a
list. We will show the resulting arrays with false coloring by hues (that is, colors ranging from
red to magenta correspond to the height of the walk. In order to make the image suitable for
saving as an 8-bit raster array, it is convenient to make those heights discrete. We accomplish
that with the cile function.

 interp2=:interp"1@:interp interpolate rows and columns

 hwalk2=:4 : 'x.([randadd interp2@])^:y.(x. osz 1)*randsn 2 2'

 0.1 hwalk2 2 a 2-dimensional random walk
 0.694055 0.965148 0.813761 1.7371 3.68347
 0.264332 _0.578903 1.30879 0.183548 0.804614
 _1.1384 _1.70865 _0.206643 0.15884 0.183516
 0.166768 0.496437 _0.760414 _1.79932 1.18048
_0.0255202 _0.312702 _0.513639 _0.642307 _0.99058

 load 'fvj2\raster4 fvj2\povkit' load raster utilities

 lv=: 3 : 0 a function to run a viewer
wd 'winexec "c:\win_apps\lview\lview31.exe ',y.,'"'
)

 p=:hue 5r6*(i.%<:)256 a 256 color palette

Figure 6. A Plasma Cloud with Hurst
Exponent 0.2.

Figure 7. A Plasma Cloud with Hurst
Exponent 0.7.

6

 (p; 256 cile 0.2 hwalk2 9) writebmp8 'fig6.bmp'

 lv 'fig6.bmp'
0
 (p; 256 cile 0.7 hwalk2 9) writebmp8 'fig7.bmp'

 lv 'fig7.bmp'
0

Figures 6 and 7 show the result of a plasma cloud with Hurst exponent 0.2 and 0.7. Notice that
both clouds are coherent, but that the variation is much slower with the higher Hurst exponent.

The Chaos Game and Genes
The chaos game is an image building technique that plots a sequence of points. Each point is
halfway between the previous point and some randomly selected vertex of a fixed polygon. We
will restrict our attention to the unit square, with its four vertices, as our fixed polygon.

]sq=:#:0 1 3 2 the four vertices of the unit square
0 0
0 1
1 1
1 0

 mid=:-:@+ function for computing midpoints

 0.2 0.2 mid 0 1 a midpoint computed
0.1 0.6

]r=:(?.4#4){sq four random vertices
0 0
1 0
0 1
1 1

 mid/\.r the chaos game on those four points
0.375 0.25 starting from the bottom
 0.75 0.5
 0.5 1
 1 1

The previous computation uses suffix scan in order to do the midpoint inserts efficiently. Now
we apply and plot the results for 300,000 randomly selected vertices. The result is shown in
Figure 8. Notice the result is a uniformly filled square (up to randomness). Figure 9 shows the
result when only the first three vertices are chosen. Notice the Sierpinski Triangle results. Figure
10 shows the result when all four vertices are allowed, but a bias in favor the first three is used.

7

Notice the square is filled, but shadows of the Sierpinski triangle are visible. The main point is
that deviations from the randomly filled square correspond to bias in the data.

 load 'fvj2\raster4'

 vwin 'cg'[wd 'reset;'

 vshow vpixel mid/\. sq{~ ?300000$4 create Figure 8

 vwin 'cg'[wd 'reset;'

 vshow vpixel mid/\. sq{~ ?300000$3 create Figure 9

 vwin 'cg'[wd 'reset;'

 vshow vpixel mid/\. sq{~ 4|?300000$11 create Figure 10

We now turn to using DNA data to select the order of our vertices. Figure 11 shows some sample
DNA data. We create our list of vertices by only keeping the entries in 'cagt' from the DNA
file text.

 open 'c:\j\405b\user\dna_y54g9.ijs' shown in Figure 11

 load 'c:\j\405b\user\dna_y54g9.ijs'

 dna=:(-.~.@(-.&'cagt'))Y54G9 the c-a-g-t gene sequence

Figure 9. The Chaos Game Using Three
Vertices.

Figure 8. The Chaos Game Using Four
Vertices.

8

 vwin 'cg'[wd 'reset;'

 vshow vpixel mid/\. sq{~ 'cagt' i. dna create Figure 12

Notice dark upper left and lower right corners. They show that sequences of a's and t's seem to
appear more often than expected if they were random.

