
Preprint 1

With J:
Image Processing 2:

Color Spaces
Cliff Reiter

Mathematics Department
Lafayette College,

Easton PA 18042, USA

reiterc@lafayette.edu

Using Red-Green-Blue triples to describe colors is

common and often quite convenient. However, other
color models may be more convenient or appropriate
for many types of image analysis and processing. We
will discuss conversion between RGB and YUV, YIQ,
HSV, HLS, HSI color spaces. We create histograms of
the distribution of the color components in those
spaces and give examples of how to correct defects
and make improvements in various color spaces.

Color Spaces
While there is general agreement about what

various color spaces are, many details vary from
presentation to presentation [3-6,10]. Some differences
account for different display qualities of specific
hardware and there is variation in how certain
measures should be scaled. While the conversions are
one-to-one correspondences for typical values, choices
near the edges of one model may correspond to out
range values in another and rounding details can have
significant impact on the algorithms. Thus, the details
of the conversions are a bit of an art and certainly
should vary for particular applications.

The RGB color space model is especially
convenient for monitor display since the phosphors
used on monitors are typically red, green and blue.
Figure 1 shows RGB color space envisioned as a cube.
Grays appear along the diagonal of the cube running

from black at one vertex to white at the opposite
vertex. We can trace through all the fully saturated
hues by running along the edges from red to yellow to
green to cyan to blue to magenta and back to red.
Notice there is inherent ambiguity. For example,
exactly what frequency of red is "red". Different
monitors use different red phosphors, so the same
RGB triple may appear differently on different
monitors. Moreover, it is well known that human
perception is affected by a number of factors. Hence,
even identical frequency light will be perceived
differently in different contexts. From our description
of hue, it is clear that hue should measure in some
manner the angle around the diagonal for a given point
in the RGB cube. How to make that precise is tricky
given the jagged nature of the hue path that we
described. Indeed, there is not a unique answer to how
to accomplish the conversion. Despite the concerns, it
is useful to consider various color models in order to
manipulate images in a manner best suited to the
situation even if we don't know every detail of their
eventual display and observation.

The first two color spaces that we will describe are
obtained as affine transformations from RGB
coordinates. That is, they have the form T(X)=B+XA
where X is the input RGB-triple, A is a 3 by 3 matrix
and B is a length three vector. The arrays A and B are
given by rgbyuv1 and rgbyuv2 in Table 1,
respectively, for conversion to YUV space.

Figure 1. The RGB Cube

APL Quote Quad 2

The color space YUV is close to the color space
YCbCr color space used by PAL TV systems. The Y
component is the brightness component. This is what
is seen on black and white (PAL) televisions. The U
and V components describe the saturation and hue,
with the U being bluish and V being a reddish
component.

Table 1 shows a J implementation for the
conversion between RGB and YUV color spaces. We
generally use the following conventions. If the target
letters are lower case, then the result is floating type
numbers, usually in the range [0,1]. If the target letters
are upper case, they correspond to an integer range,
usually [0,255]. Thus, RGB_to_yuv results in
floating point numbers in the range [0,1] while
RGB_to_YUV yields integers in the range [0,255].

The script color_space.ijs [8] contains various
utilities for color space conversions, several of which
we discuss in this note. That script assumes that the
Image3 Addon [9] has been installed and we assume
that color_space.ijs has been loaded for the example
below. We read the image atlkiln.jpg that is distributed
with the Image3 Addon and see that we can convert
every bit of the image to yuv space and return to RGB
space with no changes in any pixel value. However, if
we convert to YUV integer space and back, roundoff
errors may lead to changing a RGB component by up
to 2.

 fn=:'addons\image3\atkiln.jpg'

 $b=:read_image fn
700 468 3

 b-:yuv_to_RGB RGB_to_yuv b
1

 b-:YUV_to_RGB RGB_to_YUV b
0

 >./,b-YUV_to_RGB RGB_to_YUV b
2

The representation in yuv space is more accurate
than using YUV, but it requires more memory. Which
representation of YUV color space to use depends
upon the application.

