Pursuing the Perfect Parallelepiped Auxiliary Materials

by Clifford A . Reiter and Jordan O . Tirrell

Theorem 1 Proof Material

In[1]:=

len2[v_] := v . v

In[2]:=

pvn[p_, q_, n_] := {(p^2 + q^2 - n^2)/(n), 2p, 2q}

In[3]:=

pvn[p, q, n]

Out[3]=

{(-n^2 + p^2 + q^2)/n, 2 p, 2 q}

In[4]:=

Factor[len2[pvn[p, 0, n]]]

Out[4]=

(n^2 + p^2)^2/n^2

In[5]:=

Factor[len2[pvn[p, q, n]]]

Out[5]=

(n^2 + p^2 + q^2)^2/n^2

In[6]:=

Factor[len2[{(p^2 + q^2 + r^2 - n^2)/(n), 2p, 2q, 2r}]]

Out[6]=

(n^2 + p^2 + q^2 + r^2)^2/n^2

In[7]:=

Factor[len2[{((2p + 1)^2 + (2q + 1)^2 + (2r + 1)^2 - n^2)/(2n), 2p + 1, 2q + 1, 2r + 1}]]

Out[7]=

(n^2 + 4 p^2 + 4 q^2 + 4 r^2 + 4 p + 4 q + 4 r + 3)^2/(4 n^2)

In[8]:=

Factor[((2p + 1)^2 + (2q + 1)^2 + (2r + 1)^2 + n^2)/(2n)]

Out[8]=

(n^2 + 4 p^2 + 4 q^2 + 4 r^2 + 4 p + 4 q + 4 r + 3)/(2 n)

Theorem 2 Proof Material

In[9]:=

J = {{0, 1, 1, 1}, {1, 0, 1, 1}, {1, 1, 0, 1}, {1, 1, 1, 2}}

Out[9]=

( 0   1   1   1 )            1   0   1   1            1   1   0   1            1   1   1   2

In[10]:=

pvnx[p_, q_, n_] := {(p^2 + q^2 - n^2)/(n), 2p, 2q, (p^2 + q^2 + n^2)/n}

In[11]:=

pvnx[p, q, n]

Out[11]=

{(-n^2 + p^2 + q^2)/n, 2 p, 2 q, (n^2 + p^2 + q^2)/n}

In[12]:=

J . pvnx[p, q, n]

Out[12]=

{2 p + 2 q + (n^2 + p^2 + q^2)/n, 2 q + (-n^2 + p^2 + q^2)/n + (n^2 + p^2 + q^2)/n, 2 p + (-n^ ...  + p^2 + q^2)/n + (n^2 + p^2 + q^2)/n, 2 p + 2 q + (-n^2 + p^2 + q^2)/n + (2 (n^2 + p^2 + q^2))/n}

In[13]:=

Drop[J . pvnx[p, q, n], -1]

Out[13]=

{2 p + 2 q + (n^2 + p^2 + q^2)/n, 2 q + (-n^2 + p^2 + q^2)/n + (n^2 + p^2 + q^2)/n, 2 p + (-n^2 + p^2 + q^2)/n + (n^2 + p^2 + q^2)/n}

In[14]:=

Factor[len2[Drop[J . pvnx[p, q, n], -1]]]

Out[14]=

(n^2 + 2 p n + 2 q n + 3 p^2 + 3 q^2)^2/n^2

In[15]:=

pvnx2[p_, q_, n_] := {(p^2 + q^2 - n^2)/(n), 2p, 2q, -(p^2 + q^2 + n^2)/n}

In[16]:=

Factor[len2[Drop[J . pvnx2[p, q, n], -1]]]

Out[16]=

(3 n^2 - 2 p n - 2 q n + p^2 + q^2)^2/n^2

Proposition 3 Proof Material

In[17]:=

J = {{0, 1, 1, 1}, {1, 0, 1, 1}, {1, 1, 0, 1}, {1, 1, 1, 2}}

Out[17]=

( 0   1   1   1 )            1   0   1   1            1   1   0   1            1   1   1   2