Figure 11. A Script File Containing the Amino Acid Sequence for a Gene.

Figure 10. The Chaos Game Using Four
Vertices with a Bias Toward Three.

9

Chaotic Attractors
Chapter 5 of FVJ2 is devoted to creating chaotic attractors. This includes attractors with no
special symmetry and those with a great variety of symmetry types. These include cyclic
symmetry, frieze pattern symmetry (repetition of a motif along a line) and all of the symmetries
of the planar crystallographic groups (wallpaper symmetries). Some hyperbolic symmetry groups
are considered as well. Examples from FVJ2 illustrating chaotic attractors include Figure 13,
which has frieze symmetry, Figure 14, which has crystallographic symmetry with a kind of 3-
fold rotational symmetry on a hexagonal lattice, and Figure 15 which has hyperbolic symmetry
arising from an iterated function system.

We will illustrate the constructions via an example with p4g symmetry. That
crystallographic group has 4-fold rotational symmetry along with glide reflections. We begin by
constructing some random functions in the plane. The adverb DF constructs a double (2-variable)
Fourier series with given coefficients. The function mkrandf creates a random function with
coefficients selected in the specified range.

 load 'fvj2\chaotica trig'

 four=: 1: , sin , cos , sin@+: , cos@+:

 four 1r3p1 Fourier sequence at a point
1 0.866025 0.5 0.866025 _0.5

 DF=:1 : '1: | ((m."_ +/ . * {:)+/ . * {.)@:(four"0)@(2p1&*)'

 mkrandDF=:2 : '((m.*_1 1) randunif 2 5 5) DF'

Figure 12. The Chaos Game Showing the
Bias in a DNA sequence.

10

 mkrandf=:0.14 mkrandDF

 f=:'' mkrandf a random double Fourier series function

 f^:(i.5) 0.1 0.4 its iterates have no special structure
 0.1 0.4
 0.502265 0.739905
0.0989961 0.92448
 0.997826 0.558391
 0.792996 0.135455

The main chaotic attractor search function defined in chaotica.ijs is ca_create. It requires
several global definitions. First, a verb that gives the window bounds for the plot window is
required. Here the plot window will always be the unit square. Second, some measure of the
fullness of the window is required. Here we check whether every row and column has been
visited (and append the number visited).

 winsq=: 0 0 1 1"_

 winbd=: winsq window bounds are the unit square

 fullsq=: 3 : '(([:*./#=+/),+/)(+./,.+./"1)*y.'

 fullness=:fullsq tests if all rows and columns are visited

Now we turn to the construction of the symmetries of p4g. The generators of the symmetry
group may be found in the International Tables of Crystallography. First we consider two
matrices that specify symmetries in homogeneous coordinates. The first is a central inversion
(which is a sign change in both coordinates). The second is a 4-fold rotation around the origin.
We then take matrix products of the generators repeatedly until no new elements are found. (This
computes the group closure).

]m0=:_1 0 0,0 _1 0 ,:0 0 1
_1 0 0
 0 _1 0
 0 0 1

]m1=:0 _1 0,1 0 0,:0 0 1
0 _1 0
1 0 0
0 0 1

Figure 13. A Chaotic Attractor with Frieze Symmetry.

11

 prods=:\:~@~.@(**|)@([,(,/)@:((+/ . *)"2/))

 prods~ m0,:m1
 1 0 0
 0 1 0
 0 0 1 we get

four matrices
 0 1 0
_1 0 0
 0 0 1

 0 _1 0
 1 0 0
 0 0 1

_1 0 0
 0 _1 0
 0 0 1

 prods^:_~ m0,:m1
 1 0 0
 0 1 0
 0 0 1 same four allowing

more iterations
 0 1 0
_1 0 0
 0 0 1

 0 _1 0
 1 0 0
 0 0 1

_1 0 0
 0 _1 0
 0 0 1

The third generator for the p4g symmetry group is a glide reflection. That is, a reflection through
the first variable and translation by half a cell along a diagonal. This is given by the matrix m2.
Since iterating matrix products of that matrix with itself would lead to arbitrarily long
translations, we reduce those translations mod 1 (using tr) in the function Prods.

