
Preprint 1

With J:
Image Processing 1:

Smoothing Filters
Cliff Reiter

Mathematics Department
Lafayette College,

Easton PA 18042, USA
reiterc@lafayette.edu

Image processing includes techniques that are used

to correct defects in images and to enhance the
visibility of features of interest. In this note we will
look at several different methods for smoothing
images in order to remove specks of dust and artifacts
from scanning. In future notes we plan to discuss other
techniques for enhancing images in the spatial domain
including the removal of orientation and lighting
defects. Previous discussions [6,7] considered the
removal of motion blur in frequency domain using
Fast Fourier Transforms.

Figure 1 shows a grayscale image of a snowflake
and a zoom into the image that shows individual
pixels. The image was scanned from Bentley and
Humphreys' classic book of snowflake images [1]. We
have recently used images from that book as figures in
papers on snowflake growth [2,3]. The zoom into the
image makes dust and undesirable artifacts of scanning
the half-toned image apparent. Notice the textured,
almost periodic gray points appearing in what should
be white regions. We aim in this note to remove or
diminish the appearance of the dust and texture while
maintaining a clear image of the snowflake.

When correcting defects in an image, there is a
presumption that the features of interest in the image
are somehow different from the defects to be
diminished; otherwise, features can not be
distinguished from defects. We often assume that the
features of interest are larger than the defects; thus, the
image can be corrected by using suitable averages. We
will also look at rank based methods including an ad
hoc technique we used for creating black and white
images for [3]. For those filters the presumptions are
somewhat different.

While we will consider several methods in this
note, there are many techniques for removing defects
of this type, each with its own merits. Excellent
references to digital image processing include Russ [9]
and Gonzalez and Woods [5]. Packages implementing
images processing techniques include commercial
packages, such as Photoshoptm and gnu software, such
as GIMP[4]. A script giving the J definitions used in
this note, and the sample image, is available from [8].

Multiplicative Filters
The simplest filters replace each pixel by an

average of the nearby pixels. A three by three matrix
of ones is often used to represent the average obtained

Figure 1. Scan and Zoom of a Snowflake Picture

APL Quote Quad 2

from averaging a pixel value with the values of its
nearest neighbors.

1 1 1
1 1 1
1 1 1

Often one wants the pixels nearest the center to be
weighed more heavily than the distant pixels. These
non-uniform averages can be represented by a matrix
of the weights. It is understood that the pixel being
updated is replaced by a sum of the nearby pixel
values times the weights shown in the matrix and
divided by the sum of the coefficients in the matrix.
The pixel itself corresponds to the central entry in the
matrix, such as the 4 in the weights below.

1 2 1
2 4 2
1 2 1

A systematic way to choose the weights is to use a
normal distribution (also called a Gaussian
distribution) with a specified standard deviation and
width of the sample. By making a multiplication table
and rescaling so the entries sum to 1, we get an
approximation to the binormal distribution function.
This can be implemented as follows where the left
argument is the (1-dimensional) standard deviation
and the right argument is the number of sample points
(pixels) to be used in each direction.

 gauss=:1 : 0
[:(%+/)^@-@*:@-:@(%&m.)@:(i.--:@<:)
)

 gauss2d=:1 : '[: */~ m. gauss'

 1 gauss 5
0.11170 0.23648 0.30364 0.23648 0.11170

 1 gauss2d 5
0.01248 0.02642 0.03392 0.02642 0.01248
0.02642 0.05592 0.07180 0.05592 0.02642
0.03392 0.07180 0.09220 0.07180 0.03392
0.02642 0.05592 0.07180 0.05592 0.02642
0.01248 0.02642 0.03392 0.02642 0.01248

We can apply the binormal weights on all 5 by 5
neighborhoods (using the adverb MFilt2d) or apply
a horizontal and vertical pass of the 1 dimensional

filter in blocks of size 5 (using the adverb
MFilt1d2), obtaining the same result in both cases.

 round=:<.@(0.5&+)

 MFilt2d=: 1 : 0
[: round ($ m.)"_ +/@,@:(m.&*);._3]
)

 MFilt1d2=: 1 : 0
[: round (# m.)"_ +/@:(m.&*)\"1 (# m.)"_
+/@:(m.&*)\] NB. one line
)

 require 'addons\image3\image3.ijs'

 $b=: {."1 read_image 'snowflake.png'
700 780

 time=:6!:2

 time 'm=:(2 gauss 25) MFilt1d2 b'
3.36238

 time 'n=:(2 gauss2d 25) MFilt2d b'
11.3965

 m-:n
1

In the above experiment, the array b is a matrix
giving the gray levels of the image as integers between
0 and 255. We see that using the two passes of width
25 is significantly faster than single filter of size 25 by
25. There is little difference between these two
implementations for small neighborhood size, but it is
clearly advantageous for large neighborhood sizes to
separate the filter into two 1-dimensional passes.

