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Abstract 
The behavior of one and two dimensional automata are 
displayed in two and three dimensions and via 
animations.  Implementations of finite automata in J 
using "infix" and "cut" to distribute local definitions of 
finite automata are compared.  Abstract automata are 
considered along with applications to image processing 
and surface plotting. 
 
Introduction 
A finite automaton or cellular automaton is an infinite 
array of cells where each cell can assume a value from 
a finite set along with rules for progressing from one 
configuration of cell values to another.  The set of 
possible values could just be the set of Boolean values 
0 and 1 or it could be a huge set like the set of all 
allowed RGB-triples used to describe the value of a 
pixel in a color image.  The values in the array are 
updated in each generation by some local rule.  That is, 
there is a rule that depends only on the values of the 
cells within some finite neighborhood of each cell and 
that rule is applied to determine the state of each cell at 
the next generation.  In practice, finite arrays of cells 
are used and the method selected for handling the 
boundary cells can have a considerable impact on the 
observed behavior.  For convenience, we will only 
consider periodic boundary conditions since these are 
easy to implement and this choice usually has the least 
impact on the qualitative behavior.  
 Automata are used to simulate various 
processes and there is a rich literature of the theory and 
application of automata, see [4,10].  We will see there 
is a wonderful variety of qualitative behaviors.  
Readers familiar with J [2,3] ought to be able to follow 
all of the details of the examples given herein.  Others 
should be able to get a feeling for the qualitative 
behavior of automata (and J).  We will 

compare one of the constructions in [8] to alternatives 
and see the convenience of J for implementing local 
rules.  All examples are given in J Release 2.03 for 
windows. 
 
One Dimensional Automata 
For a first example, consider an automaton that consists 
of a Boolean vector along with the rule that adds 
modulo 2 the value of each cell with the value of the 
cell on its left.  Addition modulo 2 is the same as the 
"not-equals" function, ~:.  The function rotr 
rotates each cell in its argument one position to the 
right.  We then implement the automata described 
above as auto1. 
 
   rotr=._1&|. 
   rotr i.8 
7 0 1 2 3 4 5 6 
 
   auto1=.~: rotr  
   u 
0 0 1 0 0 1 1 0 0 
   auto1 u 
0 0 1 1 0 1 0 1 0 
 
   ]v=.0=i.8 
1 0 0 0 0 0 0 0 
   auto1 v 
1 1 0 0 0 0 0 0 
 
We can view several iterates of this automaton on the 
input which has a single initial cell lit. 
 
   auto1^:(i.8) v 
1 0 0 0 0 0 0 0 
1 1 0 0 0 0 0 0 
1 0 1 0 0 0 0 0 
1 1 1 1 0 0 0 0 
1 0 0 0 1 0 0 0 
1 1 0 0 1 1 0 0 
1 0 1 0 1 0 1 0 
1 1 1 1 1 1 1 1 
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The result is a finite version of the Sierpinski triangle.  
We can easily increase the size of this experiment and 
view the results.   
 
   z=.auto1^:(i.128) 0=i.128  
   pal=.255,:0 0 0 
   (pal;z) writebmp8 'auto.bmp' 
   viewbmp 'auto.bmp' 
 
There we defined a black and white two color palette: 
pal.  We also used two utilities defined in the script 
isigraph\bmp.js.  The first is writebmp8 which is 
used to create a windows bitmap file called auto.bmp.  
That file is then viewed with viewbmp.  The result is 
shown in Figure 1.  This makes the self-similarity of 
this finite array more apparent. 

 Next, the same construction is used on random 
input.   
 
   8 8{.z=.auto1^:(i.128) ?128#2 
0 0 1 0 1 1 0 1 
0 0 1 1 1 0 1 1 
0 0 1 0 0 1 1 0 
0 0 1 1 0 1 0 1 
1 0 1 0 1 1 1 1 
1 1 1 1 1 0 0 0 
1 0 0 0 0 1 0 0 
1 1 0 0 0 1 1 0 
 
As before, this can be saved and viewed; the resulting 
image is shown in Figure 2.  The image has a random 
feel but there are triangles appearing opening 
southwest throughout.  Also notice near the bottom of 

the image there is some synchronization occurring. 
 We next look at more general automata.  In 
particular, we will consider Boolean valued automata 
that depend only on the cell to the left of the given cell, 
the given cell, and the cell to the right of the given cell. 
 Since this depends on just three boolean values there 
are just eight possible configurations and each needs to 
have a defined result.  Here is a table representing the 
definition of the automaton auto1. 
 
