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Abstract 
Algorithms for creating a natural Voronoi tiling associated with point sets are developed. 
These algorithms provide additional information about the tiling which can be readily 
visualized. Images created in this way can be quite striking. We illustrate the application 
of the algorithms on fractals, lattices, and quasicrystals.  
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1. Introduction 
The classification of the crystallographic symmetry groups in 3-dimensional space was a 
triumph of 19th century mathematics [1]. Understanding these symmetry groups proved 
to be a key to understanding x-ray diffraction patterns in the early part of the 20th 
century. Thus, there was great shock in 1984 when diffraction patterns that were 
impossible for crystalline structures were discovered [2]. These materials have become 
known as quasicrystals and their structure remains intriguing. That discovery has 
generated great interest in understanding sets of points structured more loosely than in the 
regular, periodic pattern of lattices.  

This paper develops raster techniques for experimentally studying fairly general 
point sets. In particular, a magnitude or potential height field is computed that measures 
distance from the nearest point and gives a powerful visual overview of the arrangement 
of the point set. Ridges in the potential height field correspond to the edges of the 
classical Voronoi tiling. Paint-fill-like raster graphics techniques allow a measure of the 
size of each tile to be experimentally determined and colored accordingly. While these 
raster techniques require significant computational resources, they may be run on modern 
PCs and result in images with far more information than contained in a usual Voronoi 
tiling.  

We apply our techniques to fractals, overlaid lattices, and quasicrystaline patterns. 
In particular, we see the patterns of cells for finite Sierpinski triangles are quite dramatic. 
Overlaid lattices can have remarkably varied tiles that are striking and suggestive of 
primitive artistic patterns. We create quasicrystalline patterns using two of the known 
techniques. These can be used to create Penrose tilings and hence our examples include 
our enhanced Voronoi rendering of those remarkable tilings and their generalizations.  
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2. Raster Algorithms for Enhanced Voronoi Cells 
We would like to be able to create our enhanced tilings for point sets that are as general 
as possible. A good introduction to point sets can be found in [3]. A type of point set that 
is nice, but fairly general, is a Delone set. A Delone set is an infinite set of points that are 
discrete (so there is a fixed minimum distance between pairs of points) and relatively 
dense (each sufficiently large ball contains a point — thus the gaps between nearest 
points are less than some fixed size). While these concepts may be discussed in any 
dimensional space, we will restrict our attention to the 2-dimensional plane.  

Each point x in a Delone set has an associated Voronoi cell which can be defined 
as the set of points in the plane that lie at least as close to x as to any other point. See 
Figure 0 for the Voronoi cells associated with a set of 50 random points. The Voronoi 
cell for a given point x can be determined formally by constructing the perpendicular 
bisectors of x and all the other points in the point set. The Voronoi cell of x is then the 
smallest region containing x that is bounded by these bisectors. Using the perpendicular 
bisectors of all the other points in the Delone point set is in practice not necessary since 
considering only nearby points will suffice (although this is more subtle than it might 
seem at first glance and uses the properties of Delone sets). In contrast, our algorithms 
create the Voronoi cells of a point set using raster graphics techniques. However, our 
algorithms also provide additional information. In practice, our point sets are finite, yet 
the Delone requirement of a minimal separation distance remains important since we 
need to be able to resolve a raster edge between any two given points. 
 We will illustrate our algorithms both numerically and visually. The numerical 
illustration is begun with a small Sierpinski triangle arrangement of points that are 
separated by three pixels. That array is shown in Table 1. Our goal is to illustrate the key 
steps of the algorithms; the Appendix contains a complete list of expressions used to 
recreate the numeric tables and further explanation of the use of our functions. Those 

Table 1 

 A small Sierpinski triangle arrangement of points. 
⁄ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒø 
≥0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0≥ 
≥0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0≥ 
≥0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0≥ 
≥0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0≥ 
≥0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0≥ 
≥0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0≥ 
≥0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0≥ 
≥0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0≥ 
≥0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0≥ 
≥0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0≥ 
≥0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0≥ 
≥0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0≥ 
≥0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0≥ 
≥0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0≥ 
≥0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0≥ 
≥0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0≥ 
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ 
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expressions can be modified to obtain the figures. Figure 1 shows a larger version of the 
Sierpinski triangle with a pixel separation of 8.  

