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Abstract—Chaotic attractors generated by the iteration of polynomial functions with 
cyclic symmetry have been the subject of recent study. A new formulation is 
investigated which generates cyclic symmetry using arbitrary functions. This allows the 
use of diverse function classes including functions with various types of singularities. 
The resulting images have significantly more diversity than those arising from 
polynomials yet the cyclic symmetry of the chaotic attractor is preserved. 
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1. INTRODUCTION 
The iteration of functions can lead to remarkable behaviors. Cayley confronted the intertwining 
basins of attraction of Newton’s method long ago [6]. More recently, the Lorenz attractor that 
resulted from a model of weather [10] exhibits chaotic behavior was noted and that observation 
provoked many recent investigations involving chaos. Remarkably, chaotic behavior is not 
incompatible with symmetry. For example, snowflakes seem to contain a randomness suggestive 
of chaos while maintaining remarkable symmetry [2].  The juxtaposition of pattern with 
randomness and mixing have also been explored by artists. Escher made extensive use of 
symmetry with astonishing distortion [15] and Frank Stella creates art with remarkable patterns 
containing intriguing mixing and chaos [1, 17]. 

The study of attractors that are chaotic yet contain specified symmetry has been the 
subject of considerable study. Field and Golubitsky illustrate how to create chaotic attractors 
with symmetry in [9]. This work discusses cyclic and dihedral groups with their dramatic 
rotational symmetry. Other recent work on creating chaotic attractors with symmetry has been 
based on demanding that the coefficients of general polynomial or trigonometric functions 
satisfy certain criterion in order to respect the symmetry group of interest. This has included 
chaotic attractors with cubic [3], tetrahedral [12], hypercube [11], frieze and wallpaper [4,7] 
symmetries. However, in some cases, summing over the symmetry group in a special fashion has 
been useful as we will see. This idea was implicit in some of the wallpaper constructions in [9] 
and was used to create chaotic attractors with the symmetry of a dodecahedron in [13]. This 
summation can also be used with certain wallpaper groups which suggested methods for creating 
attractors near forbidden symmetry [8]. Other works involve attractors with delightful cyclic 
symmetry but are  based upon graphics manipulations of attractors with other properties 
[5,14,16]. 

Illustrations in the literature describing chaotic attractors with cyclic and dihedral 
symmetry appear limited to the methods in [9] which are mainly polynomial based. By using the 
summation techniques described in the next section, we are able to broaden the investigation to 
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include other smooth functions which includes bump functions and trigonometric functions, as 
well as singular functions with fractional exponents and sawtooth discontinuities. In fact, the 
techniques we will investigate are so general that any type of function may be tried. The methods 
of [9] certainly yield visually interesting examples of chaotic attractors with cyclic symmetry, 
but we will be able to greatly expand the diversity of these illustrations. 
 

2.  FORMULATIONS 
In order to obtain functions which produce chaotic attractors with symmetry, we seek 

classes of functions that have specified symmetry. We say a function f: 2 2ℜ → ℜ is equivariant 
with respect to a symmetry σ  if f( ( )) (f( ))σ σr rx x= for all rx ∈ℜ2 . We think of a symmetry as a 
rigid motion that preserves distance – an isometry. In this note we are only concerned with cyclic 
and dihedral symmetry groups. The cyclic group Cn  is generated by n-fold rotations about a 
single point. The dihedral group Dn  contains those rotations and a reflection through a line passing 
through the point of rotation. The equivariance condition implies f ( ( )) (f ( ))n nx xσ σr r= . Thus, if 
σ is a rotation, the rotations of the iterates of f must be the same as the iterates of the rotation. It 
is possible that attractors arising from such functions will only visit restricted regions and 
conjugate attractors are needed to see the complete expected symmetry; moreover, the attractor 
can, and often does, degenerate. Nonetheless, such equivariant functions f are good places to 
seek attractors with the desired symmetry.  