  L  C  R  Output 
  0  0  0    0 
  0  0  1    0 
  0  1  0    1 
  0  1  1    1 
  1  0  0    1 
  1  0  1    1 
  1  1  0    0 
  1  1  1    0 
 
Since the part of the table beneath L, C and R will be 
the same for each automaton, each automaton can be 
associated with the column Output which specifies a 
Boolean length 8 vector.  Here 0 0 1 1 1 1 0 0.  
Below, the function auto implements these general 
automata.  First, the input vector is extended at both 
ends by one element to maintain the periodic boundary 
conditions.  The key idea is to identify which of the 
rows of the table above applies to each group of three 
cells.  This is done with length 3 infixes.   

 
   perext=.{: , ] , {. 
   perext i.8 

 

Figure 1.  Rule 60 on a single input 

Figu

 

Figure 3.  Rule 149 on isolated input. 
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7 0 1 2 3 4 5 6 7 0 
   u 
0 0 1 0 0 1 1 0 0 
   3 <\ u 
┌─────┬─────┬─────┬─────┬─────┬─────┬─────┐ 
│0 0 1│0 1 0│1 0 0│0 0 1│0 1 1│1 1 0│1 0 0│ 
└─────┴─────┴─────┴─────┴─────┴─────┴─────┘ 
      3 #.\u 
1 2 4 1 3 6 4 
      v=.0 0 1 1 1 1 0 0 
      v {~ 3 #.\ perext u 
0 0 1 1 0 1 0 1 0 
      auto1 u 
0 0 1 1 0 1 0 1 0 
   auto=.{~ 3&(#.\)@perext 
   v&auto^:(i.8) 0=i.8 
1 0 0 0 0 0 0 0 
1 1 0 0 0 0 0 0 
1 0 1 0 0 0 0 0 
1 1 1 1 0 0 0 0 
1 0 0 0 1 0 0 0 
1 1 0 0 1 1 0 0 
1 0 1 0 1 0 1 0 
1 1 1 1 1 1 1 1 
 
 It is bulky to list each automata with 8 binary 
digits, so we can refer to the automata by reinterpreting 
the 8 digit binary as a number.  Thus,  some output of 
rules and their numbers are: 
 
Output   Rule Number 
0 0 0 0 0 0 0 0  0 
0 0 0 0 0 1 0 1  5 
0 0 1 1 1 1 0 0  60 
 
Thus, Figures 1 and 2 showed the results of Rule 60 on 
isolated input and random input.  The result of Rule 
149 is shown in Figures 3 and 4 on isolated input and 
random input.  These figures show a behavior that 
clearly contains considerable repetition yet there is still 
a chaotic or jumbled feel to the figures. 
 Trying out various rules on a random input 
gives a feel for the qualitative variations possible.  For 
examples, try Rules 0, 1, 5, 26, 60, 74, 90, 135, 149, 
179, 251 and 255.  Of course, in Rule 0 everything 
dies, in Rule 255, everything lives, but for certain 
automata in between there is a real and wonderful 
tension between those behaviors. 
 One dimensional automata can be generalized 
by considering larger neighborhoods and by allowing 
more states.  Both of these changes can add to the 
richness of the observed behaviors.  For example, 
Figure 5 shows a 3 state automata on random input.  

 Here there is an underlying pattern of white 
surrounding gray triangles - much as was the case for 
Rule 60, yet there are also black "growths" that persist 
for a considerable number of iterations but eventually 
die out. 
 
The Game of Life 
Finite automata in two dimensions can be defined in a 
manner analogous to the one dimensional case.  An 
automaton contains a two dimensional array of states 
and gives local rules for changing from one generation 
to the next.  Here we will consider the most famous 2-
dimensional automata that is often called Conway's 
game of life [1,6].  This automaton uses 3 by 3 
neighborhoods and binary states.  A cell is alive at the 
next stage if at the previous stage either: 
 • the cell is alive and 2 or 3 of its eight 
neighbors are alive. 
 • the cell is dead and exactly 3 of its eight 
neighbors are alive. 

