Some Variantions on Figure 5: |
(1 0 0 0 0 0 2&p.%1.01+^&10)chycu lC
|
(1 0 0 0 0 0 2&p.%1.01+^&11)chycu lC
|
Figure 5
(1 0 0 0 0 0 2&p.%1.01+^&12)chycu lC
|
(1 0 0 0 0 0 2&p.%1.01+^&13)chycu lC
|
(1 0 0 0 0 0 2&p.%1.01+^&14)chycu lC
|
(1 0 0 0 0 0 1&p.%1.01+^&12)chycu lC
|
(1 0 0 0 0 0 1.7&p.%1.01+^&12)chycu lC
|
(1 0 0 0 0 0 3&p.%1.01+^&12)chycu lC
|
(1 0 0 0 0 0 4&p.%1.01+^&12)chycu lC
|
(1 0 0 0 0 0 5&p.%1.01+^&12)chycu lC
|
Some other Polynomials: |
f=. 0 1 1 1 1 1 1 1 1&p.
cplot f chycu C
|
f=. 1 1 1 1 1 1 1 1 1&p.
cplot f chycu C
|
f=. 1 1 1 1 1 1 1 1 2&p.
cplot f chycu C
|
A Family of Polynomials: |
(2+i.12) (2+3*]^[) cfplot C
|
Some other Families: |
a=:5*0.97^ steps 0 1 50
a cos@:([*^&3@]) cfplot C
|
a cos@:([*^&4@]) cfplot C
|
a cos@:([*^&5@]) cfplot C
|
a cos@:([*^&6@]) cfplot C
|
b=:4*0.97^ steps 0 1 50
b ^@:([*^&2@]) cfplot C
|
b ^@:([*^&3@]) cfplot C
|
b=:4*0.97^ steps 0 1 50
b sin@:([*^&2@]) cfplot C
|
b sin@:([*^&3@]) cfplot C
|
b sin@:([*^&4@]) cfplot C
|
b sin@:([*^&5@]) cfplot C
|
fh6=: 1 0 0 0 0 0 2&p.@] % 1.01+]^[
d=: 12*1.07^ steps 0 0.5 100
d fh6 cfplot ell
|
Some Alternate Paths: |
cc=: (cos j. 6*1+sin) steps 0 2p1 10000
cplot ^ chycu cc
|
cc=. (cos j. sin@(5&*)) steps 0 2p1 10000
cplot ^ chycu cc
|
cc=. (^&3@cos j. ^&3@sin) steps 0 2p1 10000
cplot ^ chycu cc
|