
Larger than life automata

Cliff Reiter (reiterc@lafayette.edu)

Larger than life automata have been known for some decades. Recent examples in
[1] triggered the author's interest into investigating them with J. These automata use
rules that are a straightforward generalization of the rules for the Conway's Game of
Life that was popularized by Gardner and others [2-7] and is likely the most widely
known automaton.

Section 1. Introduction

In general, an automaton is a process for updating an array of cells where each cell is
in one of a ϐinite number of states and updating is according to a rule based on local
neighborhoods  and  that  rule  is  applied  to  every  neighborhood.  General
introductions include [5-7].  The Game of  Life is  a  2-dimensional  automaton that
evolves  from  generation  to  generation  using  the  following  rule  on  each  3  by  3
neighborhood:  if  the  center  cell  is  dead  (0)  then  it  becomes  alive  at  the  next
generation if exactly 3 of its eight neighbors are alive; if the center cell is alive (1),
then it remains alive if 2 or 3 of its eight neighbors are alive. A Larger than Life (LtL)
automaton has ϐive parameters:  r,  a,  b,  c,  d.  The radius r  deϐines  the  size  of  the
neighborhoods which are 2r+1 by 2r+1. Let s denote the number of alive cells in an
2r+1  by 2r+1  neighborhood, including the center.  Then a dead cell becomes alive
when a ≤ s ≤ b and an alive cell remains alive if c ≤ s ≤ d. In this notation, the Game of
Life is the LtL rule 1 3 3 3 4 automaton. Notice that LtL automata easily generalize to
n-dimensional  automata.  In  Section  2  we  will  consider  the  1-dimensional  case
before turning to the more traditional 2-dimensional LtL automata.

In  the  1990's  and  later  David  Griffeath  and  Kellie  Evans  investigated  many  LtL
automata.  Indeed, it  was the topic of  Evan's PhD thesis [8].  We will  mention the
particular LtL automata from [1] in Section 3 but the interested reader can ϐind a
wealth of material on their web pages [9-10] and in their publications [11-15].

Section 2. One-dimensional Larger than Life Automata

We begin our implementation and examples with the one-dimensional version. We
deϐine nl to decide whether new life will appear and rl  to decide if a cell should
remain alive, then we use the center cell to decide which of those to apply to a local
neighborhood. Thus, lltl applies this automata to a single neighborhood.

   'r a b c d'=.4 2 3 3 4

   nl=.(a&<: *. <:&b)@:(+/)
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   rl=.(c&<: *. <:&d)@:(+/)

   cen=.r&{

   lltl=.nl`rl@.cen

   lltl 0 1 1 1 1 0 0 0 0
1

We  load  the  ltl.ijs  script  from  the  graphics/fvj4  addon.  It  in  turn  loads  the
automata.ijs which is designed for use with the author's text [16] and also loads the
adverbs used in this note. We will use of some of the automata utilities. In particular,
below we use nperext for periodic extension. We use lltl;._3 to apply the local
rule lltl  to the 2r+1  sized tesselations.  The periodic extension assures that the
input and output are the same length. We iterate that i.4 steps as an illustration.

   load '~addons/graphics/fvj4/ltl.ijs'

   (1+2*r)&(lltl;._3)@:(r nperext)^:(i.4) ?.20#2
0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 0 0 1 0
0 1 0 1 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1
0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0

We can see the adverb to build this tacit automaton and use it to build a larger image
as follows.

   LtL1d
1 : 0
'r a b c d'=.m
nl=.(a&<: *. <:&b)@:(+/)
rl=.(c&<: *. <:&d)@:(+/)
cen=.r&{
lltl=.(nl`rl@.cen)
(1+2*r)&(lltl;._3 f.)@:(r nperext)
)

   b=:4 2 3 3 4 LtL1d^:(i.250) ?.250#2

   WB=:255,:0 0 0

   view_image WB;3 spix b

A common colouring scheme for two-dimensional LtL automata uses the time when
a cell became alive. In order to accomplish that, our arrays will use 0 to denote a
dead cell, but a positive entry speciϐies when the cell most recently became alive. We
deϐine a LtL automata adverb LtL1dt (note the "t") that temporarily marks new life
with _1 and reassembles the new and old with the appropriate step required. Note
that the left tine of the hook in the ϐinal line will be called with arguments of the
form:

oldarray (((1+>./)@[*_1&=@])+(*1&=@])) temparray

where oldarray is the input array and temparray has _1 where there is new life, a
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0 for a dead site, and a 1 if the cell remains alive. Note that since the original array
had 1s in it,  if  a cell most recently became alive at iteration 3,  the cell would be
marked with a 4.

