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Abstract 

The growth of real valued cellular automata using a deterministic algorithm on  

2–dimensional quasicrystalline structures is investigated. Quasicrystals are intermediate 

between the rigid organization of crystals and disorganized random structures. Since the 

quasicrystalline structures may be highly symmetric or not, we are able to obtain highly 

organized and relatively random growth patterns. This deterministic growth produces 

dendrite, sector, stellar, regular polygons, round, and random DLA-like structures. 

 

Introduction 

Cellular automata are discrete dynamical systems whose behavior depends on local rules. 

Perhaps the most famous cellular automata is The Game of Life described by John 

Conway [1,2]. That automaton remains intriguing because its complex behavior is 

capable of universal computation. However, more serious applications are becoming 

common because cellular automata allow parallel processing [3]. Real valued cellular 

automata are also commonly used in applications such as image processing [4]. Such 

automata were used as a local model for snow crystal growth on a hexagonal lattice [5]. 

A wide range of growth structures were created, including stellar, dendrite, sector, and 
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plate forms which includes the basic 2-dimensional types seen in physical snowflakes. Of 

course, the growth exhibited, and was limited to, having 6-fold symmetry as determined 

by the underlying lattice. In this paper we investigate a similar growth model on more 

general underlying structures that allow us to obtain n-fold symmetry as well as 

randomness.  

Quasicrystals are usually recognized by having diffraction patterns with a 

rotational symmetry that could not result from a crystalline structure. More directly, 

typical quasicrystalline structures are recognized by their local repetitiveness and their 

lack of the translational periodicity property of crystals. Thus quasicrystals are 

intermediate between crystals and random structures. Quasicrystals may or may not have 

global rotational symmetry and the symmetries are not restricted as they are for crystal 

growth. The only global rotational symmetry that is compatible with crystalline structures 

are 2-fold, 3-fold, 4-fold and 6-fold rotations [6]. However, quasicrystalline structures 

may be created with any other n-fold rotational symmetry. For example, the first tiling in 

Figure 1 shows a quasicrystalline tiling similar to a Penrose tiling. Its diffraction pattern 

has 5-fold symmetry forbidden for crystalline structures, nonetheless, it has no global 

symmetry. The second tiling in Figure 1 shows a quasicrystalline structure with 8-fold 

global symmetry but without translational symmetry. Thus we will be able to create 

deterministic growth patterns with symmetries forbidden for crystals. As in the hexagonal 

case, we see dendritic, stellar, sector, and plate growth but with new rotational 

symmetries. We will also see that quasicrystalline deterministic growth can appear quite 

similar to diffusion limited aggregation (DLA). DLA growth is based upon probabilistic 
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growth [7,8]. Our model also allows 2-dimensional circular clump-like growth similar to 

graupels which are naturally occurring snow crystals not modeled in [5]. 

 Weeks [9] has also investigated automata on quasicrystalline structures, but not 

yielding growth as investigated here. 

 

Model and Parameter Diagram 

Snow crystals are intriguing because they have striking 6-fold symmetry and a diversity 

of forms, including highly complex forms. These have been recorded in photographs 

[10,11], and studied in a laboratory [12]. The diversity of snow crystal forms includes 2-

dimensional and 3-dimensional forms. Nakaya replicated those forms in the laboratory by 

varying the temperature of air and a water bath that introduced water vapor. Hence we 

view the process as having two essential parameters roughly corresponding to 

temperature and saturation. Many other models of crystal growth are essentially based 

upon random processes [7,8]. A simple local deterministic model for the 2-dimensional 

ice crystal forms was described in [5] and this note generalizes that to quasicrystalline 

structures.   

That model can be described as follows, each cell contains a real value with 

values greater than or equal to 1 corresponding to solid material and values less than 1 

corresponding to material that is in a fluid state. Cells are called receptive if they are 

either solid or they have at least one solid neighbor. Other cells are nonreceptive. The 

updated values are the sum of two quantities. Very informally, we consider the two 

quantities as giving the material bound to the solid cells plus material moved by diffusion 

of the unbound material. The first quantity is the value of the receptive cell plus a 
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constant, γ, if the cell was receptive; otherwise the first quantity is zero. The second 

quantity is an average of the nonreceptive values where receptive sites have been 

replaced by zero. The average we compute is ½ of the value of the cell plus ½ the 

average value of its neighbors. This average is computed for all cells and using all cells 

except that the values of receptive sites have been replaced by zero. Figure 2, which is 

from [5], illustrates the process on a small hexagonal patch. In this note we will only 

consider the above type of averaging. However, these averages are not usually the 

optimal approximation to the Laplacian (which is ordinarily used to model diffusion) at 

any one quasicrystalline vertex, but nonetheless, these averages are close and model 

diffusion of the free material. We note that in [5] it was seen that the particular details of 

growth are extremely sensitive to the averaging coefficients although small changes in 

coefficients usually maintain the same overall qualitative behavior.   