Our first function computes the displacement of each pixel from the nearest point 
in our point set. The first step of the process is to mark each point as 0 and other points 
by some large number. We represent the vertical displacements by one pixel by the 
imaginary numbers i±  and the horizontal displacements by 1± . We then look at each 3 
by 3 neighborhood, note displacements from the displacement of neighbors, and select a 
smallest magnitude one. Thus, after one pass, the points will be marked by 0 and their 
neighbors by i± , 1±  or i±± 1 . Table 2 shows the result of one pass of the displacement 
process on the array in Table 1. Note that 1j1 denotes the complex number that is 
commonly written i+1 .  
 

We repeat making passes that find smallest displacement from neighbors until the 
displacement of all the pixels from a nearest point have been determined. The magnitude 
of the displacements gives the distance to the nearest point. Our height field is the square 
of the magnitude since its entries will be integers. Figure 2 shows this height field for the 
Sierpinski point set shown in Figure 1. Color in the figure corresponds to height, and 
hence distance from a point. In particular, red corresponds to pixels nearest to points and 
magenta corresponds to pixels furthest from points. Note that we use periodic boundary 
conditions so that pixels on the top are next to pixels on the bottom (likewise side-to-
side). 

Next we want to create the Voronoi tiles for each point in the point set. By 
looking at each 3 by 3 neighborhood, we can estimate the concavity of the height field at 
each point. We compute the difference of the 4 pairs of opposite points (upper left with 
lower right, upper right with lower left, top middle with lower middle, and middle left 
with middle right). If two or more of the pairs have a difference of less than or equal to 
one than we mark the point as part of a ridge. The ridges of this new array are the points 
in the plane that are approximately equal distances from two nearby points of our point 
set. In practice, we also add pixels along diagonal edges to "seal" the tiles so that paint-
fill-like algorithms will not allow paint to leak through diagonals. Table 3 shows the 

Table 2 

One step of our displacement method. 
⁄ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒø 
≥999   999  999  999 999   999  999  999 999   999  999  999 999   999  999  999≥ 
≥999  _1j1  0j1  1j1 999   999  999  999 999   999  999  999 999   999  999  999≥ 
≥999    _1    0    1 999   999  999  999 999   999  999  999 999   999  999  999≥ 
≥999 _1j_1 0j_1 1j_1 999   999  999  999 999   999  999  999 999   999  999  999≥ 
≥999   999  999  999 999   999  999  999 999   999  999  999 999   999  999  999≥ 
≥999  _1j1  0j1  1j1 999  _1j1  0j1  1j1 999   999  999  999 999   999  999  999≥ 
≥999    _1    0    1 999    _1    0    1 999   999  999  999 999   999  999  999≥ 
≥999 _1j_1 0j_1 1j_1 999 _1j_1 0j_1 1j_1 999   999  999  999 999   999  999  999≥ 
≥999   999  999  999 999   999  999  999 999   999  999  999 999   999  999  999≥ 
≥999  _1j1  0j1  1j1 999   999  999  999 999  _1j1  0j1  1j1 999   999  999  999≥ 
≥999    _1    0    1 999   999  999  999 999    _1    0    1 999   999  999  999≥ 
≥999 _1j_1 0j_1 1j_1 999   999  999  999 999 _1j_1 0j_1 1j_1 999   999  999  999≥ 
≥999   999  999  999 999   999  999  999 999   999  999  999 999   999  999  999≥ 
≥999  _1j1  0j1  1j1 999  _1j1  0j1  1j1 999  _1j1  0j1  1j1 999  _1j1  0j1  1j1≥ 
≥999    _1    0    1 999    _1    0    1 999    _1    0    1 999    _1    0    1≥ 
≥999 _1j_1 0j_1 1j_1 999 _1j_1 0j_1 1j_1 999 _1j_1 0j_1 1j_1 999 _1j_1 0j_1 1j_1≥ 
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ 
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array giving the Voronoi tiles for the points in Table 1. The edges correspond to the ones 
in the array. Figure 3 shows the tiles in black and white for the Sierpinski arrangement of 
points shown in Figure 1. 