   LtL1dt
1 : 0
'r a b c d'=.m
nl=.(_1 * a&<: *. <:&b)@:(+/)
rl=.(c&<: *. <:&d)@:(+/)
cen=.r&{
lltl=.(nl`rl@.cen)
(((1+>./)@[*_1&=@])+(*1&=@])) (1+2*r)&(lltl;._3 f.)@:(r nperext)@:*
)

   4 2 3 3 4 LtL1dt^:(i.4) ?.20#2
0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 0 0 1 0
0 1 0 1 0 0 0 0 1 1 0 0 2 2 0 2 2 2 1 2
0 0 0 1 3 0 3 3 1 1 0 0 0 0 0 0 0 0 0 0
4 4 4 1 0 0 0 0 0 1 0 4 4 0 0 0 0 0 0 0

Again we iterate this 250 steps on an initial random conϐiguration of 250 cells with
periodic boundaries we get the result seen in Figure 1. The colours in Figure 1 run
from red to magenta according to the most recent time the cell became alive while
dead cells are white (the palette P254 gives those properties). Notice the triangular
structures of dead cells seem to be ubiquitous. No cell stays alive for many steps, so
there is a general, almost uniform, trend to run from red to magenta.

   b=:4 2 3 3 4 LtL1d^:(i.250) ?.250#2

   view_image P254;3 spix b
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Figure 1. The 4 2 3 3 4 LtL 1-D automaton.

Next  we consider  1-D LtL  rule  10 2  6  8  12.  The result  (not  using  the  standard
random seed) is shown in Figure 2. Notice that many stable regions appear, at least
for a time. There also are a few periodic regimes.

   b=:10 2 6 8 12 LtL1dt^:(i.250) ?250#2

   view_image P254; 3 spix b
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Figure 2. The 10 2 6 8 12 LtL 1-D automaton.

As our last 1-D example in this section we consider LtL rule 7 3 3 4 6. The initial
conϐiguration  is  given  by  0.5>?.250#0  (J8.05).  Notice  the  stable  and  periodic
conϐigurations and the self replicating moving patterns.

   b=: 7 3 3 4 6 LtL1dt^:(i.250) 0.5>?.250#0

   view_image P254; 3 spix b
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Figure 3. The 7 3 3 4 6 LtL automaton.

Section 3. Two-dimensional Larger than Life Automata

Two-dimensional  Larger  than  Life  automata  can  be  implemented  using  modest
modiϐications to LtL1d and LtL1dt. In particular, we need square tesselations, we
need  to  locate  the  center  in  ravel  order,  we  need  to  extend  periodically  in  two
dimensions and we need sum over the square neighborhoods. The 2-D versions are
LtL and LtLt depending on whether we keep track of the most recent time an alive
cell  became alive.  The deϐinition for  LtL  is  shown,  but the  deϐinition of  LtLt  is
available in the script ltl.ijs.

   LtL
1 : 0
'r a b c d'=.m
nl=.(a&<: *. <:&b)@:(+/)
rl=.(c&<: *. <:&d)@:(+/)
cen=.(2*r*r+1)&{
lltl=.(nl`rl@.cen)@,
(2#1+2*r)&(lltl;._3 f.)@:(r nperext2)
)

As our ϐirst example we consider Griffeath's "Life without Death" [15]. Namely, LtL
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rule 1 3 3 0 9 with a very sparse initial  conditions 0.005>?.1000 1000$0.  Not
surprisingly,  the alive region tends to expand.  We can use show_auto  to  display
progress or build a color ϐinal image. Expressions to accomplish those are shown
below. Each of those takes several minutes. Alternately, an animation showing this
time evolution is available at [17].

   VRAWH=:1000 1000

   n=:0.005>?.1000 1000$0

   1500 0 (1 3 3 0 9 LtL) show_auto n
0

   b=:1 3 3 0 9 LtLt^:1500 n

   P=:0,Hue 5r6*(i.%<:) >./,b

   view_image P; b

Figure 4 shows the result after 1500 time steps.  Note that color denotes the last
(which is  here the same as ϐirst)  time a cell  becomes alive.  Here we used a hue
palette. Notice that for our 2-dimensional automata we have switched to using black
for the dead cells.
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Figure 4. The 1 3 3 0 9 LtL automata.

Griffeath's illustration [15] uses a brown palette with periodic changes in saturation
that gives a beautiful botanical feel. Another striking LtL rule from Griffeath [15] is
rule 13 10 100 100 320 where concentric rings of stable alternating alive and dead
bands self-organize.  Evans [13] shares rule 50 2834 3975 2834 5850 where the
initial density of alive is between 56.4 and 58 percent gives rise to dramatic self-
organized mazes. As mentioned earlier, many other examples appear in [8-15].