Figure 2 shows the result of applying a Gaussian
filter with standard deviation 2 on 9 by 9
neighborhoods which can be created with the
following.

 f2=:(2 gauss 9) MFilt1d2 b

Notice the dust and texture are almost gone, but
there is considerable blurring. Using smaller
neighborhoods gives less blurring, but is less effective
at removing the defects. One can adjust both the
number of pixels used and the standard deviation in
order to attempt to remove the defects with a minimum
amount of blurring, but the technique has a
fundamental blurring effect. Interestingly, in other

Preprint 3

applications the blurring produced by this filter is a
valuable feature. For example, when portions of an
image have different lighting, averages over very wide
neighborhoods can establish average lighting levels for
that portion of the image which then can be used to
balance the perceived illumination throughout the
image. Nonetheless, in our application, blurring,
especially of the snowflake edges, is not desired.

The Savitsky-Golay filter is another multiplicative
filter. For this filter, the weights are chosen so that a
least square fit of a polynomial to the data is used to
interpolate the new pixel value. These weights may
easily be computed in J as shown below. The left
argument is the degree of the polynomial fit (default 4)
and the right argument is the size of the neighborhood.

 sav_gol=: 4&$: : ([: {.@%. i:@-:@<:@]
^/ i.@>:@[) NB. one line

 sav_gol 7
0.021645 _0.12987 0.324675 0.5671
0.324675 _0.12987 0.021645

Notice that the Savisky-Golay filter has negative

coefficients for high enough degrees and hence could
lead to out of range grayscales. Nonetheless, it is an
averaging technique that may be desirable because it
does not blur edges as the Gaussian filter does. In fact,
the edges are somewhat enhanced. Figure 3 shows the
result of applying a Savitsky-Golay filter using a least

Figure 3. Application of Savitsky-Golay Filter

Figure 2. Application of a Gaussian Filter

APL Quote Quad 4

square quadratic fit to 9 pixel values nearest each
point. Since this is a multiplicative filter, it can be
applied either in a 2-dimensional pass or in two 1-
dimensional passes. For example, we would obtain the
grayscales in the figure, f3, using the following,
where clamp forces the values to be legitimate
grayscales values between 0 and 255.

 clamp=:0&>.@(255&<.)

 f3=:clamp (2 sav_gol 9)MFilt1d2 b

In Figure 3, notice that the dust and texture are

diminished, but that the edges are much clearer than
for the Gaussian filter—however, some blurring is
apparent.

Rank Order Based Filters
Another type of local filter is based upon taking

median (or some other rank order) values from a
neighborhood of each pixel. The idea is that outlying
values will be discarded; if most of the pixels near a
certain pixel have a certain value, then that is the value
that will be used. Multiplicative filters tend to
introduce many more intermediate gray pixels as they
blur the image, but rank based techniques use actual
values appearing in the image. These rank based filters
are generally computationally involved since each 2-
dimensional neighborhood needs to be ordered. We
implement this below with the adverb medianf whose
left argument gives the neighborhood size. Note in the
example below, each 3 by 3 neighborhood is replaced
by its median element.

 medianf=: 1 : 0
(2#m.)"_ (<.-:*:m.)&{@:(/:~)@,;._3]
)

]b=.?.2+i.5 _5
 0 3 1 1 0
 0 6 6 7 2
 8 12 0 0 6
14 0 7 1 7
17 14 22 19 11

 3 medianf b
 3 3 1
 6 6 6

12 7 7

 f4=:3 medianf b

Figure 4 shows the result of the median filter on 3
by 3 neighborhoods. Notice the edges are relatively
clear and the texture and dust are greatly diminished.

Many variations on the median filter can be
considered. A slightly non-intuitive rank filter known
as the hybrid median technique uses 5 by 5
neighborhoods and computes three quanities: the
median of the 9 pixels forming the two diagonals in
the neighborhood, the median of the 9 pixels in the
same row and column as the center, and the central
pixel value. Then the median of those three values is
computed and utilized. This is implemented below and
the result is shown in Figure 5. Here the edges are also
good, but some of the defects remain visible. They can
be essentially removed by a second application of the
hybrid median method, but that introduces more
blurring than the ordinary median filter.

 hmedianf=:3 : 0
med3=. 1&{@:(/:~)
med9=. 4&{@:(/:~)
x=.0 4 6 8 12 16 18 20 24&{
p=.2 7 10 11 12 13 14 17 22&{
5 5 med3@:(med9@:x,med9@:p,12&{)@:,;._3 y.
)

 f5=:hmedianf b

As we mentioned at the outset, our study of these
filters was motivated by our desire to correct defects in
scanned images. We actually corrected the images that
we used by running a filter and then selecting a
threshold to distinguish black from white. On each 2
by 2 neighborhood we took the item with position 2 in
the ordered list of the 4 entries in the neighborhood
and tested whether that value exceeded 180. If so, the
pixel was white; otherwise, it was black. We designed
this filter in an ad hoc way after looking at the values
appearing in the textured defective portion of one
image. Since then, we have learned that rank order
filters in general, and median filters in particular, are
valuable, known tools. Figure 6 shows the application
of our ad hoc "snowflake cleaning" filter.