A simple application of this can be used to create a
grayscale version of a color image. In particular, given
the image array b as above. We can obtain a grayscale
version and view it via the following.

 gray_b=: 3&#@{."1 RGB_to_YUV b

 load 'addons\image3\view_m.ijs'

 view_image gray_b
468 700

That image is shown in Figure 2. Grayscale
construction using YUV is usually better than simply
averaging of RGB triples via (+/%#)"1 since the
weight associated with green is larger in the YUV

NB. general utilities
to01=:%&255 NB. convert from [0,255] to [0,1]
to255=: <.@:(255.999&*) NB. convert from [0,1] to [0,255]
to_int_in=: 1 : '<.@:((m.+0.999)&*"1)' NB. convert to integer in range

NB. force into range [0,255]
clamp=: 255&<.@(>.&0)

NB. similar YUV conversions also are provided in movie3.ijs
NB. yuv is close to YCbCr which is given here
rgbyuv1=.0.257 0.504 0.098,. _0.148 _0.291 0.439,. 0.439 _0.368 _0.071
rgbyuv2=.16 128 128%255

NB. RGB in [0,255], yuv in [0,1]
RGB_to_yuv=:(rgbyuv2"_ +"1 (+/ . *)&(rgbyuv1%255)) :. yuv_to_RGB
yuv_to_RGB=:clamp@:<.@:((+/ .*)&(255.999*%.rgbyuv1))@:(-&rgbyuv2"1) :. RGB_to_yuv

NB. Versions with YUV in [0,255]
RGB_to_YUV=:to255@:RGB_to_yuv :. YUV_to_RGB
YUV_to_RGB=:yuv_to_RGB@:to01 :. RGB_to_YUV

Table 1. Conversion to and from YUV.

Preprint 3

model and that better corresponds to human
perception.

A very similar color space is the YIQ color space
used by NTSC color TV. It is slightly simpler. Indeed,
it corresponds to multiplication by the following
matrix.

 rgbyiq0
0.299 0.596 0.212
0.587 _0.274 _0.523
0.114 _0.322 0.311

A conversion to YIQ and its inverse is defined in

the script color_space.ijs. Again, Y is the brightness
which is used for the black and white broadcast signal.
Although the I and Q components determine the
saturation and hue, they are not in the range [0,1]. In
particular, they may well be negative numbers. Thus
we only include only the floating type conversion
RGB_to_yiq and its inverse.

Previous remarks make it clear that saturation and
hue are important features of a specific color. HSV is a
simple color space that contains hue as a component.
Figure 3 shows the HSV Hexcone. Notice the central
axis gives V, which is a value corresponding to
brightness. Hue, H, is the angle around the central axis
and saturation, S, measures distance from the axis.
Thus, a high saturation corresponds to a pure color,
like red. A medium saturation might result in a
Burgundy color (if V is low) or pinkish color (if V is
high). A low saturation corresponds to a color close to
gray, although it could appear anywhere along the gray
axis (running from black to white). Implementation of
conversions to/from HSV may be found in the script
and mathematical formulas may be found in the
references. We will not repeat the formulas for the
conversion except to say that V is the minimum of the
RGB components. Taking V for the brightness is not
especially natural; however, if interest is upon hue
and/or saturation, this is a color space conversion
involving hue that is easily implemented. Also, when
converting hues to integers, we usually use the range
[0,359] to correspond to the nearest degree of the hue.
Unlike other components, hue wraps around modulo
360 so that hues close to 0 are similar to those close to
360.

Another color space is HSL. It is often viewed as a
double hex cone and the lightness value, L, may be
computed as the average of the minimum and
maximum of the RGB components. This gives what is
an often a better value for brightness than HSV, while
remaining reasonably simple. The H component is hue
and the S component is saturation.