All other cells are dead at the next generation. 
 We describe this game on a 3 by 3 array and 
then organize work appropriately to apply this to each 
cell in the array.  We need to identify a function, which 
we will call filt (in deference to its image 

 

Figure 4.  Rule 149 on random input. 

 

Figure 5.  A three state automata on random input 
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processing analogue) that applies to 3 by 3 
neighborhoods and which describes life.  Consider the 
matrix L below and some test neighborhoods. 
 
   L         N1        N2        N3 
1 1 1     1 0 0     0 0 1     0 1 0 
1 9 1     0 1 1     0 0 0     0 1 0 
1 1 1     1 0 1     0 1 1     0 0 1 
 
   +/,L*N1 
13 
   +/,L*N2 
3 
   +/,L*N3 
11 
 
Notice that by the rules for life, N1 should give 0 
while N2 and N3 should give 1.  That is, we only get 
life if the product of L with the 3 by 3 neighborhood 
has nonzero entries including a nine and 2 or 3 ones or 
no nine and exactly 3 ones.  Thus, the cell will be lit if 
an 11, 12 or 3 results from the sum of the product of L 
with the neighborhood.  Hence, we can define filt 
to test for that.  
 
   filt=.e.&3 11 12@(+/)@,@(L&*) 
   filt N1 
0 
   filt N2 
1 
   filt N3 
1 
 
We now need to decide on a method for distributing 
the application of filt to all the 3 by 3 
neighborhoods. 
 
Cut or Infix 
There are two methods that immediately suggest 
themselves.  One is to use cut, ;._3 to directly apply 
filt to the 3 by 3 tessellations, the other is to apply 
the length 3 infixes as we did in the one dimensional 
case, but to apply the infixes along two axes.  Below 
are examples of those two strategies.  First consider 
creating the boxed 3 by 3 tessellations on a sample test 
array t. 
 
   t 
0 0 0 1 0 
1 1 1 0 0 
0 0 0 1 0 
0 1 0 0 1 

0 0 0 0 0 
   3 3 <;._3 t 
┌─────┬─────┬─────┐ 
│0 0 0│0 0 1│0 1 0│ 
│1 1 1│1 1 0│1 0 0│ 
│0 0 0│0 0 1│0 1 0│ 
├─────┼─────┼─────┤ 
│1 1 1│1 1 0│1 0 0│ 
│0 0 0│0 0 1│0 1 0│ 
│0 1 0│1 0 0│0 0 1│ 
├─────┼─────┼─────┤ 
│0 0 0│0 0 1│0 1 0│ 
│0 1 0│1 0 0│0 0 1│ 
│0 0 0│0 0 0│0 0 0│ 
└─────┴─────┴─────┘ 
   3 <\"2 (|:"2) 3 ]\ t 
┌─────┬─────┬─────┐ 
│0 1 0│0 1 0│0 1 0│ 
│0 1 0│0 1 0│1 0 1│ 
│0 1 0│1 0 1│0 0 0│ 
├─────┼─────┼─────┤ 
│1 0 0│1 0 1│1 0 0│ 
│1 0 1│1 0 0│0 1 0│ 
│1 0 0│0 1 0│0 0 1│ 
├─────┼─────┼─────┤ 
│0 0 0│0 1 0│0 0 0│ 
│0 1 0│0 0 0│1 0 0│ 
│0 0 0│1 0 0│0 1 0│ 
└─────┴─────┴─────┘ 
 
Clearly the code for using cut was shorter.  Also, the 
two applications of infix resulted in the transpose of the 
3 by 3 neighborhoods - which can be fixed, but the 
result of filt is the same on the transpose, so we can 
save the time instead of introducing another transpose. 
  

 The functions filter1 and filter2 
given below implement the cut and infix based 
strategies applying filt to each 3 by 3 neighborhood 
instead of box. 
 
   filter1=. 3 3&(filt;._3) 

 

Figure 6.  An initial configuration. 
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   filter2=. 3&(filt\)@|:"2@(3&(]\)) 
   filter1 t 
1 1 1 
0 0 1 
0 0 0 
   filter2 t 
1 1 1 
0 0 1 
0 0 0 
 
The following table gives the time and space required 
for applying these filters on sample n by n arrays. 
 
