Cauchy Curves Auxiliary Gallery
By William R. Jones and Cliff Reiter
September 2008

Cauchy curves are created by following the partial path integrals of path integrals known to be zero by Cauchy's Integral Theorem. These galleries augment those described in Cauchy Curves which is on-line in Vector. A script cauchy_curves.html reproduces the figures in that paper.

Some Variantions on Figure 5:
17k
(1 0 0 0 0 0 2&p.%1.01+^&10)chycu lC
14k
(1 0 0 0 0 0 2&p.%1.01+^&11)chycu lC
18k
Figure 5
(1 0 0 0 0 0 2&p.%1.01+^&12)chycu lC
17k
(1 0 0 0 0 0 2&p.%1.01+^&13)chycu lC
17k
(1 0 0 0 0 0 2&p.%1.01+^&14)chycu lC
14k
(1 0 0 0 0 0 1&p.%1.01+^&12)chycu lC
17k
(1 0 0 0 0 0 1.7&p.%1.01+^&12)chycu lC
19k
(1 0 0 0 0 0 3&p.%1.01+^&12)chycu lC
21k
(1 0 0 0 0 0 4&p.%1.01+^&12)chycu lC
23k
(1 0 0 0 0 0 5&p.%1.01+^&12)chycu lC
Some other Polynomials:
12k
f=. 0 1 1 1 1 1 1 1 1&p.
cplot f chycu C
12k
f=. 1 1 1 1 1 1 1 1 1&p.
cplot f chycu C
13k
f=. 1 1 1 1 1 1 1 1 2&p.
cplot f chycu C
A Family of Polynomials:
52k
(2+i.12) (2+3*]^[) cfplot C
Some other Families:
96k
a=:5*0.97^ steps 0 1 50
a cos@:([*^&3@]) cfplot C
104k
a cos@:([*^&4@]) cfplot C
133k
a cos@:([*^&5@]) cfplot C
144k
a cos@:([*^&6@]) cfplot C
48k
b=:4*0.97^ steps 0 1 50
b ^@:([*^&2@]) cfplot C
54k
b ^@:([*^&3@]) cfplot C
79k
b=:4*0.97^ steps 0 1 50
b sin@:([*^&2@]) cfplot C
64k
b sin@:([*^&3@]) cfplot C
114k
b sin@:([*^&4@]) cfplot C
83k
b sin@:([*^&5@]) cfplot C
75k
fh6=: 1 0 0 0 0 0 2&p.@] % 1.01+]^[
d=: 12*1.07^ steps 0 0.5 100
d fh6 cfplot ell
Some Alternate Paths:
17k
cc=: (cos j. 6*1+sin) steps 0 2p1 10000
cplot ^ chycu cc
16k
cc=. (cos j. sin@(5&*)) steps 0 2p1 10000
cplot ^ chycu cc
11k
cc=. (^&3@cos j. ^&3@sin) steps 0 2p1 10000
cplot ^ chycu cc