Next, we use a process similar to a paint-fill algorithm on the height field without 
crossing the Voronoi edges to find the maximal radius of each tile. Then we can color the 
tiles according to that information about tile size. Our default is to color by hue with red 
corresponding to the smallest radius in the tiling and magenta corresponding to the 
largest. The entries in Table 4 correspond to colors in a 256 color palette. We use the 
entries in Table 4 to distinguish the size of the tiles shown in Table 3. The zeros 
correspond to the tile edges, the value 255 marks a point in the original point set, and the 
values 1 to 254 correspond to different hues distinguishing the size of the tiles. Figure 4 
shows the colored tiles for the tiles of Figure 3. Notice the periodic boundary conditions 
and the fractal rescaling. 

Before turning to our illustrations related to quasicrystals in the last section, we 
will get additional experience with the enhanced Voronoi tilings. Figure 5 shows a square 
lattice of points along with the Voronoi tiles (which are squares). Since each square is the 
same size, the radial size and color of each tile is the same and we show it in white. In a 
similar way, Figure 6 shows a hexagonal lattice and its Voronoi tiling. Figure 7 shows the 
colored Voronoi tiling resulting from the union of the points in the square and the 
hexagonal lattice.  For this tiling there is a wide assortment of tiles and a complex and 
interesting arrangement of the Voronoi tiles. 
 
3. Diffraction Patterns 
Diffraction patterns are important in crystallography because they provide information on 
the symmetry of a structure. In fact, [3] defines the symmetry of a crystal as the 
symmetry implied by its diffraction pattern. Diffraction patterns are relatively easy to 
simulate using Fast Fourier Transforms. Creating diffraction patterns is discussed in [4, 

Table 3 

 The Voronoi tiling associated with Table 1. 
⁄ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒø 
≥1 1 1 1 1 1 0 0 1 0 0 0 1 0 0 1≥ 
≥0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1≥ 
≥0 0 0 0 0 1 1 1 1 1 0 0 1 1 1 0≥ 
≥0 0 0 0 1 1 0 0 0 1 1 1 1 1 0 0≥ 
≥1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1≥ 
≥0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0≥ 
≥0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0≥ 
≥0 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0≥ 
≥1 1 1 1 1 1 0 1 1 0 0 0 0 0 1 1≥ 
≥0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0≥ 
≥0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0≥ 
≥1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1≥ 
≥1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0≥ 
≥1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0≥ 
≥1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0≥ 
≥1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0≥ 
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ 
 

Table 4 

 A colored Voronoi tiling. 
⁄ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒø 
≥  0   0   0   0   0   0 139 139   0 223 223 223   0 139 139   0≥ 
≥223 223 223 223 223   0 139 139   0 223 223 223   0 139   0   0≥ 
≥223 223 223 223 223   0   0   0   0   0 223 223   0   0   0 223≥ 
≥223 223 223 223   0   0 254 254 254   0   0   0   0   0 223 223≥ 
≥  0   0   0   0   0 254 254 254 254 254 254   0   0   0   0   0≥ 
≥223 223 223 223   0 254 254 254 254 254   0   0   0   0 223 223≥ 
≥223 223 223 223   0 254 254 254 254   0   0 254 254   0 223 223≥ 
≥223 223 223 223   0 254 254 254   0   0 254 254 254   0   0 223≥ 
≥  0   0   0   0   0   0 254   0   0 254 254 254 254 254   0   0≥ 
≥139 139 139 139 139   0   0   0 254 254 254 254 254 254   0 139≥ 
≥139 139 139 139 139   0   0   0 254 254 254 254 254 254   0 139≥ 
≥  0 139 139 139   0   0   0   0   0 254 254 254   0   0   0   0≥ 
≥  0   0   0   0   0 139 139 139   0   0   0   0   0 139 139 139≥ 
≥  0   1   1   1   0 139 139 139   0 223 223 223   0 139 139 139≥ 
≥  0   1   1   1   0 139 139 139   0 223 223 223   0 139 139 139≥ 
≥  0   1   1   1   0 139 139 139   0 223 223 223   0 139 139 139≥ 
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ 
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5]. The diffraction pattern of a lattice is relatively simple in that the result is another 
lattice (specifically, it is the dual lattice). However, other patterns give rise to remarkable 
diffraction patterns. See [6] for an atlas of diffraction patterns and [3] for examples 
associated with quasicrystals and tilings. 