Figure 2. Gray Scale via YUV

Figure 3. The HSV Hexcone

APL Quote Quad 4

The HSI color space is a space which has hue,
saturation and intensity as its components. It is usually
viewed as resulting from a rotation of the diagonal of
the RGB cube into the I direction, followed by suitable
conversion to polar coordinates for the hue and
saturation components. In the literature, the
descriptions of this color space varies quite a lot, and
we chose to rescale the approach of [5] so that the
conversion of the unit RGB cube fit nicely into [0,1]
ranges for each of the HSI coordinates. The intensity is
then given as the average of the intensities of the RGB
components. Compared to the other color spaces that
include hue, the inverse of this conversion is more
difficult to implement. Like the other spaces with a
hue component, the components of this space are
abstract, rather than based upon perception. However,
the components are very convenient for thinking about
color.

We now turn to considering how to get some basic
information about an image from various color spaces.

Color Plane Histograms
Table 2 shows a conjunction cs_hist that is

used to build histograms of the frequency that integer
values appear in the color planes of various color
spaces. The function freq_tab actually computes
the required frequency tables. While the conjunction is
not trivial, there are three histograms to create for each
color space and several color spaces. The conjunction
takes arguments corresponding to the color space
while a loop creates the three histograms making the
definition remarkably compact. The histogram
function for each color space requires just one
additional line. Table 2 also shows the one-line
definition for the RGB-histogram function.

Figure 4 is a digital image that was taken under
adverse conditions. It is photograph of a research
student, Angela Coxe, presenting a poster of her work
[1-2]. So as not to disturb her conversation with
Professor Chawne Kimber, no flash was used. The

Figure 4. A Student Presenting a Poster

Figure 5. Histogram of HSI in an Image

Figure 6. Histogram after Gamma Correction

Preprint 5

room was very crowded and taking the photo required
a lucky break in the crowd and use of a wide-angle
lens. A sport sequence of images was taken trying to
capture her interaction with visitors to the poster
session. The lighting was not very bright. The image
seems too dark, especially if shown on a standard

monitor. There is more wrong with this image than
brightness (e.g., the barrel distortion caused by the
wide-angle lens). However, the problem of images
being too dark for display on a web page (on certain
monitors) is a common problem. Notice that the
intensity values in the histogram shown in Figure 5 do

NB. create a frequency table
NB. [upper bound] freq_tab data
freq_tab=: 3 : 0
256 freq_tab y.
:
<:#/.~(i.x.),,y.
)

NB. Left: [range cutoff] (discretization levels [saturation position])
NB. Right: (labels(3),colors(3) as a boxed array)
NB. color space histogram builder conjunction
cs_hist=:2 : 0
_ _ _ m. cs_hist n. y.
:
labels=.3{.n.
colors=.3}.n.
y.=.,"_1 (i.<:#$y.)|:y.
pd 'reset'
pd 'new'
pd 'backcolor 128 128 160'
for_k. i. 3 do.
 pd 'new ',": 5 5 325 990+330 0 0 0*k
 pd 'type line;'
 pd 'color ',":>k{colors
 pd 'xrange 0 ',":n=.k{m.
 pd 'xticpos ',":n*(i.%<:)5
 pd 'title ',>k{labels
 if. (k=0) *. 3<#m. do.
 data=.(0~:(3{m.){y.)#k{y.
 else.
 data=.k{y.
 end.
 fdata=.(k{m.) freq_tab data
 if. _>k{x. do. fdata=.fdata <. k{x. end.
 pd fdata
end.
pd 'show'
wd 'pmovex 0 0 1024 768;ptop 0;pshow'
)

NB. all histogram functions take RGB [0,255] arrays
NB. as their right argument
NB. optional left argument is 3 bounds on the output frequency table heights

rgb_hist=:256 256 256 cs_hist ('Red';'Green';'Blue';255 0 0;0 255 0;0 0 255)

Table 2. Creation of Histogram Functions.

APL Quote Quad 6

not seem to fully utilize the upper portion of the
[0,255] range of intensity values. It is not surprising
that the image seems dark. We consider one method
for brightening the image in the next section.