We now turn to some interesting 2-dimensional examples that we have discovered.
The ϐirst we call scribble. It evolves bands of alive and dead regions with a signiϐicant
portion  of  the  cells  alternating  between  alive  and  dead.  However,  nothing  stays
stable and the scribbles form and reform in new patterns.

   n=:?.600 600$2

   (+/%#),*b=:3 1 16 17 19 LtL^:100 n
0.3781

   P=:0,Hue 5r6*(i.%<:) >./,b

   view_image P;2 spix b
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If you run that experiment, you will see magenta scribbles that cover about 38% of
the image. If we make a frequency table we see that no cell has been alive for more
than a few steps.

   ({.,#)/.~,b
  0 223884
101 130579
100   5115
 99    361
 98     48
 97     12
 96      1

Thus we turn to using a different visualization scheme. We compute three successive
steps and then use the result to give an RGB value. Thus, a magenta cell would have
been alive on the ϐirst and the last steps, but not the intermediate one. The result is
shown in Figure 5.

   $N=:3 1 16 17 19 LtL^:(i. 3) * b
3 600 600

   view_image 2 spix 255*0|:N

Figure 5. The 3 1 16 17 19 LtL automata: scribble.
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Thus we see that magenta and green almost complement each other which would
mean that there is almost an oscillation. However, there are substantial regions of
red and blue which break the oscillation. Note there are very few white pixels that
represent life at all three steps. This kind of behavior seems to be fairly common.

Our next example is  rule 15 10 160 160 420 which was inspired as a variant of
Griffeath's rule 13 10 100 100 320. We initialize an array with about 45% alive cells
and  run  one  hundred  iterations  and  combine  three  successive  steps  as  in  the
previous illustration. The result is shown in Figure 6.

   n=:0.45>?.600 600$0

   N=:15 10 160 160 420 LtL^:(100+i.3) n

   view_image 2 spix 255*0|:N

Figure 6. The 15 10 160 160 420 LtL automata: LtL 420.

Notice the stable regions of black and white stripes. Cyan regions are the birth of
stable regions. However, they are not long lived. The wandering magenta scribbles
erase  the  stable  regions  and  new  stable  regions  emerge.  We  considered  many
varinats on this rule. In particular, rule 15 10 135 160 420 has much larger stable
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regions.  An  animation  of  the  time  evolution  of  that  variant  is  available  at  [17].
Raising the lower bound for  alive cells  to remain alive slowly reduces the stable
zone. Rule 15 10 160 391 420 is worth a look. Remarkably, we can take the bound all
the way to 420. Figure 7 shows the result of the 15 10 160 420 420.

Figure 7. The 15 10 160 420 420 LtL automata: LtL 420.

Several variants of these 420 automata are available at [17].

Section 4. Interesting Random LtL Automata

After experimenting with LTL automata in an ad hoc way, we paused to think about
how one might look for interesting random examples. For both 1-dimensional and 2-
dimensional LTL automata we picked a random radius between 1 and 9 or 10. Then
we took 4 random numbers between 0 and around one quarter of the number of
cells  in  a  neighborhood.  The  partial  sums  of  that  list  formed  our  remaining
parameters. Then we ran small images and considered them interesting if they were
not  ϐixed or  of  a  small  period.  In  that  case  a  larger  version  image  was  created.
Several hundred were created for browsing. Some favorites are available at [17]. We
share two here. Rule 3 1 3 5 6 in 1-dimension gives the image shown in Figure 8.
This was initialized on 250 random cells with default (J8.05) random seed.
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Figure 8. The 1-dimensional 3 1 3 5 6 LtL automata.

The  2-dimensional  5  20  31  33  47  LtL  automaton  is  shown  in  Figure  9.  It  was
initialized on a 500 by 500 random array with default seed. Yes,  it  has a perfect
vertical and horizontal axis of symmetry up to the periodic boundary conditions. An
animation of its time evolution is available at [17]. This striking result is an artifact
of the fact that the thresholds are difϐicult for a uniform random array to satisfy.
Thus, by the sixth iteration, only 20 cells are alive, the minimum for anything to be
alive at the next step. The alive cells are in small patch: a 4 by 4 block with a pair of
cells centered on top and bottom of the block. Thus, the symmetry arises at step 6.

Larger than life automata file:///C:/r/ltl/vec_html/ltl.htm

12 of 14 1/15/2025, 12:07 PM



Figure 9. The 5 20 31 33 47 LtL automata on a random initial conϔiguration.
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