┌────┬───────────────┬─────────────┐ 
│    │   filter1     │   filter2   │ 
│  n │ time    space │ time  space │ 
├────┼──────┬────────┼──────┬──────┤ 
│  5 │ 0.32 │   8344 │ 0.12 │ 2212 │ 
│ 10 │ 1.66 │  45684 │ 0.75 │ 2812 │ 
│ 20 │ 8.34 │ 266248 │ 3.57 │ 4564 │ 
│ 40 │44.1  │1679530 │15.65 │12972 │ 
└────┴──────┴────────┴──────┴──────┘ 
 
Notice that filter2 is more efficient in time and 
dramatically better in space.  In fact, if we have as a 
goal of applying these filters to arrays that are images, 
we want to be able to deal with arrays that have several 
hundred entries in each direction.  Thus, filter1, 
while very succinct, isn't yet practical for very large 
arrays. 
 In order to implement life, we need to apply 
both the filter above and the periodic extension of 
boundary conditions.  Of course, we need to extend 
those boundary conditions in two dimensions.  Thus 
we get: 
 

   life=.filter2@perext@:(perext"1) 
   life t 
0 1 1 0 0 
0 1 1 1 1 
0 0 0 1 1 
0 0 0 0 0 

0 0 0 0 0 
 
 Now we look at one step of life on a larger 
array.  Consider the initial configuration in Figure 6.  
The result of applying life is shown in Figure 7.  Notice 
the stable 2 by 2 blocks on the left and right.  These 
static images don't give a very good feeling for the 
dynamic behavior of life.  Thus, we turn to showing 
steps of life via an animation. 
 
Animated Life 
A nice experiment to try is to create a random array 
and to iterate life on the array.  This can done with the 
following. 
 
   a=.?32 32$2 
   aa=.life^:(i.32) a 
   animate2 aa 
 
Where the function animate2 is defined by the 
following. 
 

animate2=.3 : 0 

256 256 1 animate2 y. 

: 

pal=.255,:0 0 0 

a=.y. 

NB. open window for picture 

wc=.'pc Animation;xywh 0 0 ',": 0.4*|.2{.x. 

wc=.wc,';cc g isipicture;pas 0 0;pscale;' 

wd wc,'pcloseok;' 

k=.0           NB. frame counter 

r=.{:x.        NB. rep's each picture 

n=.(#a)*r      NB. total number of frames 

while. k<n do. 

  (pal;(<.k%r){a) writebmp8 'temp9999.bmp' 

  wd 'ctext temp9999.bmp;pshow;' 

  k=.>:k 

end. 

) 

 
You can specify the window size and show each frame 
more than once if the animation runs too quickly.  For 
example 512 512 2 animate2 aa will create a 
window about 512 by 512 pixels and show each frame 
twice. 

 

Figure 7.  One step of life. 
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 The animation on random input shows features 
that are called "blocks", "blinkers" and sometimes 
"gliders" appear.  See [1].  The configuration shown in 
Figure 6 is quite special because it replicates itself 
while generating a sequence of gliders.  Figure 8 shows 
the result of 120 iterations of life on the configuration 
in Figure 6.  Four gliders have been produced at this 
point.  Thus, the configuration in Figure 6 is known as 
a "glider gun". 
 
The Glider Gun in 3-D 
Animating the glider gun is nicest way to view the 
dynamics involved, but we can think of the iterates of a 
2-dimensional automaton as forming a 3-dimensional 
Boolean array.  Then the cells that are lit can be plotted 
in 3-D.  The appendix gives a complete J script for 
generating the glider gun, its iterates, finding the 
indices of the lit positions in three space and writing 
the positions of to a file in a format that can be utilized 
by the POVRAY raytracing program [9].  The result is 
shown in black and white in Figure 9. 

 In this figure, time is shown in the upward 
direction.  The 2 by 2 blocks persisting from state to 
state appear as guide rails but they do interfere with the 
growth every 30 iterations.  A glider is produced every 
thirty iterations and they can be seen moving upward 
and toward the left in the image. 
 