Intensity Correction
Since human perception of brightness is nonlinear,

a nonlinear function is often used to map brightness
values to image components. Often an exponential
map with a constant in the exponent in the map is
used, and the constant is often denoted as gamma. The
use of an incorrect gamma would result in an image
that is too bright or dark. Thus, application of a
function ^&c to the brightness component, where c is
a constant, is commonly known as gamma correction.
For this image, some experimentation leads to the
choice of 0.7 for gamma. The gamma correction can
be accomplished via the following J expressions. We
read the original image as the array w and, after
conversion to HSI space, we separate the component

planes into the matrices h, s and i. The reconstructed
image array, W, represents the gamma-enhanced
image.

 $w=:read_image 'image1.jpg'
1280 960 3

 'h s i'=:0 1|: RGB_to_hsi w

 W=:hsi_to_RGB 0|:h,s,:i^0.7

Figure 6 shows the HSI histogram for W, the
enhanced image. Notice the shift upward of the
brightness components.

This image could be improved in several ways. In
order to illustrate gamma correction, we limited
ourselves to considering only this one change. We
used our eye to determine a suitable level of gamma
correction. Several other values of gamma were also
considered. Additionally, other strategies for
improving the brightness component were tried. This
included linear shifts and uniformly spred of
brightness changes onto the image. (Which gives a
type of automated maximal contrast that can be
especially useful for scientific images where one is
trying to observe a vague feature. See con_exp in
color_space.ijs.) However, those changes were not as
pleasing to the eye. When modifying a photographic
image for informal display, using one's eye is fine.
However, color shifts, dilation and erosion of features
are common side effects of image processing, so great
care is required when modifying images for
subsequent scientific analysis.

Saturation Improvement
We now take a further look at the atkiln.jpg image

shown in grayscale in Figure 2. Since that image is

Figure 7. HSI Histogram of atkiln.jpg Figure 8. The Function 0.8 tw_fct

Figure 9. HSI Histogram of the Modified Image

Preprint 7

part of the Image3 Addon, you can duplicate the
experiments that we will describe and explore your
own ideas. We assume color_space.ijs and view_m.ijs
have been loaded. Then we can view the original color
image via the following expressions.

 fn=:'addons\image3\atkiln.jpg'

 $b=:read_image fn
700 468 3

 view_image b
468 700

Next, we create an HSI histogram, which is shown
in Figure 7.

 hsi_hist b

Notice in the histograms that there is a nice
distribution of hues, but the saturation seems quite low
with virtually all the values occurring in the lowest
quarter. If you have actually viewed the color image,
you may observe that it seems somewhat washed out.

 'h s i'=:0 1|: RGB_to_hsi b

 s2=:s^0.7

 c=: hsi_to_RGB 0|:h,s2,:i

 view_image c
700 468 3

The change in saturation is the most significant
change we want to make to the image. It might be
considered too much of a change, but we consider it
pleasing. Additionally, the intensity is bimodal, with
some very bright values (look at the sky), but most of
the values are in the lower half. We would like to take
more advantage of the intensity values between the
peaks. Consider the adverb tw_fct that is defined in
color_space.ijs. It creates a function that is 0 at 0, 0.5
at 0.5, 1 at 1 and has the slope specified by its left
argument at 0.5. Figure 8 shows a plot of 0.8
tw_fct on [0,1]. It gently moves values toward 0.5.
It might be better to use a function more closely
designed for the histogram, perhaps twisting at a point
higher than 0.5. However, tw_fct was available and
makes the point that specialized functions can be
constructed to create specialized modifications. We
apply this function to the intensity component and
create a final modified image.

 i2=:0.8 tw_fct i

 d=:hsi_to_RGB 0|:h,s2,:i2

 view_image d
468 700

It is worth replicating the experiments above to see
the impact that these small changes make on the
appearance of the color image. Figure 9 shows the HSI
histogram for d, the modified image. Notice the raised
saturation levels and slight spred of the intensity
values.

Color Scanning Defects
We mentioned in [7] that correcting defects of

color scanned images is significantly more difficult
than dealing with grayscale images. The filtering
techniques from that paper can be applied to individual
components in a color space, but that should be done
with an alertness to the risks. In particular, color
shifting is a frequent problem.