As an example of a diffraction pattern, Figure 8 shows the diffraction pattern for 
the Sierpenski triangle array shown in Figure 1. Reversing the convention in [6], we use a 
palette with white as the background color and the high intensity portion in black. This 
allows us to see more of the information given by the diffraction pattern. Notice there is 
some sense of an incomplete lattice structure, on different scales, as might be expected 
for such a fractal. 
 Diffraction patterns are of particular importance for identifying quasicrystals, as 
the diffraction patterns of quasicrystals exhibit symmetry forbidden by the 
crystallographic restriction (see [3]) that only 2-fold, 3-fold, 4-fold and 6-fold rotational 
symmetry is possible in a crystalline structure. Hence the diffraction pattern can only 
exhibit those rotational symmetries (sometimes doubled due to a minus sign symmetry). 
 
4. Pentagrids and Quasicrystals 
Penrose tilings, which are famous aperiodic tilings of the plane, are of particular interest 
in a discussion of symmetry and quasicrystals.  There are several methods for creating 
generalized Penrose point sets [3]. We use two methods, the grid method and the 
projection method, and apply our raster algorithms to the resulting point sets.  

A grid is an infinite family of parallel lines with a fixed separation distance. A 
multigrid or k-grid is the union of k grids with different orientations. Figure 9 shows a 
portion of a 5-grid with the lines closest to the origin forming a regular pentagon. A 
multigrid is regular if no more than 2 lines intersect in any point. For carefully chosen 
pentagrids, the intersection points are dual to a Penrose tiling. That is, each point 
corresponds to a tile of a Penrose tiling. To create a Penrose dual point set using the grid 
method we take a 5-grid and make it regular by applying a suitable shift to each grid. The 
shifts are perpendicular to the direction of the grid lines. Moreover, the sum of the shifts 
modulo one must be one-half in order for the set of intersection points to be a Penrose 
dual point set [3]. However, shifts not satisfying that summation condition give 
generalized Penrose dual point sets. Figure 10 shows the height field with the Voronoi 
tiling overlaid in white for a regular Penrose dual point set generated that way. This 
Voronoi tiling arises naturally from the grid construction. Notice this tiling is not a 
conventional Penrose rhomb tiling as would be expected for the dual. In particular, there 
are tiles of widely different size. However, local fivefold rotation symmetry that appears 
repetitively (but not periodically) is apparent. This is to be expected for a tiling of a 
Penrose point set. 