Image Processing as an Automaton 
We begin with a grayscale image (for simplicity and 
printing) that associates with each pixel a graylevel 
between 0 and 255.  Black corresponds to 0 and white 
to 255.  Figure 10 shows a (contrast enhanced) digital 
grayscale image of the author's family and two research 
students.  The first automaton we will consider is a 
simple averaging scheme: 
 
Consider the filter mask: 
 
   M 
0.1 0.1 0.1 
0.1 0.2 0.1 
0.1 0.1 0.1 
 
Since the entries add to 1, multiplying a 3 by 3 
neighborhood by M and summing the results will give 
a weighted average of the values at the 9 positions.  
Thus, if b is the array containing the 695 by 798 
bitmap in Figure 10, then we can apply this scheme as 
follows. 
 
   round=.<.@(0.5&+) 
   filt=.round@(+/)@,@(M&*) 
   smooth=.3&(filt\)@|:"2@(3&([\)) 
   s=.smooth b 
 
Figure 11 shows the bitmap s.  Notice that the detail 
is averaged - there is a bit less contrast and the image 
looks somewhat blurred.  How many iterates of 
smooth would it take to result in a gray blur with no 
objects visible? 
 A kind of opposite processing goal is to 
attempt to highlight edges rather than smooth things.  
Simple differencing strategies can be used [7], but we 
suggest here a method that is not direction dependent.  
This is know as the Sobel edge detector which is a 

nonlinear detector given by y+x 22 ∆∆ 1 where 
x∆ 2 and y∆ 3 are given by the linear filters 

corresponding to the matrices dx and dy shown 
below. 

 

Figure 8.  The glider gun configuration after 120 
iterations. 

Figu
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   dx            dy 
1 0 _1         1  2  1 
2 0 _2         0  0  0 

1 0 _1        _1 _2 _1 
 
This can be implemented as shown.  We create two 
linear filters DX and DY.  These are put together into 
filt that processes 3 by 3 neighborhoods.  The result 
sobel applies filt to all the 3 by 3 neighborhoods 
- in fact, it is identical to filter2 used for life 
and smooth. 
 
   DX=.+/@,@(dx&*) 
   DY=.+/@,@(dy&*) 
   filt=.DX  +&.*: DY 
   sobel=.3&(filt\)@|:"2@(3&([\)) 
   e=.sobel b 
 
Now the result of the Sobel edge detector on the 
bitmap in Figure 10 is not an integer matrix.  The 
square root gives floating point results.  We could 
rescale and round to show the results - but we will take 
advantage of a fairly simple utility, cile, that 
classifies the entries into discrete groups by the order 
of the elements by their size.  Thus, 255 cile e 
will be a matrix of entries from i.256 where the 
smallest entries will be marked with a 0.  Equal 
numbers of 0s, 1s, ... 255s will appear.  Finally, we can 
produce our Sobel edge detected image. 
 
   cile=.$@]$((/:@/:@]<.@*(% #)),) 
   E=.255-255 cile e 
 
Figure 12 shows the result of that edge detection with 
colors reversed since we usually draw edges with 
black.  Compared to differencing schemes this does 
quite well at identifying edges regardless of whether 
the differences appear on a horizontal or vertical edge.   
 
Organizing Polygons for Surface Plots 
While it is clear that the kind of local processing we 
have considered is useful for games, like life, and 
image processing, we want to make the point that this 
local processing really arises in many contexts.  In 
particular, we look at the problem of plotting a surface 
described in 3-D on a computer screen.  We will only 
consider the part of this problem relevant to local rules; 
for complete examples of surface plotting, see [8]. 
 The idea is that we want to plot a surface that 
is described by some function of two variables 

y)f(x,  =z  4.  We can create vectors x and y that 
contain the points we want to sample and we want to 
project the x-y-z coordinates of the vertices of 
quadrilaterals to the screen.  That is, suppose 

 

Figure 10.  A grayscale image. 

 

Figure 11.  The image with smoothing. 

 

Figure 12.  Image after Sobel edge detection. 
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x=.y=.i.10, then, if we consider the neighboring x-
values 3 and 4 and the neighboring y-values 7 and 8, 
this gives a 2 by 2 neighborhood of points in the x-y 
plane.  Catenating the z values, we would get a 
quadrilateral with vertices: 
 
           x  y    z 
           3  7  f(3,7) 
           3  8  f(3,8) 
           4  8  f(4,8) 
           4  7  f(4,7) 
 
With a suitable projection, this quadrilateral can be 
plotted on the computer screen.  Since we want to 
project these x-y-z triples, it is convenient to create an 
array of points with shape (#x),(#y),3.  Then 2 
by 2 neighborhoods in this array will correspond to 
quadrilaterals. 
 