 While originally applied only to hexagonal structures, we have described the 

above algorithm so that it can be applied to any graph (with finite degree). In particular, 

in this paper we investigate this growth model on 2-dimensional quasicrystalline 

structures created in the manner of [13]. That is, we use canonical projections with shifts 

as described there and which give rise to crystalline and quasicrystalline structures with 

different local patches of regularity and global symmetries. In this paper we will always 

use a shift in Z n  so that there is global n-fold rotational symmetry in the resulting 

structure on which the automata runs. The vertices of the quasicrystalline structure are the 

cells of our automata, and edges correspond to the neighbors in the automata. Since these 

structures have n–fold rotational symmetry, we refer to the vertex at the center of the 

symmetry as the center of the growth model. While typical tiling images such as Figure 1 
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have a few thousand vertices, for our growth model experiments, we utilize 

quasicrystalline structures with hundreds of thousands of vertices.  

 As a first example, consider the quasicrystalline structure generated by Z 5  with 

shift chosen so that the structure has a 5-fold rotational symmetry. We initialize this 

structure by setting all cells to a value β except the center cell which is set to 1. Thus we 

have a single solid particle immersed in a bath of level β. Figure 3 shows a diagram 

illustrating the growth for various β and γ values. The growth was run for 10,000 

iterations or until solid material approached the boundary. The boundary was maintained 

at the constant level β. The solid material is shown with gray scales from half grey up to 

white, with white being closest to level 1. Nonsolid material is shown with grey scales 

from black to half grey with, black corresponding to level 0. Thus, there is a jump in 

grayscale at the boundary between solid and fluid material. 

 A decagonal plate appears whenever γ is 1 regardless of the value of β. 

Otherwise, increasing β and γ tends to give fuller growth; intermediate levels of β and 

low γ give rise to dendritic growth. Various sector, stellar and graupel forms are also 

visible. When β = 0.75 and γ = 0.001 the structure has a circular appearance similar to 

graupels. When β and γ are both small the growth is very slow. For a more extensive 

parameter table see [14].  

The growth rate of various statistics of the model can be measured. There are two 

natural measures on the underlying quasicrystalline structures: the graph sense of 

distance that results from counting the number of edges traversed and the Euclidean 

distance of the embedding of the graph in the plane. In our experience the choice does not 

change the general tendencies of the statistics. Since it is easiest to describe the edge cells 
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for the graph measure, we will use that sense of distance. In particular, we will consider a 

cell to be an edge cell if it is ice but it has some neighbors that are not ice.  

Most of the growth statistics we measured were unsurprising. For example, the 

number of cells that are ice tends toward growing quadratically with time. The number of 

edge vertices grows in a more diverse way depending upon the fractal nature of the 

growth. For example, when β = 0.45 and γ = 0, the growth is dendritic which has a fractal 

quality. Figure 4 shows a log-log plot of the number of edge vertices versus time for this 

growth. The growth seems to have an asymptotic slope which corresponds to the growth 

exponent. When a fit is done on the trailing half of points, we get an estimate for the 

exponent of 1.84. Hence the number of edge cells grows roughly like 84.1Ct . Thus, the 

fractal growth of the edge is near but below quadratic growth in that case. Figure 5 shows 

the fractional exponent for γ = 0 as β varies. Thus the edge appearing in the thick growth 

at the top of Figure 3 has a fractal dimension very near 2. Figure 6 shows the fractional 

exponent for β = 0.45 as γ varies although a non-uniform scale is used to emphasize the 

spike near γ = 0. Thus, the edges of the plates on the right of Figure 3 grow linearly, as 

expected.  

 

Variation on Symmetry  

Selected examples of the growth model on quasicrystalline structures generated by Z 5  to 

Z 8  are shown in Figure 7. Dendritic growth with 10 branches occurs when  

5=n ; notice that the branches themselves are not symmetric and that there are 

reflections between the branches. Thus the n = 5 figures have dihedral D 5  symmetry 

despite having 10 branches. The 6=n  structure generated via canonical projection is 
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actually a crystalline structure; however, it is not the complete hexagonal lattice. The 

n = 6 illustrations in Figure 7 also show dendritic growth as was the case for the 

hexagonal lattice in [13]. The 7=n  illustrations show a seven sided sector like growth 

and a circular appearance which has not been seen in the hexagonal case. This is 

particularly interesting given the longstanding search for automata exhibiting circular 

growth [15]. The 8=n  illustrations exhibit dendritic and sector growth with D 8  

symmetry. Although this form appears very natural, it is not compatible with ordinary 

crystalline structures. 

 Parameter diagrams like those in Figure 3 for the ,7,6=n and 8 cases are not 

surprising given our experience with the hexagonal lattice and n = 5 quasicrystalline 

structures. When γ = 1 and for all β, we see regular n-gons when n is even; however, for 

the same values of γ and β we see 2n-gons when n is odd. This is due to the double 

branching that occurs in cases where n is odd. In general, larger β and γ resulted in fuller 

growth with dendrite growth resulting when β is intermediate and γ is low. In the odd 

dimensions we see clump like growth for large β and low γ. On occasion that growth 

appears to be remarkably circular. 