Field and Golubitsky [9] determine classes of functions which are equivariant with 
respect to Cn  and  Dn . In particular, they prove that all the polynomial functions f: 2 2ℜ → ℜ  that 
are equivariant with respect to the dihedral group Dn  or the cyclic group Cn  have a particular 
form. They focus on a special case. Namely,  if α β γ ω, , , are real parameters, they define 

( )f( ) Re( )z zz z i z zn n= + + + + −λ α β ω γ 1  
where z x iy= +  is the complex variable corresponding to the point (x,y) in the plane. This 
function f(z) is equivariant with respect to Cn and when ω = 0  then it is equivariant with respect 
to Dn . They also consider some illustrations with a singularity at the origin using a similar 
function that utilizes an additional real parameter δ  and an integer p: 

g( ) Re( ) Re ( )z zz z
z
z

z z zn np n= + + +
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜

⎞
⎠
⎟ + −λ α β δ γ 1 . 

Figure 1 shows an image with C6 symmetry created using a function of the form f( )z . 
Color in the image corresponds to the frequency with which the corresponding pixel was visited. 
Points visited no times are white. Those visited a small number of times are cyan, and those 
visited the most times are violet and yellow. The rapidness of color change is determined 
according to a logarithmic bias on the frequency table.  The figure illustrates the desired 
symmetry; and while there are six “windows” where the probability of hitting is much lower than 
for other parts of the attractor, there is an overall smoothness and coherence. 
 Our technique for creating chaotic attractors with these symmetries is quite different. We 
make use of the following fact. We state the result for the plane, but the result is true in any 
dimension [13]. 
Proposition 1: Let P: 2 2ℜ → ℜ be an arbitrary function and let G be a finite group realized by 2 by 2 
matrices acting on ℜ2  by multiplication on the right, and define 
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f ( ) (P( ( )))P,G
G

x = x
r r

σ
σ σ

∈

−∑ 1  

Then f ( )P,G xr  is equivariant with respect to G. 
Proof: Let γ ∈G .  Then  

f ( ( )) ( ) (P( ( ( )))) ( ( ) (P(( )( )))) (f ( ))P, P,G
G G

Gx = x x xγ γ σγ σ γ γ σγ σγ γ
σ σ

r r r r

∈

−

∈

−∑ ∑= =1 1   

by the linearity of γ and the fact that σγ  runs through G1 as σ  does. � 
 We next turn to describing the particular representations of  Cn  and  Dn  which we will use 

in Proposition 1. Let R n n

n n

n =
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π π  and S =
−
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⎜
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1 0
0 1

.  The matrix Rn is the 

generator of an n-fold rotation and hence { }R i nn
i |0 1≤ ≤ − is a realization of Cn . We will consider 

Cn  to be equal to that set of matrices. Likewise, the matrix S is a mirror through the first coordinate 
and hence we consider { } { }D R i n SR i nn n

i
n
i= ≤ ≤ − ∪ ≤ ≤ −| |0 1 0 1 . Thus, we will investigate the 

creation of cyclic and dihedral symmetry using functions f(x) of the form of the Proposition, with  
G Cn= or G Dn= . We vary the arbitrary function P(x) to include classes of polynomial, 
trigonometric, bump, fractional power and mod 1 functions. 
 

3. EXPERIMENTS 
We begin with illustrations arising from the functions that are the smoothest and most comparable to 
the classical construction [9]. First, we create polynomials R: 2 2ℜ → ℜ . The kth output coordinate of 

of R( )rx  is given by ∑
≤≤
≤≤

=

20
20

10)R(

j
i

ji
ijkk xxaxr where 0 2≤ ≤k  and rx x x= 0 1, . Thus, our function is 

specified by the three dimensional array aijk  of parameters where i corresponds to the power of the 
first coordinate, j corresponds to the power of the second coordinate and k specifies the output 
coordinate. For any choice of that parameter array, f ( )R,G xr  as defined in Proposition 1 will be 
equivariant with respect to the symmetry group G.  
 Figure 2 shows an example of a function created in this way using the symmetry group D5.  
This group of symmetries contains a reflection and a rotation of 2π/5 radians around the origin.  In 
order to locate visually interesting attractors with this symmetry, we select the entries for the three 
dimensional array aijk  randomly between -1 and 1.  After taking the sum of conjugates over the 
symmetry group, we test the resulting function for a Ljapunov exponent indicative of chaos and 
create an image if the test is positive.  Visually attractive images located that way are then run at 
higher resolution. In Figure 2, points hit by the function a small number of times are colored yellow, 
points hit the most number of times are colored blue, and those hit an intermediate number of times 
are colored green, violet, or red. 