We consider an image of the cover of Quote Quad
that we wanted to use on a web page to highlight
scripts and materials associated with Quote Quad
writings. The cover is beautiful, but the scanned image
was disappointing. We wanted to improve upon the
raw scan. Figure 10 shows the scanned image while
Figure 11 shows a zoom into four portions of the scan:

Figure 10. A Scanned Image

APL Quote Quad 8

letters and texture near the top, a face, a shirt, and text
and carpet. Vertical and horizontal striping is visible
and so are what appear to be random noise pixels.
However, defect correction is quite delicate for this
image since the wall texture is a real feature of the
image and the text edges can easily be distorted by
processing.

Most of the filters discussed in [7] do not extend in
a natural way to color triplets. One exception is the
maximum likelihood filter. It does a reasonable job of
smoothing this image, but the results are relatively
posterized. We tried applying many of the filters of the
type discussed in [7] to various combinations of the
color planes in various color spaces. We thought that
applying the Savitsky-Golay filter of degree 2 and
width 5 on the three RGB planes did the best job.
Zooms using that approach are shown in Figure 12.
However, several other choices were quite close.
These include the following.

• Savitsky-Golay filter on S and I in HSI space
• A 3 by 3 median filter on RGB planes,
• A 3 by 3 median filter on I in HSI

We have read that the blue sensors on digital
cameras may be more susceptible to noise than the
other sensors. Thus, it may make sense to smooth the
blue component more than other components. We
have not tried that on our scanned image.

However, using the Savitsky-Golay filter on H, S
and I in HSI space on the scanned image gave horrible
color shifts. Indeed, it makes the people look unreal.
Figure 13 shows the HSI histogram for the original
image while Figure 14 shows the HSI histogram after
the Savitsky-Golay filter has been applied on the HSI
color planes. Notice the dramatic change in the hue
component. Thus, great care needs to be taken about
exactly which components are filtered and which are
not filtered.

Conclusion
We see that it is possible to represent color images

in a variety of color spaces. We can extract
information, such as gray levels, from these spaces or
analyze the image further. The distribution of various
components can be visualized using histograms of the
components. This makes it easy to see components
that could be improved by applying simple functions

Figure 11. A Zoom into the Image

Figure 12. A Zoom into the Modified Image

Preprint 9

to those components. Moreover, filters, such as those
designed to smooth scanning defects can be applied to
appropriate components of color spaces.

References
[1] A. M. Coxe and C. A. Reiter, Boolean

Hexagonal Automata, Vector, 19 3 (2003) 113-121.
[2] A. M. Coxe and C. A. Reiter, Fuzzy Hexagonal

Automata and Snowflakes, Computers & Graphics, to
appear.

[3] J. D. Foley, A. van Dam, S. K. Feiner, J. F.
Hughes, Computer Graphics, Principles and Practice,
2nd edition, Addison-Wesley Publishing Company,
1990.

[4] R. C. Gonzalez, R. E. Woods, Digital Image
Processing, Addison-Wesley Publishing Company,
1992.

[5] S. Harrington, Computer Graphics, A
Programming Approach, 2nd ed, McGraw Hill Book
Co., 1987.

[6] K. Jacks, Video Demystified, 3rd edition, LLH
Technology, 2001.

[7] C. Reiter, With J: Image Processing 1:
Smoothing Filters, submitted to APL Quote Quad.

[8] C. A. Reiter, color_space.ijs script,
http://www.lafayette.edu/~reiterc/j/withj/index.html.

[9] Z. X. Reiter, C. A. Reiter, Image 3 Addon,
http://www.jsoftware.com.

[10] D. Wilson, The [almost Definitive] FOURCC
Definition List, RGB/YUV Conversion,
http://www.fourcc.org/fccyvrgb.htm.

Figure 13. HSI Histogram of Scanned Image

Figure 14. HSI Histogram of Bad Modification