Preprint 5

 sf_filt=:3 : 0
255*180<2 2((2&{)@:(/:~)@:,);._3 y.
)

 f6=:sf_filt b

Notice the image in Figure 6 is different from the
others due to the threshold used to create the black and
white image. The edges are crisp, but some of the dust
remains visible and some of the interior detail may
have been lost.

Maximum Likelihood Filter
The maximum likelihood filter attempts to take

advantage of the idea that an image has a certain
"correct" value in each neighborhood and the image
may be viewed as a corrupted version of the true
image. By identifying values which deviate little from
neighbors, we have found estimates for the correct
values, and avoided outlying values arising from the
corruption.

In particular, consider the 5 by 5 neighborhoods
surrounding each pixel. Each 5 by 5 neighborhood
contains nine 3 by 3 sub-neighborhoods. Compute the
sum of the square of the deviations of the entries in the
3 by 3 neighborhoods from their central value, and

Figure 5. The Hybrid-Median Filter

Figure 4. A Median Filter

APL Quote Quad 6

select the central value that corresponds to the minimal
sum. This means that each pixel is replaced either by
its own value, or by the value of an immediate
neighbor. When a 3 by 3 neighborhood has small
deviation, its central value is likely to be chosen for
each of the 5 by 5 neighborhoods for which it is a sub-
neighborhood. Thus, there should be a tendency for
values to clump.

 maxlike=:3 : 0
ic=.,0 5 10+/6 7 8
i9=.,/3 3 ,;._3 i.5 5
lfilt=.({~ [: {&ic@:{.@:/: [:(+/)@:*:"1
i9&{ - ic&{)@:, NB. one line
5 5 lfilt;._3 y.

)

 f7=:maxlike b

Figure 7 shows the result of the maximal

likelihood filter. Notice the edges are relatively clear
and the texture and dust are greatly diminished, but
there is noticeable posterization; that is, clumps of
similar values appear.

Conclusion
 We have seen that image filters are easy to

implement on grayscale images in J. Multiplicative
filters may be implemented efficiently using two 1-
dimensional passes. The Savitsky-Golay filter is a

Figure 6. A Rank Order Filter and Threshold

Figure 7. The Maximum Likelihood Filter

Preprint 7

multiplicative filter that does not blur as much as the
more classical versions. Median and other rank based
techniques are more computationally involved, but can
often be used to remove defects with little blurring.
While none of the techniques is suitable for all
purposes, these filters are valuable tools for removing
defects from images.

Color Images
Correcting defects in a color image is significantly

more difficult than correcting a grayscale image. That
is because color images have three color dimensions
and most of the filters that we have discussed apply
only on one color dimension, which risks
"desynchronizing" the changes. That is, if the image is
a typical "true color" computer image, its colors are
given as RGB triples. We can apply filters to each of
the red, green and blue color planes. However,
different behavior would usually occur in different
planes so that color shifts, and other distortions, are a
serious problem.

It is often better to change to an alternate color
space and apply the filters only on the components that
require correction. For example, one could change to
HSI (hue, saturation and intensity) color space and
apply a filter on the intensity plane, leaving color and
saturation unchanged. We plan to discuss color spaces
in a future column. At that point, we can discuss
correcting defects in color images more specifically.

References
[1] W. A. Bentley and W. J. Humphreys, Snow

Crystals, McGraw-Hill Book Company, 1931. Also,
Dover Publications, New York, 1962.

[2] A. Coxe and C. Reiter, Boolean Hexagonal
Automata, submitted.

[3] A. Coxe and C. Reiter, Fuzzy Hexagonal
Automata and Snowflakes, submitted.

[4] GIMP, http://www.gimp.org
[5] R. C. Gonzalez and R. E. Woods, Digital

Image Processing, Addison-Wesley Publishing Co.,
Reading, 1992.

[6] C. A. Reiter, Fractals, Visualization and J, 2nd
Edition, Jsoftware, Inc., Toronto, 2000.

[7] C. Reiter, With J: Fast Fourier Transforms and
Removing Motion Blur, APL Quote Quad, 31 1 (2000)
16-18.

[8] C. A. Reiter, J Quote Quad materials,
http://www.lafayette.edu/~reiterc/j/withj/index.html.

[9] J. C. Russ, The Image Processing Handbook,
4th edition, Boca Raton, CRC Press LCC, 2002.