]m2=: _1 0 0, 0 1 0,:_0.5 0.5 1
 _1 0 0
 0 1 0
_0.5 0.5 1

Figure 14. A Chaotic Attractor with
Crystallographic Symmetry

12

]tr=:0,0,:1 1 0
0 0 0
0 0 0
1 1 0

 Prods=:[: ~. tr"_ |"2 prods

 $p4g=:Prods^:_~ m0,m1,:m2 there are eight elements of the symmetry
8 3 3 group (modulo the mod 1 reduction)

 2 4$<"2 p4g
⁄ƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒø
≥1 0 0 ≥ 1 0 0≥ 0 1 0≥ 0 1 0 ≥
≥0 1 0 ≥ 0 _1 0≥ 1 0 0≥_1 0 0 ≥
≥0 0 1 ≥0.5 0.5 1≥0.5 0.5 1≥ 0 0 1 ≥
√ƒƒƒƒƒƒ≈ƒƒƒƒƒƒƒƒƒ≈ƒƒƒƒƒƒƒƒƒ≈ƒƒƒƒƒƒƒ¥
≥0 _1 0≥ 0 _1 0≥ _1 0 0≥_1 0 0≥
≥1 0 0≥ _1 0 0≥ 0 1 0≥ 0 _1 0≥
≥0 0 1≥0.5 0.5 1≥0.5 0.5 1≥ 0 0 1≥
¿ƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒŸ

We obtain a function with the desired symmetries by taking the identity function plus a sum of
conjugates of a given function modulo 1. Conjugates are like J's under conjunction, since the
inverse symmetry is applied to the given function which was applied to the symmetry. There are

Figure 15. An Attractor with Hyperbolic
Symmetry Coming from an Iterated
Function System.

13

a variety of details (see FVJ2 for more) since the function takes pairs as input and applying the
matrix symmetries requires homogeneous coordinates.

 crycon=: 2 : 0
x=.+/ . *
1: |] + }:@(+/)@(] x"1 2 (%.n.)"_)@:((,1:)@u.@}:"1)@(] x"1 2
n."_)@(,1:) f. (run-on line continued)
)

 mkrandcry=: 2 : ' m. mkrandDF 0 crycon n.'

 mkrandf=: 1 : '0.03 mkrandcry p4g'

 f=:'' mkrandf function with p4g symmetry

 s=:] +/ . *"_ 2 p4g"_ we can observe the symmetry

 1|s (,1:) f 0.1 0.4
0.23864 0.26136 0
0.73864 0.23864 0
0.76136 0.73864 0
0.73864 0.23864 0
0.26136 0.76136 0
0.23864 0.26136 0
0.26136 0.76136 0
0.76136 0.73864 0

 f"1 }:"1 s 0.1 0.4 1
0.23864 0.26136
0.73864 0.23864
0.76136 0.73864
0.73864 0.23864
0.26136 0.76136
0.23864 0.26136
0.26136 0.76136
0.76136 0.73864

We can use ca_create to create functions of this type and it results in low quality sample
images. We create 3 images below (setting the random seed so the experiment can be replicated).

 (9!:1) 2050148813 set the random seed

 3 ca_create '\temp\5\pgma'
k: 0 ful: 186 186 L: 0.536602 _0.452262
k: 1 ful: 500 500 L: 0.218792 _0.064359
k: 1 ful: 81 81 L: 0.306514 _0.48405
k: 2 ful: 500 500 L: 0.562975 _0.697111
k: 2 ful: 306 306 L: 0.199107 _0.761448
k: 3 ful: 500 500 L: 0.375233 _0.0573264
3

Upon viewing the created files, it appears that p4g001.bmp might be the most interesting. Thus
we create a higher resolution version as follows. We then use the function tilebmp to tile the
high resolution version.

14

 f=:fp4g001 set global f to be the desired function

 ca_hr 'p4g_h' begin high resolution iteration

 (10#,:20 200000) ca_hr_add 'p4g_h' add 40,000,000 iterates

 tilebmp=:3 : 0"1
2 2 tilebmp y.
:
'p b'=.readbmp8 y.
'r s'=.<.x.*$b
b=.s$"1 r$b
(p;b) writebmp8 y.
)

 2 3 tilebmp 'p4g_h.bmp'

The resulting image is shown in Figure 16.

Figure 16. A Chaotic Attractor with p4g Crystallographic Symmetry.