The appendix contains the J code for constructing the function used to create Figure 2. At 
http://www.lafayette.edu/~reiterc/j a more complete script may be found. It gives all the functions 
used in this paper and sample steps to create images.  Links to downloading the language J may also 
be found there. 
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 Second, we create trigonometric functions T: 2 2ℜ → ℜ .  The ith output coordinate of  T( )rx  
is given byT( ) sin( ) cos( )rx a kx a kxi i k i i k i

k
= +

≤ ≤
∑ 0 1

1 3
where 0 1≤ ≤i . Thus, our function is determined 

by the three dimensional array aijk  where i specifies the output coordinate, j corresponds to the 
choice between sin and cos, and k specifies the frequency multiplier. Notice these trigonometric 
functions don’t have any mixing of coordinates. However, the sum of conjugates from Proposition 1 
will introduce mixing. 
 Figure 3 and Figure 4 are generated by the sum of conjugates of trigonometric functions of 
this form as in Proposition 1.  The groups C7 and D5 are used in the creating the functions whose 
attractors are shown in Figures 3 and 4, respectively.  Note that the attractor in Figure 3 approaches 
D14 near the center, while Figure 4 has intriguing concentric arches. 
 We next focus on functions containing products of trigonometric terms S: 2 2ℜ → ℜ .  To 
simplify the notation, we will set f1(x) = cos(2x), f2(x) = sin(x), and f3(x) = sin(2x).  Then the k-th 
coordinate of )S(xr  is given by )(f)(f)S( 10

20
20

xxax ji

j
i

ijkk ∑
≤≤
≤≤

=r  where 0 2≤ ≤k  and rx x x= 0 1, .  

These functions will give products of trigonometric terms instead of sums, and will mix coordinates 
even before using the sum of conjugates from Proposition 1. 
 The attractor in Figure 5 was created using a sum of conjugates of )S(xr  with D6 as the group 
of symmetries.  A palette was chosen especially to highlight the slight difference in frequency in 
areas that are only hit a small number of times by the function.  The oscillations highlighted in 
magenta illustrate a qualitative behavior that seems to arise with low but dependable frequency when 
products of the trigonometric terms appear. 

Third we create bump functions B: 2 2ℜ → ℜ . The ith output coordinate of of B( )rx  is given 

by B( ) e ( / )rx ai ij
x j

j

i= − −

≤ ≤
∑ 2 2

0 2

2

where 0 1≤ ≤i . Thus, this function is determined by the two 

dimensional array aij  where i gives the output coordinate and j corresponds to the position of a 
bump in the bump function. 
 In Figure 6 the attractor is the result of a bump function summed over the symmetries in D3.  
Here, the areas hit by the function the least are colored yellow, and the areas hit the most are colored 
red and purple.  Note that the densest areas are in bands at different distances from the origin. 

Fourth, we create fractional power functions F: 2 2ℜ → ℜ . The 0 and 1 output coordinates of 
F( )rx  are given by F( ) Re( )rx a wj j

j
0 0

0 2
=

≤ ≤
∑  and F( ) Im( )rx a wj j

j
1 1

0 2
=

≤ ≤
∑  where w ( ) /( )

j
jx iy= + +1 2 3 . 

Thus, this complex fractional power function is determined by the two dimensional array a jk  where 
k corresponds to the real and imaginary parts of the fractional powers, and j corresponds to changing 
the fractional power.  
 The attractors in Figures 7 and 8 are the result of sums of conjugates of fractional power 
functions conjugated using the symmetries of D3.  It is interesting to note that in Figure 7, the 
“holes” in the attractor are eight-pointed.  Figure 7 appears to be made out of polygons in contrast 
with the earlier, smoother figures.  It is also worthwhile to point out that in Figure 8, the attractor 
appears to have an additional distorted similarity which might be called an annular glide reflection.  
Notice that the outermost components resemble hats with a figure-like component beneath them.  
Notice that upon a sixth of a turn around the origin, the innermost component seems to resemble that 
hat with a figure-like component but the direction from the origin is inverted.  The resulting 
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symmetry is similar to D3-enhanced p1a1 symmetry described in [5].  Further study may reveal 
reasons for this unexpected behavior. 