   x=.y=.i.4 
   sin=.1&o. 
   f=.sin@[ + sin@]   NB. test func. 
   $xyz=.x ([ , ] , f)"0/ y 
4 4 3 
   {.xyz          NB. points with 
x=0 
0 0         0 
0 1  0.841471 
0 2 0.9092974 
0 3   0.14112 
   filt=.{. , |.@{: 
   q=.(2&(filt\)"3)@(1 
3&|:)@(2&(]\)) 
 
The function filt takes a 2 by 2 by 3 array and turns 
it into the desired quadrilateral.  The function q 
distributes filt over all 2 by 2 neighborhoods.  
Notice we don't need to worry about the transposes 
since we don't care whether the quadrilaterals are listed 
clockwise or counterclockwise.  After projection to 
screen coordinates, we get an image of the surface.  
Figure 13 shows this surface on a 16 by 16 mesh.  
 
   <"2 q xyz 
┌─────────────┬─────────────┬─────────────┐ 
│0 0        0 │0 1  0.841471│0 2 0.9092974│ 
│1 0 0.841471 │1 1   1.68294│1 2   1.75077│ 
│1 1  1.68294 │1 2   1.75077│1 3  0.982591│ 
│0 1 0.841471 │0 2 0.9092974│0 3   0.14112│ 
├─────────────┼─────────────┼─────────────┤ 
│1 0  0.841471│1 1 1.68294  │1 2  1.75077 │ 
│2 0 0.9092974│2 1 1.75077  │2 2  1.81859 │ 
│2 1   1.75077│2 2 1.81859  │2 3  1.05042 │ 

│1 1   1.68294│1 2 1.75077  │1 3 0.982591 │ 
├─────────────┼─────────────┼─────────────┤ 
│2 0 0.9092974│2 1  1.75077 │2 2 1.81859  │ 
│3 0   0.14112│3 1 0.982591 │3 2 1.05042  │ 
│3 1  0.982591│3 2  1.05042 │3 3 0.28224  │ 
│2 1   1.75077│2 2  1.81859 │2 3 1.05042  │ 
└─────────────┴─────────────┴─────────────┘ 
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Figure 13.  A surface created from quadrilaterals. 
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Appendix.  J Script for Creating the Glider Gun in 3D 
 
NB. Initial configuration for Glider Gun 
 
GG=.40 _60{.".;._2] 0 : 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
) 
 
NB. Iterates of the Glider Gun - uses life defined in text 
GGG=.life^:(i.121) GG 
 
NB. Indices of lit positions 
i=.($GGG)#:(,GGG)#i.*/$GGG 
 
NB. Output Utilities 
outfile=.'gg3d.pov'         NB. Name output file 
write=.[ 1!:2 <@] 
append=.[ 1!:3 <@] 
eol=.13 10{a.               NB. DOS end of line marker 
'' write outfile            NB. Create empty output file 
output=.append&outfile@,@(,&eol"1) 
 
NB. Create Povray header 
povheader=.0 : 0 
camera{ 
  location <200,200,30> 
  direction <0,0,1.6> 
  up <0,1,0>  
  right <1,0,0> 
  look_at<20,75,30>} 
#declare white=color rgb<1,1,1> 
object{light_source{<200,200,200> color white}} 
object{light_source{<-10,200,200> color white}} 
object{light_source{<200,200,-10> color white}} 
background {color rgb<1,1,1>} 
) 
NB. end of povray header 
 
output povheader 
 
NB. formatting utilities 
chsw=.3 : (': ',:'(a.i.y.){({:x.) (a.i. {.x.)}a.')   NB. character switch 
fmtvec=.,&'>'@('<'&,)@((2 2$' _,-')&chsw)@":  NB. vector format '_' to '-' and 
' ' to ',' 
fmtbox=. 3 : 0 
z=.1 0 2{y. 
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z=.'object{box{',(fmtvec z),',',(fmtvec 1+z) 
z=.z,'}pigment{rgb<1,0,1>}}' 
) 
 
NB. Output the formatted lit positions  
#output fmtbox"1 i 

 
Once the J script has been run, the raytracing program POVRAY can be used to change the resulting file 
gg3d.pov into an image.  For more information on POVRAY, see [5,8,9].  POVRAY is available by 
anonymous ftp from alfred.ccs.carleton.ca. 