In[18]:=

J1 = {{0, 1, 1, 1}, {-1, 0, 1, 1}, {-1, 1, 0, 1}, {-1, 1, 1, 2}}

Out[18]=

( 0    1    1    1  )            -1   0    1    1            -1   1    0    1            -1   1    1    2

In[19]:=

J2 = {{0, -1, 1, 1}, {1, 0, 1, 1}, {1, -1, 0, 1}, {1, -1, 1, 2}}

Out[19]=

( 0    -1   1    1  )            1    0    1    1            1    -1   0    1            1    -1   1    2

In[20]:=

J3 = {{0, 1, -1, 1}, {1, 0, -1, 1}, {1, 1, 0, 1}, {1, 1, -1, 2}}

Out[20]=

( 0    1    -1   1  )            1    0    -1   1            1    1    0    1            1    1    -1   2

In[21]:=

J23 = {{0, -1, -1, 1}, {1, 0, -1, 1}, {1, -1, 0, 1}, {1, -1, -1, 2}}

Out[21]=

( 0    -1   -1   1  )            1    0    -1   1            1    -1   0    1            1    -1   -1   2

In[22]:=

J12 = {{0, -1, 1, 1}, {-1, 0, 1, 1}, {-1, -1, 0, 1}, {-1, -1, 1, 2}}

Out[22]=

( 0    -1   1    1  )            -1   0    1    1            -1   -1   0    1            -1   -1   1    2

In[23]:=

J13 = {{0, 1, -1, 1}, {-1, 0, -1, 1}, {-1, 1, 0, 1}, {-1, 1, -1, 2}}

Out[23]=

( 0    1    -1   1  )            -1   0    -1   1            -1   1    0    1            -1   1    -1   2

In[24]:=

J123 = {{0, -1, -1, 1}, {-1, 0, -1, 1}, {-1, -1, 0, 1}, {-1, -1, -1, 2}}

Out[24]=

( 0    -1   -1   1  )            -1   0    -1   1            -1   -1   0    1            -1   -1   -1   2

In[25]:=

Inverse[J]

Out[25]=

( 0    1    1    -1 )            1    0    1    -1            1    1    0    -1            -1   -1   -1   2

In[26]:=

J123 . J123

Out[26]=

( 1   0   0   0 )            0   1   0   0            0   0   1   0            0   0   0   1

In[27]:=

J12 . J12 . J12 . J12

Out[27]=

( 1   0   0   0 )            0   1   0   0            0   0   1   0            0   0   0   1

In[28]:=

J13 . J13 . J13 . J13

Out[28]=

( 1   0   0   0 )            0   1   0   0            0   0   1   0            0   0   0   1

In[29]:=

J23 . J23 . J23 . J23

Out[29]=

( 1   0   0   0 )            0   1   0   0            0   0   1   0            0   0   0   1

In[30]:=

J . J . J - 3J . J - 3J + IdentityMatrix[4]

Out[30]=

( 0   0   0   0 )            0   0   0   0            0   0   0   0            0   0   0   0

Theorem 4 Proof Material

In[31]:=

Factor[len2[J1 . pvnx[p, q, n]] - len2[pvnx[p, q, n]]]

Out[31]=

(8 (n + p + q) (2 n^2 + p n + q n + p^2 + q^2))/n

In[32]:=

Expand[3/2n^2 + (n/2 + p)^2 + (n/2 + q)^2]

Out[32]=

2 n^2 + p n + q n + p^2 + q^2

In[33]:=

Factor[len2[J12 . pvnx[p, q, n]] - len2[pvnx[p, q, n]]]

Out[33]=

-(8 (-n + p - q) (2 n^2 - p n + q n + p^2 + q^2))/n

In[34]:=

Expand[3/2n^2 + (n/2 - p)^2 + (n/2 + q)^2]