Figure 11 shows the same construction applied to a regular 7-grid. Notice the 
local 7-fold patterns. 
 The second technique for creating Penrose tilings that we employ is the projection 
method discussed in [3]. The points in the projection method are the projection onto a 
two-dimensional plane of a set of points from 5-dimensional space. The set of points are 
the points of the 5-dimensional hypercube lattice that are projected (this projection is 
different from the planar projection) onto a special object in 3-dimensional space. We 
constructed a regular Penrose point set and rhomb tiling using this method.  Figure 12 
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shows the regular Penrose rhomb tiles in black, the height field with hues and the 
Voronoi tessellation in white. The rich structure of the rhomb tiling and dual Voronoi 
tiling are apparent. In particular, notice the repetitive local 5-fold rotational symmetry. 
 The diffraction pattern for the rhomb vertex set has rather distinct spikes with 
some local 5-fold symmetry.  However, it is difficult to see the local symmetry by 
looking just at the diffraction pattern. Using a threshold to select the highest points, we 
construct the Voronoi tiling for the diffraction spikes. Figure 13 shows the diffraction 
spikes as points along with the associated Voronoi tiling. Notice the local, central 5-fold 
rotational symmetry expected for this quasicrystal. 
 As our last illustration, we apply the projection method to obtain a generalized 
Penrose tiling which is shown in black in Figure 14. The associated height field is shown 
with hues and the Voronoi tiling is shown in white. Notice the 10-fold local symmetry 
that does not appear in ordinary Penrose tilings.  
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Appendix 
Our examples were created using the programming language J, which can be obtained 
from J Software at http://www.jsoftware.com. The following expressions allow the 
duplication of Tables 1-4. Figures 1-4 may be obtained by with slight modifications. Both 
the tables and the figures may be interactively recreated by running the J laboratory 
ras_tile.ijt which can be obtained from the J materials at 
http://www.lafayette.edu/~reiterc/j/index.html. The laboratory requires the scripts 
ras_tile.ijs and raster4.ijs which may also be obtained from that site. 
 First we enumerate the functions defined in ras_tile.ijs needed to recreate Tables 
1-4 and then we illustrate their use. 
Ld=:|.j.~/~i:1                
perext=:{:,],{. 
perext2=:perext"1@:perext 
ldispl=:((=<./)@:|{.@#])@,@(-&Ld) 
displ_step=:3 3&(ldispl;._3)@perext2 
displ=:displ_step^:_  
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mag2=:* +                  
vor=: (2: <: 4&{ +/ . >: -:@+/@:((0 _1+(,:-)i.4)&{))@, 
voronoi=:3 3&(vor;._3)@perext2  
lnegspred=:((4&{ <: 0:){4&{,<./)@,   
negspred=:3 3&(lnegspred;._3)@perext2   
lauto=: {~ #. 
lseal=:(1(6)}8#i.2) &lauto @, 
hseal=: 2 2&( lseal ;._3) @:(,{.)@:((,{.)"1) 
seal=:|."1@:hseal@:(|."1)@:hseal   
lin254b=: 3 : 0 
min=.<./(>&0#]),y. 
max=.>./,y. 
(y.>0)*1+<.(253.999%(max-min))*y.-min 
) 
 
We create the Sierpenski triangle st shown in Table 1 by placing 3 pixels between all 
the points of a small Sierpinski triangle. 
siertri=:,,.~ 
st=:_2|. _2|."1[ 1j3#1j3#"1 siertri^:(2) ,1 
 
We then perform the first step of our displacement measuring the distance each pixel is 
from a point in our point set. This appears in Table 2. The array dp iterates the 
displacement computation until the displacement from each nearest original vertex point 
is computed. 
 
displ_step 1000*-.st 
dp=:displ 1000*-.st 
 
The next step is computing the square of the magnitude allowing us to get a non-complex 
measurement of distance. 
 
dp2=:mag2 dp 
 
We then find the points that are equally far from two nearby points.  This gives us the 
points of the ridges of the Voronoi cells and thus the Voronoi tessellation. This array is 
shown in Table 3. 
 
vo=:seal voronoi dp2 
 
We then color each tile by giving each tile a number corresponding to the maximum 
radius using a method analogous to a paint-fill algorithm. 
 
til=:negspred^:_ vo+(-.vo)*->:dp2 
col=:(255*st)>. lin254b %:-.til   
 
The matrix col also shows the original points with entry 255. 
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Fig. 0. Fifty random points and their Voronoi cells. 



  9 

 

 
 
Fig.1.  A Sierpinski triangle arrangement of points. 
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Fig. 2.  Height field for the Sierpinski arrangement shows distance to the nearest point. 
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Fig. 3.  Voronoi tiling for the Sierpinski arrangement. 
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Fig. 4.  Colored Voronoi tiling for the Sierpinski arrangement. 
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Fig. 5.  Voronoi tiling of a square lattice. 
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Fig. 6.  Voronoi tiling of a hexagonal lattice. 
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Fig. 7.  Colored Voronoi tiling of the union of the hexagonal and square lattices. 
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Fig. 8.  Diffraction pattern of the Sierpinski arrangement. 
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Fig. 9.  A regular 5-grid. 
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Fig. 10.  Height field and Voronoi tiling arising from a pentagrid. 
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Fig. 11.  Height field and Voronoi tiling resulting from a 7-grid. 
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Fig. 12.  A regular Penrose rhomb tiling and the height field and Voronoi tiling resulting 
from the corresponding point set. 
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Fig. 13.  Voronoi tiling of the diffraction pattern from a Penrose point set. 
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Fig. 14.  A general Penrose rhomb tiling and the height field and Voronoi tiling resulting 
from the corresponding point set. 
 
 