15

Playful Image Processing
We use the image stones.bmp from FVJ2 for some simple and fairly direct image processing.
Figure 17 shows the original image. Figure 18 shows the images after being grayscaled, Figure
19 shows the negative image, Figure 20 shows the color planes permuted, and Figure 21 shows
the image with the red-green and blue color planes rotated slightly out of synchronization.

 lv '\j\404a\fvj2\stones.bmp'
0

 $B=: readbmp24 'fvj2\stones.bmp' read the stones image as an array
373 562 3

 (3&#@<.@(+/%#)"1 B) writebmp24 'fig18.bmp'

 lv 'fig18.bmp'
0

 (255-B) writebmp24 'fig19.bmp'
 lv 'fig19.bmp'
0

 (1 2 0&{"1 B) writebmp24 'fig20.bmp'
 lv 'fig20.bmp'
0

 (|: 10 0 _10 |."0 2 |:B) writebmp24 'fig21.bmp'
 lv 'fig21.bmp'
0

Figure 17. The Stone Building Image.

16

Figure 18. The Grayscale Image.

Figure 19. The Negative Stone Building Image.

17

Figure 20. The Stone Building Image with Colors Permuted.

Figure 21. The Stone Building Image with Color Planes Rotated.

18

Local Image Processing
As our last example of image processing with the stones.bmp image, we locally average the red,
green, blue triples using _3 cuts on 5 by 5 tessellations. This gives a blurred image, but removes
some artifacts: most of the glare reflections from the back of the vertical stones has been
removed. The result is shown in Figure 22.

 3 3 <;._3 i. 5 5 boxing a 3 by 3 tessellation
⁄ƒƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒƒø
≥ 0 1 2≥ 1 2 3≥ 2 3 4≥
≥ 5 6 7≥ 6 7 8≥ 7 8 9≥
≥10 11 12≥11 12 13≥12 13 14≥
√ƒƒƒƒƒƒƒƒ≈ƒƒƒƒƒƒƒƒ≈ƒƒƒƒƒƒƒƒ¥
≥ 5 6 7≥ 6 7 8≥ 7 8 9≥
≥10 11 12≥11 12 13≥12 13 14≥
≥15 16 17≥16 17 18≥17 18 19≥
√ƒƒƒƒƒƒƒƒ≈ƒƒƒƒƒƒƒƒ≈ƒƒƒƒƒƒƒƒ¥
≥10 11 12≥11 12 13≥12 13 14≥
≥15 16 17≥16 17 18≥17 18 19≥
≥20 21 22≥21 22 23≥22 23 24≥
¿ƒƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒƒŸ

 lavg=:<.@(+/ % #)@(,/) apply this averaging on a 5 by 5 tessellation

 (,/"2]5 5 lavg ;._3 B) writebmp24 'fig22.bmp'

 lv 'fig22.bmp'
0

Figure 22. The Stone Building With Local Averaging.

19

Deblurring Using Fast Fourier Transforms
Our last illustration uses fast Fourier transforms to remove motion blur. The basic idea is that we
compute the Fourier transform of the blurred image and do a modified divide by the Fourier
transform of a line segment representing the blur. The magnitude of the inverse transform of that
quotient is the deblurred image. In practice, we also need to recenter the image.

 lv '\j\404a\fvj2\blur.bmp' view the blurred image
0

 'p b'=:readbmp8 '\j\404a\fvj2\blur.bmp'

 $b
834 834

 lv '\j\404a\fvj2\line.bmp'
0
 'p lin'=:readbmp8 '\j\404a\fvj2\line.bmp'

 load 'addons\fftw\fftw' load fast fourier transform package

 fb=: fftw b transform of the blurred image

 fl=: fftw lin transform of the line

 fi=:(fb * + fl)%(*:|fl)+10*255^2

 i=:fftw^:_1 fi

 (p;<.255*(]%>./@,)|i) writebmp8 'temp.bmp'

 lv 'temp.bmp' deblurred, but incorrectly centered
0

 hr=:-:@# |.] recenter an axis

 HR=:hr"1@hr recenter a matrix

 (p;HR <.255*(]%>./@,)|i) writebmp8 'fig25.bmp'

 lv 'fig25.bmp'
0

20

Figure 23. The Motion Blurred Image.

Figure 24. The Line of the Blur.

Figure 25. The Deblurred Image.