Out[34]=

2 n^2 - p n + q n + p^2 + q^2

In[35]:=

Factor[len2[J13 . pvnx[p, q, n]] - len2[pvnx[p, q, n]]]

Out[35]=

(8 (n + p - q) (2 n^2 + p n - q n + p^2 + q^2))/n

In[36]:=

Expand[3/2n^2 + (n/2 + p)^2 + (n/2 - q)^2]

Out[36]=

2 n^2 + p n - q n + p^2 + q^2

In[37]:=

Factor[len2[J123 . pvnx[p, q, n]] - len2[pvnx[p, q, n]]] 

Out[37]=

-(8 (-n + p + q) (2 n^2 - p n - q n + p^2 + q^2))/n

In[38]:=

Expand[3/2n^2 + (n/2 - p)^2 + (n/2 - q)^2]

Out[38]=

2 n^2 - p n - q n + p^2 + q^2

Proposition 5 Proof Material

In[39]:=

Prop5u[p_, q_] := {4q^2 (p^2 + q^2 - 1), 8p q^2, 8q^3}

In[40]:=

Prop5v[p_, q_, r_] := {4 (r^2 - 1) q^2 + (2 p r + 1)^2, 8 q^2 r, -4q (2 p r + 1)}

In[41]:=

Factor[len2[Prop5u[p, q]]]

Out[41]=

16 q^4 (p^2 + q^2 + 1)^2

In[42]:=

Factor[len2[Prop5v[p, q, r]]]

Out[42]=

(4 r^2 q^2 + 4 q^2 + 4 p^2 r^2 + 4 p r + 1)^2

In[43]:=

Factor[len2[Prop5u[p, q] + Prop5v[p, q, r]]]

Out[43]=

(4 q^4 + 4 p^2 q^2 + 4 r^2 q^2 + 4 p^2 r^2 + 4 p r + 1)^2

In[44]:=

Det[{Prop5u[p, q], Prop5v[p, q, r1], Prop5v[p, q, r1]}]

Out[44]=

0

Proposition 6 Proof Material

In[45]:=

u := {25 p^2 - 25 q^2, 50 p q, 0} v := {25 p^2 - 25 q^2, -50 p q, 0} w := {0, -28 p q, 96 p q}

In[48]:=

Factor[len2[u]]

Out[48]=

625 (p^2 + q^2)^2

In[49]:=

Factor[len2[v]]

Out[49]=

625 (p^2 + q^2)^2

In[50]:=

Factor[len2[w]]

Out[50]=

10000 p^2 q^2

In[51]:=

Factor[len2[u + v + w]]

Out[51]=

2500 (p^2 + q^2)^2

In[52]:=

Factor[len2[u - v + w]]

Out[52]=

14400 p^2 q^2

In[53]:=

Factor[len2[u - v]]

Out[53]=

10000 p^2 q^2

In[54]:=

Factor[len2[u + v]]

Out[54]=

2500 (p - q)^2 (p + q)^2

In[55]:=

Factor[len2[u + v - w]]

Out[55]=

2500 (p^2 + q^2)^2

In[56]:=

Factor[len2[u - v - w]]

Out[56]=

25600 p^2 q^2

In[57]:=

Factor[len2[u + w]]

Out[57]=

25 (25 p^4 + 338 q^2 p^2 + 25 q^4)

In[58]:=

Factor[len2[v - w]]

Out[58]=

25 (25 p^4 + 338 q^2 p^2 + 25 q^4)

In[59]:=

Factor[len2[u - w]]

Out[59]=

25 (25 p^4 + 562 q^2 p^2 + 25 q^4)

In[60]:=

Factor[len2[v + w]]

Out[60]=

25 (25 p^4 + 562 q^2 p^2 + 25 q^4)


Created by Mathematica  (August 11, 2005)