Lastly, we create functions Q: 2 2ℜ → ℜ  which are polynomial functions reduced mod 1. 
That is, 1 mod )R()Q( xx rr = . Thus, such functions are determined by a three dimensional array aijk  
where i corresponds to the power of x0,  j corresponds to the power of x1 and k specifies the output 
coordinate. 
 Figures 9 and 10 are generated by sums of polynomials mod 1 using the symmetries of C3 
and C4, respectively.  Even though the polynomials mod 1 have discontinuities, these figures have 
the required symmetry and include what appear to be many overlapping components. Sometimes 
these components are arranged in somewhat parallel configurations leading to feathery or spiral-like 
images.  In Figure 10, a black background is chosen to highlight the relatively thin attractor more 
effectively. 
 

4. CONCLUSION 
We have investigated a new technique for creating cyclic symmetry in the presence of chaos: 

summing over the conjugates by the symmetries in a group. This technique is so general that 
arbitrary functions can be used to create new functions with the desired cyclic or dihedral symmetry. 
Using polynomials, trigonometric functions, exponential bump functions, fractional complex 
exponential functions, and polynomials mod 1 results in qualitatively different attractors. Since the 
underlying functions may have properties of their own, additional distorted similarities may also 
arise. With the new technique we are able to create aesthetically pleasing images with greater 
diversity and additional interesting structure. 

 
Acknowledgment —This work was supported by DMS-9805507. We appreciate the use of code 
by the authors of [4] for the creation of Figure 1.  
 

APPENDIX 
 The following J code creates the function that is used to generate the attractor shown in 
Figure 2. At http://www.lafayette.edu/~reiterc/j a complete script giving all the functions used in 
this paper and sample steps to create images may be found. 
 
   Prods=:\:~@~.@(* >&1e_14@:|)@(,(,/)@:( (+/ . *"2)/~)) 
   sin=:1&o. 
   cos=:2&o. 
   rotn=:(cos,-@sin),:(sin,cos) 
   cd=:Prods^:_@:(rotn@+:@o.@%,:1 0"_,:0:,*) 
    
   consum=: 2 : 0 
x=.+/ . * 
+/@((%.n.)"_ x" 2 1 ])@:(u."1)@(n.&x) f. 
) 
 
P=:1 : 0 
x=.+/ . * 
(1&{ x 0&{ x m."_)@(^/&(i.3)) 
) 
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   p02=:3 3 2$,".;._2]0 : 0 
  0.111601  _0.327589 
  0.215598  _0.452505 
 _0.253271   0.274297 
  0.113096  _0.198432 
_0.0450232   0.295369 
  0.267113   0.368732 
  0.275252   0.160737 
 _0.488431 _0.0672858 
  0.127573   0.111203 
) 
 
   s02=:_5 
    
   f02=:(p02 P) consum (cd s02) 
    
   ]f02^:(i.5) 0.1 0.2 
      0.1       0.2 
  _0.1684 _0.337103 
 0.280257  0.558578 
_0.444799 _0.905096 
 0.662754   1.22628 
 
 The function builder consum takes a function and a group of symmetries as argument 
and creates a new function using the sum of conjugates as in Proposition 1.   The function 
builder P creates the polynomial from our set of parameters, p02. Here, cd generates the 
symmetries of the group D5, and f02 is the sum of the conjugates of our initial function p02 P 
over the symmetry group.  The first four iterations of the function are then presented which is 
useful for comparison with alternate implementations. 
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Fig 1. An attractor with C6 symmetry. 
 

 
Fig 2. An attractor with D5 symmetry generated with polynomials. 
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Fig 3. An attractor with C7 symmetry generated with trigonometric sums. 
 

 
Fig 4. An attractor with D5 symmetry generated with trigonometric sums. 
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Fig 5. An attractor with D6 symmetry generated with sums of trigonometric products. 
 

 
Fig 6. An attractor with D3 symmetry generated with a bump function. 
 



   11

 
Fig 7. An attractor with D3 symmetry generated by a fractional power function. 
 

 
Fig 8. An attractor with D3 symmetry generated by a fractional power function with a distorted 

glide reflection. 
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Fig 9. An attractor with C3 symmetry generated by polynomials mod 1. 
 

 
Fig 10. An attractor with C4 symmetry generated by polynomials mod 1. 
 