 

Variations on Center 

The global symmetry can be destroyed by using a different shift in constructing the 

structure. Varying the position of the starting point of the growth model also breaks the 

symmetry. In this case, the same basic growth patterns of stellar, dendritic, and plate 

forms are observed on the different quasicrystalline lattices. However the patterns are 

usually dramatically less symmetric. When the value γ is near 1, the forms resemble 



 8

regular polygons as can be seen on [14]. In other cases there appears to be a significant 

random component to the growth which is an expression of the irregular nature of the 

quasicrystalline structure. 

 The first illustration of Figure 8 shows a growth structure with a highly random 

appearance much like DLA dendrtic growth. On careful inspection, the 5 dominant 

directions of the underlying quasicrystalline structure can be seen in the directions of the 

branches. The second illustration shows much fuller growth and illustrates that if the 

initial seed is placed on a vertex with reflective symmetry on the quasicrystalline 

structure, the growth will maintain the reflective symmetry. Thus some, but not all, of the 

symmetry of the quasicrystalline structure may be maintained by the growth. The 7=n  

illustration shows a structure similar to DLA structures and the bias in branch directions 

is no longer visually apparent.  The n = 8 case shows a structure in which the growth 

seems to have dihedral D 1  symmetry, but careful inspection reveals that it is not 

symmetric. The growth branches are dendrites and their direction exhibits the underlying 

quasicrystalline structure. Additional examples of growth of these random growth 

patterns from Z5 and Z7 quasicrystals can be found on [14].  

  

Cyclic Growth  

We have seen that we could produce growth with a reflection symmetry on a D n  

symmetric quasicrystalline structure by selecting initial seeds in specific positions. We 

are interested in whether we can produce cyclic, but not dihedral, growth with 

constructions like we have used. In particular, we would be interested in initial 

placements or restrictions of the structure that produce the desired cyclic growth. We 
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have not found a simple mechanism for accomplishing that, but can produce the n-fold 

cyclic growth by introducing bias on the weights used in the local averaging. The weights 

are determined using information about the global position of the patch, and hence this 

modified technique is not a local automaton in strongest sense. However, each vertex is 

updated in a consistent manner using only information from a fixed local patch.  

In order to obtain cyclic growth we modify our averaging scheme that is used on 

the nonreceptive material. The averaging scheme is designed as follows: suppose a vertex 

v has neighbors iv  and that those neighbors have polar angle iθ  as measured using the 

center of symmetry for the origin. Also let θ be the polar angle of v and let ii θθθ −=∆ . 

The weight associated with the neighbor vertex iv  is proportional to εθθ +∆−∆ )min( ji  

where the minimum ranges over j so that each neighbor of the v is considered and the 

parameter ε  controls the cyclic bias. The proportion is chosen so that the weights from 

all the neighbors of v sum to one. As before, the contribution of the nonreceptive portion 

is ½ of the value of the cell plus ½ the average (in this case weighted) value of its 

neighbors. When ∞=ε , the weights will be equal and hence this corresponds to the 

ordinary averaging scheme. When 0=ε  the vertex with smallest iθ  will be given zero 

weight. Hence, these are the extremes where we expect dihedral and highly biased 

growth. To simplify the initialization, we use equal weight averages for the center and 

each of the neighbors of the center. 

Figure 9 shows the growth that occurs for several ε  when 8=n , 35.0=β  

and 0001.0=γ . First, we see the fully dihedral 8-fold symmetric growth. Then 64=ε  

shows growth that is slightly asymmetric, but the main features of the dihedral growth are 

still quite visible. When 6484.0=ε  we see the growth has become quite asymmetric. By 
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1098.0=ε  we see the growth has begun to swirl. The further examples show even more 

extreme swirling. Other illustrations and animations may be found at [14]. 

 

Conclusions 

Previous investigations have produced models of crystal growth with 6-fold symmetry 

that exhibit dendritic, sector, stellar and plate forms. Crystalline structures cannot have 

general n-fold rotational symmetry; however, quasicrystals can be produced with global 

n-fold symmetry. This investigation shows that models on suitable quasicrystalline 

structures can create all those growth forms with any n-fold symmetry. Moreover, this 

model produces new forms: graupel-like forms and growth similar to probabilistic DLA 

growth. 
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Figure 1. Quasicrystalline structures from Z 5  and Z 8  
.                     
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Figure2. Illustration of the growth model on a small hexagonal patch. 
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Figure 3. Growth forms on quasicrystals from Z 5  that appear as b and g vary. 
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Figure 4. A log-log plot of number of edge positions versus time for dendrite growth. 
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Figure 5. Fractional exponent of the number of edge cells versus β  for 0=γ  
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Figure 6. Fractional exponent of the number of edge cells versus γ  for 45.0=β
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Figure 7. Growth forms on quasicrystals from Z 5 , Z 6 , Z 7 , and Z 8 . 
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Figure 8. Growth with a noncentral seed 
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Figure 9. Cyclic growth with several bias values. 
 


